Download this R markdown as: R, Rmd.

Outline of the lab session

Loading the data and libraries

For the purpose of this lab session we will consider the dataset Dris from the R library mffSM. We will be interested in the dependence of the yield on the amount of magnesium concentration (yield ~ Mg) and the amount of the calcium concentration (yield ~ Ca).

library("mffSM")
library("colorspace")
data(Dris, package = "mffSM")

All together, there are 368 observations available in the dataset and 6 different measurements (although, we will not use all of them). A brief insight about the data can be taken from the following code:

dim(Dris)
## [1] 368   6
head(Dris)
##   yield   N  P   K Ca Mg
## 1  5.47 470 47 320 47 11
## 2  5.63 530 48 357 60 16
## 3  5.63 530 48 310 63 16
## 4  4.84 482 47 357 47 13
## 5  4.84 506 48 294 52 15
## 6  4.21 500 45 283 61 14
summary(Dris)
##      yield             N               P               K               Ca              Mg       
##  Min.   :1.920   Min.   :268.0   Min.   :32.00   Min.   :200.0   Min.   :29.00   Min.   : 8.00  
##  1st Qu.:4.040   1st Qu.:427.0   1st Qu.:43.00   1st Qu.:338.0   1st Qu.:41.75   1st Qu.:10.00  
##  Median :4.840   Median :473.0   Median :49.00   Median :377.0   Median :49.00   Median :11.00  
##  Mean   :4.864   Mean   :469.9   Mean   :48.65   Mean   :375.4   Mean   :51.45   Mean   :11.64  
##  3rd Qu.:5.558   3rd Qu.:518.0   3rd Qu.:54.00   3rd Qu.:407.0   3rd Qu.:59.00   3rd Qu.:13.00  
##  Max.   :8.792   Max.   :657.0   Max.   :72.00   Max.   :580.0   Max.   :95.00   Max.   :22.00

Firstly, we visualize marginal dependence of yield on the magnesium concentration and the calcium concentration.

par(mfrow = c(1,2), mar = c(4,4,0.5,0.5))
plot(yield ~ Mg, data = Dris, pch = 22, bg = "gray", 
     xlab = "Magnesium concentration", ylab = "Yield")
plot(yield ~ Ca, data = Dris, pch = 22, bg = "gray", 
     xlab = "Calcium concentration", ylab = "Yield")

Note, that the points are not equally distributed along the \(x\) axis. There are way more points at the left corners of the scatterplots than in the right parts. This suggests that a logarithmic transformation (of the magnesium and calcium concentration) could help to align the data more uniformly along the \(x\) axis,

For more intuitive interpretation we use the logarithm with the base two (meaning that unit increase of the logaritmically transformed covariates, i.e.,
\(\log_2(x) + 1 = \log_2 (x) \cdot \log_2 2 = \log_2 (2 x)\) equals double amount of the original covariate).

Dris <- transform(Dris, 
                  lMg = log2(Mg), lMg2 = (log2(Mg))^2, 
                  lCa = log2(Ca), lCa2 = (log2(Ca))^2, 
                  lN = log2(N), lN2=(log2(N))^2)

The same scatterplots but x-axis in on logarithmic scale.

par(mfrow = c(1,2), mar = c(4,4,0.5,0.5))
plot(yield ~ lMg, data = Dris, pch = 22, bg = "gray", 
     xlab = "Magnesium concentration [log scale]", ylab = "Yield")
plot(yield ~ lCa, data = Dris, pch = 22, bg = "gray", 
     xlab = "Calcium concentration [log scale]", ylab = "Yield")

Plotting functions in R also provide an option to turn an axis to the log scale. It does not offer you the option to choose the base but adjusts x-axis to keep the labels of original values. Now the labels on the x-axis are not equidistant:

par(mfrow = c(1,2), mar = c(4,4,0.5,0.5))
plot(yield ~ Mg, data = Dris, pch = 22, bg = "gray", log = "x",
     xlab = "Magnesium concentration", ylab = "Yield")
plot(yield ~ Ca, data = Dris, pch = 22, bg = "gray", log = "x",
     xlab = "Calcium concentration", ylab = "Yield")

For the following, we will use the transformed data.

Individual work

1. Simple and multiple linear regression models

Let us start with two simple regression models (one explanatory variable only) and we compare these models with a multiple regression model (with both explanatory variables being used at the same time).

summary(m10 <- lm(yield ~ lMg, data = Dris))
## 
## Call:
## lm(formula = yield ~ lMg, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1194 -0.7412 -0.0741  0.7451  3.9841 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.4851     0.7790   1.907   0.0574 .  
## lMg           0.9605     0.2208   4.349 1.77e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.07 on 366 degrees of freedom
## Multiple R-squared:  0.04915,    Adjusted R-squared:  0.04655 
## F-statistic: 18.92 on 1 and 366 DF,  p-value: 1.772e-05
summary(m01 <- lm(yield ~ lCa, data = Dris))
## 
## Call:
## lm(formula = yield ~ lCa, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9021 -0.8094 -0.0388  0.7211  3.9279 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.4561     0.9119   5.983 5.22e-09 ***
## lCa          -0.1049     0.1614  -0.650    0.516    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.096 on 366 degrees of freedom
## Multiple R-squared:  0.001153,   Adjusted R-squared:  -0.001576 
## F-statistic: 0.4227 on 1 and 366 DF,  p-value: 0.516

Both marginal models can be now compared with a larger model, containing both predictor variables additively:

summary(m11 <- lm(yield ~ lMg + lCa, data = Dris))
## 
## Call:
## lm(formula = yield ~ lMg + lCa, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9514 -0.7210 -0.0838  0.7700  4.0120 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.4026     0.9525   3.572 0.000402 ***
## lMg           1.3998     0.2531   5.530 6.11e-08 ***
## lCa          -0.6140     0.1805  -3.402 0.000742 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 365 degrees of freedom
## Multiple R-squared:  0.07838,    Adjusted R-squared:  0.07333 
## F-statistic: 15.52 on 2 and 365 DF,  p-value: 3.396e-07

Note, there are quite different values for the estimated parameters when being interested in the effect of magnesium or the effect of calcium. Which model should be taken as a reference one?

Individual work

Interpret the models fitted above – try to explain the meaning of the estimated parameters. In particular, focus on the following:

Quadratic trend

In the following, we will try slightly more complex (multiple) regression models:

summary(m20 <- lm(yield ~ lMg + lMg2, data = Dris))
## 
## Call:
## lm(formula = yield ~ lMg + lMg2, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1942 -0.7636 -0.0413  0.8089  3.8957 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -18.7523     7.6276  -2.458  0.01442 * 
## lMg          12.3814     4.2881   2.887  0.00412 **
## lMg2         -1.6030     0.6011  -2.667  0.00800 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.061 on 365 degrees of freedom
## Multiple R-squared:  0.06732,    Adjusted R-squared:  0.06221 
## F-statistic: 13.17 on 2 and 365 DF,  p-value: 2.994e-06
summary(m02 <- lm(yield ~ lCa + lCa2, data = Dris))
## 
## Call:
## lm(formula = yield ~ lCa + lCa2, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9082 -0.8314 -0.0488  0.6949  3.8889 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  -4.6108    12.7956  -0.360    0.719
## lCa           3.4343     4.4900   0.765    0.445
## lCa2         -0.3098     0.3928  -0.789    0.431
## 
## Residual standard error: 1.097 on 365 degrees of freedom
## Multiple R-squared:  0.002853,   Adjusted R-squared:  -0.002611 
## F-statistic: 0.5222 on 2 and 365 DF,  p-value: 0.5937

Is there some statistical improvements in the two models above?

And what about the following models?

summary(m21 <- lm(yield ~ lMg + lMg2 + lCa, data = Dris)) 
## 
## Call:
## lm(formula = yield ~ lMg + lMg2 + lCa, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0260 -0.7554 -0.1068  0.7474  3.9233 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -16.9375     7.5351  -2.248 0.025186 *  
## lMg          12.8838     4.2282   3.047 0.002479 ** 
## lMg2         -1.6116     0.5923  -2.721 0.006824 ** 
## lCa          -0.6160     0.1789  -3.444 0.000641 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.045 on 364 degrees of freedom
## Multiple R-squared:  0.09675,    Adjusted R-squared:  0.0893 
## F-statistic:    13 on 3 and 364 DF,  p-value: 4.408e-08
summary(m22 <- lm(yield ~ lMg + lMg2 + lCa + lCa2, data = Dris)) 
## 
## Call:
## lm(formula = yield ~ lMg + lMg2 + lCa + lCa2, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0262 -0.7583 -0.1083  0.7455  3.9182 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -18.26667   13.29798  -1.374  0.17040   
## lMg          12.78321    4.31420   2.963  0.00325 **
## lMg2         -1.59767    0.60418  -2.644  0.00854 **
## lCa          -0.08582    4.37164  -0.020  0.98435   
## lCa2         -0.04638    0.38209  -0.121  0.90345   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.047 on 363 degrees of freedom
## Multiple R-squared:  0.09678,    Adjusted R-squared:  0.08683 
## F-statistic: 9.724 on 4 and 363 DF,  p-value: 1.758e-07

What is now the effect of the magnesium concentration on the expected (estimated) amount of yield? How this effect can be quantified using different models?

We can actually visualize the effect of the magnesium concentration on the yield (using different models fitted above). Specifically, we are interested in the effect of the change of lMg by additional log2(1.1) which corresponds with the increase of Mg by 10%). What will be the corresponding change of the expected amount of yield, i.e. \(\mathsf{E} [\mathtt{yield} | \mathtt{lMg}, \mathtt{lCa}]\)?

Dris <- transform(Dris, jMg = Mg + runif(nrow(Dris), -0.5, 0.5))
Dris <- transform(Dris, ljMg = log2(jMg))

eps <- 0.1
delta <- log2(1+eps)
lMg.grid <- seq(min(Dris$lMg), max(Dris$lMg)-delta, length = 1000)
effect.lMg <- function(b1,b2) b1*delta + b2*(2*delta*lMg.grid + delta^2)

YLIM <- range(effect.lMg(coef(m20)['lMg'], coef(m20)['lMg2']), 
              effect.lMg(coef(m21)['lMg'], coef(m21)['lMg2']), 
              effect.lMg(coef(m22)['lMg'], coef(m22)['lMg2']))

par(mfrow = c(1,2), mar = c(4,4,2,0.5))
plot(lMg.grid, effect.lMg(coef(m20)['lMg'], coef(m20)['lMg2']), type="l",  
     xlab = "log2(Mg)", ylab = "Change of expected yield", 
     main = "The effect of 10%-increase of Mg on the yield", 
     col = "blue", lwd = 2, ylim = YLIM)
lines(lMg.grid, effect.lMg(coef(m21)['lMg'], coef(m21)['lMg2']),
      lwd=2, col="red")
lines(lMg.grid, effect.lMg(coef(m22)['lMg'], coef(m22)['lMg2']),
      lwd=2, col="darkgreen", lty="dotted") 
abline(h=0, lty="dotted")
legend("topright", legend=c("m20", "m21", "m22"), bty = "n",
       col=c("blue", "red", "darkgreen"), lwd=c(2,2,2), 
       lty=c("solid", "solid", "dotted"), cex=1.3)
rug(Dris$ljMg)


Mg.grid <- seq(min(Dris$Mg), max(Dris$Mg)-1, length = 1000); 
effect.Mg <- function(b1,b2){
  return(b1*(log2(Mg.grid+1) - log2(Mg.grid)) + 
           b2*((log2(1+Mg.grid))^2 - (log2(Mg.grid))^2))
}

YLIM <- range(effect.Mg(coef(m20)['lMg'], coef(m20)['lMg2']), 
              effect.Mg(coef(m21)['lMg'], coef(m21)['lMg2']), 
              effect.Mg(coef(m22)['lMg'], coef(m22)['lMg2']))

plot(Mg.grid, effect.Mg(coef(m20)['lMg'], coef(m20)['lMg2']), type="l", 
              xlab = "Mg", ylab = "Change of expected yield",
              main = "The effect of increase of Mg by +1 on the yield",
              col = "blue", lwd=2, ylim=YLIM)
lines(Mg.grid, effect.Mg(coef(m21)['lMg'], coef(m21)['lMg2']), 
              lwd=2, col="red")
lines(Mg.grid, effect.Mg(coef(m22)['lMg'], coef(m22)['lMg2']), 
              lwd=2, col="darkgreen", lty="dotted")
abline(h=0, lty="dotted")
legend("topright", legend=c("m20", "m21", "m22"), bty = "n",
       col=c("blue", "red", "darkgreen"), lwd=c(2,2,2), 
       lty=c("solid", "solid", "dotted"), cex=1.3)
rug(Dris$jMg)

Individual work

2. Regression models with simple interations

The interactions in the model allow for modelling a flexible effect of some covariate given the value of some other covariate (or multiple covariates). We consider a simple model with one interaction term (denoted as lMg:lCa):

summary(m1_inter <- lm(yield ~ lMg + lCa + lMg:lCa, data = Dris))
## 
## Call:
## lm(formula = yield ~ lMg + lCa + lMg:lCa, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9833 -0.7326 -0.1275  0.7797  3.9535 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -23.653     11.878  -1.991  0.04719 * 
## lMg            9.046      3.356   2.696  0.00735 **
## lCa            4.159      2.096   1.984  0.04802 * 
## lMg:lCa       -1.346      0.589  -2.285  0.02288 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.049 on 364 degrees of freedom
## Multiple R-squared:  0.09141,    Adjusted R-squared:  0.08392 
## F-statistic: 12.21 on 3 and 364 DF,  p-value: 1.254e-07
Dris$Z <- Dris$lMg * Dris$lCa
summary(m1_Z <- lm(yield ~ lMg + lCa + Z, data = Dris))
## 
## Call:
## lm(formula = yield ~ lMg + lCa + Z, data = Dris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9833 -0.7326 -0.1275  0.7797  3.9535 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -23.653     11.878  -1.991  0.04719 * 
## lMg            9.046      3.356   2.696  0.00735 **
## lCa            4.159      2.096   1.984  0.04802 * 
## Z             -1.346      0.589  -2.285  0.02288 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.049 on 364 degrees of freedom
## Multiple R-squared:  0.09141,    Adjusted R-squared:  0.08392 
## F-statistic: 12.21 on 3 and 364 DF,  p-value: 1.254e-07

Again, we can quantify the effect of the magnesium concentration on the yield however, this time we have to properly take into account the underlying concentration of calcium. How can be this done?

Mg.grid <- seq(min(Dris$Mg), max(Dris$Mg), length = 5)
blues <- c("lightblue", "skyblue", "deepskyblue", "blue", "navyblue")
Ca.grid <- seq(min(Dris$Ca), max(Dris$Ca), length = 1000)
lCa.grid <- seq(min(Dris$lCa), max(Dris$lCa), length = 1000)
eps <- 0.1;
delta <- log2(1+eps)


par(mfrow = c(1, 2), mar = c(4,4,2,0.5))
plot(lCa.grid, 
     delta*coef(m1_inter)['lMg'] + delta*coef(m1_inter)['lMg:lCa'] * lCa.grid,
     xlab = "log2(Ca)", ylab = "Change of expected yield",
     main = "The effect of 10%-increase of Mg on the yield", 
     col = "blue", type="l", lwd=2)

plot(Ca.grid, 
     coef(m1_inter)['lMg'] * (log2(Mg.grid[3]+1)-log2(Mg.grid[3])) +
     coef(m1_inter)['lMg:lCa'] * (log2(Mg.grid[3]+1)-log2(Mg.grid[3])) * log2(Ca.grid),
     xlab = "Ca", ylab = "Change of expected yield", 
     main = "The effect of increase of Mg by +1 on the yield", 
     type="n")
for(mg in 1:5){
  lines(Ca.grid,
        coef(m1_inter)['lMg'] * (log2(Mg.grid[mg]+1)-log2(Mg.grid[mg])) +
        coef(m1_inter)['lMg:lCa'] * (log2(Mg.grid[mg]+1)-log2(Mg.grid[mg])) * log2(Ca.grid),
        col = blues[mg], lty=1, lwd=2)
}
legend("topright", paste0("Mg = ", format(Mg.grid, digits = 3)), 
       col = blues, lty = 1, lwd = 2)

3. Interations with categorical covariates

Let us return to the dataset from Exercise 2:

peat <- read.csv("http://www.karlin.mff.cuni.cz/~vavraj/nmfm334/data/peat.csv", 
                 header = TRUE, stringsAsFactors = TRUE)

We have tried to explore the relationship between Nitrogen concentration and depth:

XLAB <- "Depth [cm]"
YLAB <- "Nitrogen concentration [weight %]"

XLIM <- range(peat[, "depth"])
YLIM <- range(peat[, "N"])

PCH <- c(21, 22, 24, 25)
DARK <- rainbow_hcl(4, c = 80, l = 35)
COL <- rainbow_hcl(4, c = 80, l = 50)
BGC <- rainbow_hcl(4, c = 80, l = 70)
names(PCH) <- names(COL) <- names(BGC) <- levels(peat[, "group"])

par(mfrow = c(1,2), mar = c(4,4,0.5,0.5))
plot(N ~ jitter(depth), data = peat, pch = 21, bg = "lightblue", 
     xlab = XLAB, ylab = YLAB, xlim = XLIM, ylim = YLIM)

plot(N ~ jitter(depth), data = peat, 
     pch = PCH[group], col = COL[group], bg = BGC[group],
     xlab = XLAB, ylab = YLAB, xlim = XLIM, ylim = YLIM)

When we do not distinguish groups, we barely see any trend. Fitted line is only very slowly increasing.

fit1 <- lm(N ~ depth, data = peat)
summary(fit1)
## 
## Call:
## lm(formula = N ~ depth, data = peat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.52495 -0.17752 -0.00433  0.19054  0.51861 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.963937   0.040603  23.740  < 2e-16 ***
## depth       0.014969   0.004672   3.204  0.00166 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.247 on 146 degrees of freedom
## Multiple R-squared:  0.0657, Adjusted R-squared:  0.0593 
## F-statistic: 10.27 on 1 and 146 DF,  p-value: 0.001663
par(mfrow = c(1,1), mar = c(4,4,0.5,0.5))
plot(N ~ jitter(depth), data = peat, pch = 21, bg = "lightblue", 
     xlab = XLAB, ylab = YLAB, xlim = XLIM, ylim = YLIM)
abline(fit1, col = "darkblue", lwd = 2)

In order to fit line for each group we had to create a subset and estimate line for each subset. We would like to avoid this practice and fit that with one model.

However, additive model is not enough. Remember, additive model leads to parallel lines!

fit2 <- lm(N ~ depth + group, data = peat)
summary(fit2)
## 
## Call:
## lm(formula = N ~ depth + group, data = peat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42064 -0.14160  0.01434  0.15407  0.51768 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.760276   0.044944  16.916  < 2e-16 ***
## depth       0.015883   0.003766   4.218 4.36e-05 ***
## groupCB-VJJ 0.104746   0.045822   2.286   0.0237 *  
## groupVJJ    0.297530   0.047888   6.213 5.35e-09 ***
## groupVJJ-CB 0.377879   0.045822   8.247 9.61e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1973 on 143 degrees of freedom
## Multiple R-squared:  0.416,  Adjusted R-squared:  0.3996 
## F-statistic: 25.46 on 4 and 143 DF,  p-value: 6.141e-16
par(mfrow = c(1,1), mar = c(4,4,0.5,0.5))
plot(N ~ jitter(depth), data = peat, 
     pch = PCH[group], col = COL[group], bg = BGC[group],
     xlab = XLAB, ylab = YLAB, xlim = XLIM, ylim = YLIM)
intercepts <- coef(fit2)[1] + c(0, coef(fit2)[3:5])
slope <- coef(fit2)[2]
for(g in 1:4){
  abline(a = intercepts[g], b = slope, col = DARK[g], lwd = 2)
}

This does not fit the data well. We need specific slopes for each group. And this is where interactions play the key role.

An interaction term depth * group in this case leads to the following model: \[\begin{multline} \mathsf{E} \left[N | D=d, G=g\right] = \beta_1 + \beta_2 d + \beta_3 \mathbf{1}(g=\mathtt{CB-VJJ}) + \beta_4 \mathbf{1}(g=\mathtt{VJJ}) + \beta_5 \mathbf{1}(g=\mathtt{VJJ-CB}) + \\ + \beta_6 d \mathbf{1}(g=\mathtt{CB-VJJ}) + \beta_7 d \mathbf{1}(g=\mathtt{VJJ}) + \beta_8 d \mathbf{1}(g=\mathtt{VJJ-CB}) \end{multline}\] Rewriting it for groups separately we have: \[ \begin{aligned} \mathsf{E} \left[N | D=d, G=\mathtt{CB}\right] &= \beta_1 + \beta_2 d \\ \mathsf{E} \left[N | D=d, G=\mathtt{CB-VJJ}\right] &= (\beta_1 + \beta_3) + (\beta_2 + \beta_6) d \\ \mathsf{E} \left[N | D=d, G=\mathtt{VJJ}\right] &= (\beta_1 + \beta_4) + (\beta_2 + \beta_7) d \\ \mathsf{E} \left[N | D=d, G=\mathtt{VJJ-CB}\right] &= (\beta_1 + \beta_5) + (\beta_2 + \beta_8) d \\ \end{aligned} \]

fit3 <- lm(N ~ depth * group, data = peat)
summary(fit3)
## 
## Call:
## lm(formula = N ~ depth * group, data = peat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.36829 -0.08469 -0.00789  0.06112  0.37713 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.846956   0.051193  16.544  < 2e-16 ***
## depth              0.005048   0.005724   0.882    0.379    
## groupCB-VJJ        0.322113   0.064417   5.000 1.68e-06 ***
## groupVJJ          -0.064041   0.075374  -0.850    0.397    
## groupVJJ-CB        0.075906   0.064417   1.178    0.241    
## depth:groupCB-VJJ -0.032600   0.007389  -4.412 2.03e-05 ***
## depth:groupVJJ     0.043942   0.008312   5.287 4.68e-07 ***
## depth:groupVJJ-CB  0.041591   0.007389   5.629 9.56e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1354 on 140 degrees of freedom
## Multiple R-squared:  0.7306, Adjusted R-squared:  0.7171 
## F-statistic: 54.23 on 7 and 140 DF,  p-value: < 2.2e-16
par(mfrow = c(1,1), mar = c(4,4,0.5,0.5))
plot(N ~ jitter(depth), data = peat, 
     pch = PCH[group], col = COL[group], bg = BGC[group],
     xlab = XLAB, ylab = YLAB, xlim = XLIM, ylim = YLIM)
intercepts <- coef(fit3)[1] + c(0, coef(fit3)[3:5])
slopes <- coef(fit3)[2] + c(0, coef(fit3)[6:8])
for(g in 1:4){
  abline(a = intercepts[g], b = slopes[g], col = DARK[g], lwd = 2)
}

Individual work

4. Complex model with many regressors and interactions

Now, we will consider another dataset from the mffSM packages.
Data are provided from the American Association of University Professors (AAUP) on annual faculty salary survey of American colleges and universities, 1995.

data(AAUP, package = "mffSM")

dim(AAUP)
## [1] 1161   17
head(AAUP)
##    FICE                      name state type salary.prof salary.assoc salary.assist salary compens.prof
## 1  1061 Alaska Pacific University    AK  IIB         454          382           362    382          567
## 2  1063     Univ.Alaska-Fairbanks    AK    I         686          560           432    508          914
## 3  1065     Univ.Alaska-Southeast    AK  IIA         533          494           329    415          716
## 4 11462     Univ.Alaska-Anchorage    AK  IIA         612          507           414    498          825
## 5  1002 Alabama Agri.&Mech. Univ.    AL  IIA         442          369           310    350          530
## 6  1004  University of Montevallo    AL  IIA         441          385           310    388          542
##   compens.assoc compens.assist compens n.prof n.assoc n.assist n.instruct n.faculty
## 1           485            471     487      6      11        9          4        32
## 2           753            572     677     74     125      118         40       404
## 3           663            442     559      9      26       20          9        70
## 4           681            557     670    115     124      101         21       392
## 5           444            376     423     59      77      102         24       262
## 6           473            383     477     57      33       35          2       127
summary(AAUP)
##       FICE           name               state      type      salary.prof      salary.assoc   salary.assist  
##  Min.   : 1002   Length:1161        PA     : 85   I  :180   Min.   : 270.0   Min.   :234.0   Min.   :199.0  
##  1st Qu.: 1903   Class :character   NY     : 81   IIA:363   1st Qu.: 440.0   1st Qu.:367.0   1st Qu.:313.0  
##  Median : 2668   Mode  :character   CA     : 54   IIB:618   Median : 506.0   Median :413.0   Median :349.0  
##  Mean   : 3052                      TX     : 54             Mean   : 524.1   Mean   :416.4   Mean   :351.9  
##  3rd Qu.: 3420                      OH     : 53             3rd Qu.: 600.0   3rd Qu.:461.0   3rd Qu.:388.0  
##  Max.   :29269                      IL     : 50             Max.   :1009.0   Max.   :733.0   Max.   :576.0  
##                                     (Other):784             NA's   :68       NA's   :36      NA's   :24     
##      salary       compens.prof    compens.assoc   compens.assist     compens           n.prof     
##  Min.   :232.0   Min.   : 319.0   Min.   :292.0   Min.   :246.0   Min.   : 265.0   Min.   :  0.0  
##  1st Qu.:352.0   1st Qu.: 547.0   1st Qu.:456.0   1st Qu.:389.0   1st Qu.: 436.0   1st Qu.: 18.0  
##  Median :407.0   Median : 635.0   Median :519.0   Median :437.0   Median : 510.0   Median : 40.0  
##  Mean   :420.4   Mean   : 653.5   Mean   :523.8   Mean   :442.1   Mean   : 526.7   Mean   : 95.1  
##  3rd Qu.:475.0   3rd Qu.: 753.0   3rd Qu.:583.0   3rd Qu.:493.0   3rd Qu.: 600.0   3rd Qu.:105.0  
##  Max.   :866.0   Max.   :1236.0   Max.   :909.0   Max.   :717.0   Max.   :1075.0   Max.   :997.0  
##                  NA's   :68       NA's   :36      NA's   :24                                      
##     n.assoc          n.assist        n.instruct       n.faculty     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :   7.0  
##  1st Qu.: 19.00   1st Qu.: 21.00   1st Qu.:  2.00   1st Qu.:  68.0  
##  Median : 38.00   Median : 40.00   Median :  6.00   Median : 132.0  
##  Mean   : 72.39   Mean   : 68.63   Mean   : 12.74   Mean   : 257.4  
##  3rd Qu.: 89.00   3rd Qu.: 92.00   3rd Qu.: 14.00   3rd Qu.: 323.0  
##  Max.   :721.00   Max.   :510.00   Max.   :178.00   Max.   :2261.0  
## 
### A data subset containing only relevant variables
aaup <- subset(AAUP, select = c("FICE", "name", "state", "type", "n.prof",
                                "n.assoc", "n.assist", "salary.assoc"))

dim(aaup)
## [1] 1161    8
head(aaup)
##    FICE                      name state type n.prof n.assoc n.assist salary.assoc
## 1  1061 Alaska Pacific University    AK  IIB      6      11        9          382
## 2  1063     Univ.Alaska-Fairbanks    AK    I     74     125      118          560
## 3  1065     Univ.Alaska-Southeast    AK  IIA      9      26       20          494
## 4 11462     Univ.Alaska-Anchorage    AK  IIA    115     124      101          507
## 5  1002 Alabama Agri.&Mech. Univ.    AL  IIA     59      77      102          369
## 6  1004  University of Montevallo    AL  IIA     57      33       35          385
summary(aaup)
##       FICE           name               state      type         n.prof         n.assoc          n.assist     
##  Min.   : 1002   Length:1161        PA     : 85   I  :180   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.: 1903   Class :character   NY     : 81   IIA:363   1st Qu.: 18.0   1st Qu.: 19.00   1st Qu.: 21.00  
##  Median : 2668   Mode  :character   CA     : 54   IIB:618   Median : 40.0   Median : 38.00   Median : 40.00  
##  Mean   : 3052                      TX     : 54             Mean   : 95.1   Mean   : 72.39   Mean   : 68.63  
##  3rd Qu.: 3420                      OH     : 53             3rd Qu.:105.0   3rd Qu.: 89.00   3rd Qu.: 92.00  
##  Max.   :29269                      IL     : 50             Max.   :997.0   Max.   :721.00   Max.   :510.00  
##                                     (Other):784                                                              
##   salary.assoc  
##  Min.   :234.0  
##  1st Qu.:367.0  
##  Median :413.0  
##  Mean   :416.4  
##  3rd Qu.:461.0  
##  Max.   :733.0  
##  NA's   :36
### considering only a subset of covariates
Data <- subset(aaup, 
               complete.cases(aaup[, c("salary.assoc", "n.prof", "n.assoc", "n.assist", "type")]))

Individual work

COL3 <- rainbow_hcl(3)
plot(salary.assoc ~ type, data = aaup, 
     xlab = "Type of institution",  ylab = "Salary associate professor [USD 100]", 
     col = COL3)

We will fit a few different models that we will compare later. Firstly, a simple additive model:

summary(m1orig <- lm(salary.assoc ~ type + n.prof + n.assoc + n.assist,  data = Data))
## 
## Call:
## lm(formula = salary.assoc ~ type + n.prof + n.assoc + n.assist, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -144.657  -39.679   -6.887   33.560  266.641 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 448.49675    8.61850  52.039  < 2e-16 ***
## typeIIA     -19.45462    7.18979  -2.706  0.00692 ** 
## typeIIB     -70.56945    8.20735  -8.598  < 2e-16 ***
## n.prof        0.10370    0.02760   3.758  0.00018 ***
## n.assoc       0.07075    0.05883   1.203  0.22940    
## n.assist     -0.06609    0.06445  -1.025  0.30538    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 58.21 on 1119 degrees of freedom
## Multiple R-squared:  0.3408, Adjusted R-squared:  0.3379 
## F-statistic: 115.7 on 5 and 1119 DF,  p-value: < 2.2e-16

Interpret the estimated parameters in the model and compare it with the interpretation of the estimated parameters in the following model:

Data <- transform(Data, n.prof40 = n.prof - 40,
                  n.assoc40 = n.assoc - 40,
                  n.assist40 = n.assist - 40)
summary(m1 <- lm(salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40, data = Data))
## 
## Call:
## lm(formula = salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -144.657  -39.679   -6.887   33.560  266.641 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 452.83099    7.50270  60.356  < 2e-16 ***
## typeIIA     -19.45462    7.18979  -2.706  0.00692 ** 
## typeIIB     -70.56945    8.20735  -8.598  < 2e-16 ***
## n.prof40      0.10370    0.02760   3.758  0.00018 ***
## n.assoc40     0.07075    0.05883   1.203  0.22940    
## n.assist40   -0.06609    0.06445  -1.025  0.30538    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 58.21 on 1119 degrees of freedom
## Multiple R-squared:  0.3408, Adjusted R-squared:  0.3379 
## F-statistic: 115.7 on 5 and 1119 DF,  p-value: < 2.2e-16

And, once more the same model, however, with a different parametrization (contr.sum) used for the categorical covariate of the university type:

m1B <- lm(salary.assoc ~ type +n.prof40 + n.assoc40 + n.assist40, data = Data,  
          contrasts = list(type = "contr.sum"))

Finally, one more complicated model with interactions (in two different parametrization of the continuous covariates):

summary(m2orig <- lm(salary.assoc ~ type + n.prof*n.assoc + n.assist,  data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ type + n.prof * n.assoc + n.assist, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -137.779  -39.956   -6.683   33.105  280.196 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.946e+02  9.949e+00  39.662  < 2e-16 ***
## typeIIA         1.697e+00  7.237e+00   0.235  0.81461    
## typeIIB        -2.828e+01  8.994e+00  -3.144  0.00171 ** 
## n.prof          3.079e-01  3.376e-02   9.119  < 2e-16 ***
## n.assoc         4.171e-01  6.671e-02   6.252 5.76e-10 ***
## n.assist       -1.339e-01  6.229e-02  -2.150  0.03175 *  
## n.prof:n.assoc -8.444e-04  8.649e-05  -9.763  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 55.91 on 1118 degrees of freedom
## Multiple R-squared:  0.3926, Adjusted R-squared:  0.3894 
## F-statistic: 120.5 on 6 and 1118 DF,  p-value: < 2.2e-16
summary(m2 <- lm(salary.assoc ~ type + n.prof40*n.assoc40 + n.assist40, data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ type + n.prof40 * n.assoc40 + n.assist40, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -137.779  -39.956   -6.683   33.105  280.196 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.169e+02  8.091e+00  51.522  < 2e-16 ***
## typeIIA             1.697e+00  7.237e+00   0.235  0.81461    
## typeIIB            -2.828e+01  8.994e+00  -3.144  0.00171 ** 
## n.prof40            2.741e-01  3.173e-02   8.637  < 2e-16 ***
## n.assoc40           3.833e-01  6.494e-02   5.903 4.74e-09 ***
## n.assist40         -1.339e-01  6.229e-02  -2.150  0.03175 *  
## n.prof40:n.assoc40 -8.444e-04  8.649e-05  -9.763  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 55.91 on 1118 degrees of freedom
## Multiple R-squared:  0.3926, Adjusted R-squared:  0.3894 
## F-statistic: 120.5 on 6 and 1118 DF,  p-value: < 2.2e-16

Individual work

5. Hierarchical structure of the model

Finally, we will briefly compare a hierarchically well formulated model and a model that is non-hierarchical, Above, we already considered the model for the expected anual salary of the university professors in the USA and the proportion of the professors, associate professors and assistant professors were lowered by 40 (in order to ensure a better interpretation of the intercept parameter and better interpretation of the interaction terms).

Consider firstly a hierarchically well formulated model with and without the corresponding linear transformation of the number of professors.

summary(m3orig <- lm(salary.assoc ~ type + n.assoc * n.prof,  data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ type + n.assoc * n.prof, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -137.782  -40.497   -6.265   33.621  283.148 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.918e+02  9.883e+00  39.651  < 2e-16 ***
## typeIIA         1.750e+00  7.248e+00   0.241  0.80924    
## typeIIB        -2.684e+01  8.983e+00  -2.988  0.00287 ** 
## n.assoc         3.340e-01  5.447e-02   6.132  1.2e-09 ***
## n.prof          2.910e-01  3.289e-02   8.848  < 2e-16 ***
## n.assoc:n.prof -8.236e-04  8.609e-05  -9.568  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56 on 1119 degrees of freedom
## Multiple R-squared:  0.3901, Adjusted R-squared:  0.3874 
## F-statistic: 143.2 on 5 and 1119 DF,  p-value: < 2.2e-16
summary(m3 <- lm(salary.assoc ~ type + n.assoc40 * n.prof40, data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ type + n.assoc40 * n.prof40, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -137.782  -40.497   -6.265   33.621  283.148 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.155e+02  8.080e+00  51.428  < 2e-16 ***
## typeIIA             1.750e+00  7.248e+00   0.241  0.80924    
## typeIIB            -2.684e+01  8.983e+00  -2.988  0.00287 ** 
## n.assoc40           3.010e-01  5.256e-02   5.728 1.31e-08 ***
## n.prof40            2.581e-01  3.090e-02   8.353  < 2e-16 ***
## n.assoc40:n.prof40 -8.236e-04  8.609e-05  -9.568  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56 on 1119 degrees of freedom
## Multiple R-squared:  0.3901, Adjusted R-squared:  0.3874 
## F-statistic: 143.2 on 5 and 1119 DF,  p-value: < 2.2e-16

Individual work

Both models above a hierarchically well formulated models.

Now, we will fit two very similar models but both will be non-hierarchical. Compare both models and try to understand the effect of the transformation used.

summary(m3orig <- lm(salary.assoc ~  - 1 + type + n.assoc * n.prof - n.prof,  data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ -1 + type + n.assoc * n.prof - n.prof, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -141.166  -40.814   -7.942   33.808  288.497 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## typeI           4.312e+02  9.122e+00  47.272  < 2e-16 ***
## typeIIA         4.120e+02  4.869e+00  84.621  < 2e-16 ***
## typeIIB         3.709e+02  2.763e+00 134.221  < 2e-16 ***
## n.assoc         3.933e-01  5.589e-02   7.037 3.41e-12 ***
## n.assoc:n.prof -3.559e-04  7.025e-05  -5.067 4.73e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57.9 on 1120 degrees of freedom
## Multiple R-squared:  0.9813, Adjusted R-squared:  0.9812 
## F-statistic: 1.176e+04 on 5 and 1120 DF,  p-value: < 2.2e-16
summary(m3 <- lm(salary.assoc ~  - 1 + type + n.assoc40 * n.prof40 - n.prof40, data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ -1 + type + n.assoc40 * n.prof40 - 
##     n.prof40, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -140.522  -40.753   -7.787   34.716  289.971 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## typeI               4.430e+02  7.602e+00  58.280  < 2e-16 ***
## typeIIA             4.258e+02  3.496e+00 121.800  < 2e-16 ***
## typeIIB             3.866e+02  2.512e+00 153.892  < 2e-16 ***
## n.assoc40           4.055e-01  5.259e-02   7.710 2.77e-14 ***
## n.assoc40:n.prof40 -4.337e-04  7.452e-05  -5.821 7.65e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57.69 on 1120 degrees of freedom
## Multiple R-squared:  0.9814, Adjusted R-squared:  0.9814 
## F-statistic: 1.184e+04 on 5 and 1120 DF,  p-value: < 2.2e-16

6. Finding suitable hierarchically well-formulated model

We will apply stepwise backward selection process and start with model containing all interactions of second order

summary(mfull <- lm(salary.assoc ~ (type + n.prof40 + n.assoc40 + n.assist40)^2,  data = Data)) 
## 
## Call:
## lm(formula = salary.assoc ~ (type + n.prof40 + n.assoc40 + n.assist40)^2, 
##     data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -187.745  -35.767   -4.398   29.689  212.118 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.722e+02  1.190e+01  39.674  < 2e-16 ***
## typeIIA              -4.442e+01  1.225e+01  -3.625 0.000302 ***
## typeIIB              -6.568e+01  1.230e+01  -5.340 1.12e-07 ***
## n.prof40              4.086e-01  7.086e-02   5.767 1.05e-08 ***
## n.assoc40             1.299e-01  1.296e-01   1.002 0.316368    
## n.assist40           -7.585e-01  1.673e-01  -4.534 6.42e-06 ***
## typeIIA:n.prof40     -2.825e-01  6.967e-02  -4.054 5.38e-05 ***
## typeIIB:n.prof40      3.599e-01  1.518e-01   2.371 0.017895 *  
## typeIIA:n.assoc40     4.866e-01  1.583e-01   3.073 0.002168 ** 
## typeIIB:n.assoc40     7.603e-01  2.428e-01   3.131 0.001785 ** 
## typeIIA:n.assist40    2.597e-01  1.680e-01   1.545 0.122542    
## typeIIB:n.assist40    1.050e+00  2.346e-01   4.473 8.50e-06 ***
## n.prof40:n.assoc40   -1.246e-03  2.863e-04  -4.352 1.47e-05 ***
## n.prof40:n.assist40   2.462e-04  3.229e-04   0.763 0.445830    
## n.assoc40:n.assist40  1.649e-03  5.306e-04   3.108 0.001931 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.67 on 1110 degrees of freedom
## Multiple R-squared:  0.485,  Adjusted R-squared:  0.4785 
## F-statistic: 74.66 on 14 and 1110 DF,  p-value: < 2.2e-16

You can check which covariates to drop with:

drop1(mfull, test = "F")
## Single term deletions
## 
## Model:
## salary.assoc ~ (type + n.prof40 + n.assoc40 + n.assist40)^2
##                      Df Sum of Sq     RSS    AIC F value    Pr(>F)    
## <none>                            2963012 8890.7                      
## type:n.prof40         2     86497 3049509 8919.1 16.2017 1.160e-07 ***
## type:n.assoc40        2     37467 3000479 8900.8  7.0179  0.000936 ***
## type:n.assist40       2     57827 3020839 8908.4 10.8316 2.194e-05 ***
## n.prof40:n.assoc40    1     50555 3013567 8907.7 18.9387 1.474e-05 ***
## n.prof40:n.assist40   1      1553 2964565 8889.3  0.5816  0.445830    
## n.assoc40:n.assist40  1     25785 2988798 8898.4  9.6597  0.001931 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can update the model by eliminating insignificant terms:

m4 <- update(mfull, .~.-n.prof40:n.assist40)
drop1(m4, test = "F")
## Single term deletions
## 
## Model:
## salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40 + type:n.prof40 + 
##     type:n.assoc40 + type:n.assist40 + n.prof40:n.assoc40 + n.assoc40:n.assist40
##                      Df Sum of Sq     RSS    AIC F value    Pr(>F)    
## <none>                            2964565 8889.3                      
## type:n.prof40         2     98228 3062793 8922.0  18.406 1.368e-08 ***
## type:n.assoc40        2     67205 3031770 8910.5  12.593 3.909e-06 ***
## type:n.assist40       2     57329 3021894 8906.8  10.742 2.394e-05 ***
## n.prof40:n.assoc40    1     55991 3020556 8908.3  20.983 5.157e-06 ***
## n.assoc40:n.assist40  1     34025 2998589 8900.1  12.751  0.000371 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compare different models and submodels

anova(m1, m4, test = "F")                           # improvement
## Analysis of Variance Table
## 
## Model 1: salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40
## Model 2: salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40 + type:n.prof40 + 
##     type:n.assoc40 + type:n.assist40 + n.prof40:n.assoc40 + n.assoc40:n.assist40
##   Res.Df     RSS Df Sum of Sq      F    Pr(>F)    
## 1   1119 3792157                                  
## 2   1111 2964565  8    827592 38.769 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m4, mfull, test = "F")                        # comparable
## Analysis of Variance Table
## 
## Model 1: salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40 + type:n.prof40 + 
##     type:n.assoc40 + type:n.assist40 + n.prof40:n.assoc40 + n.assoc40:n.assist40
## Model 2: salary.assoc ~ (type + n.prof40 + n.assoc40 + n.assist40)^2
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1   1111 2964565                           
## 2   1110 2963012  1    1552.6 0.5816 0.4458
add1(m4, scope = "n.prof40:n.assist40", test = "F") # the same - for forward selection
## Single term additions
## 
## Model:
## salary.assoc ~ type + n.prof40 + n.assoc40 + n.assist40 + type:n.prof40 + 
##     type:n.assoc40 + type:n.assist40 + n.prof40:n.assoc40 + n.assoc40:n.assist40
##                     Df Sum of Sq     RSS    AIC F value Pr(>F)
## <none>                           2964565 8889.3               
## n.prof40:n.assist40  1    1552.6 2963012 8890.7  0.5816 0.4458