2.2 Mocniny s celým mocnitelem
Víme už, co je mocnina s přirozeným mocnitelem a jaká pravidla pro ni platí. Co se ale stane,
když za exponent dosadíme celé číslo?
Nejdříve se znovu podíváme na pravidla pro počítání s mocninami s přirozeným mocnitelem .
Když si jednotlivá pravidla pečlivě pročteme, zjistíme, že ve všech může být mocnitelem libovolné přirozené číslo.
Jenom v jednom je pro exponent připojena další podmínka. O které tvrzení se jedná?
Přeci o pravidlo dělení mocnin se stejným základem! K tomuto tvrzení je připojena podmínka,
že pro mocnitele k, l \in \mathbb N platí: k > l.
Zkusme se podívat, co se stane, pokud tato podmínka nebude platit. Tedy když k = l nebo k < l.
1. \; k = l
Je zřejmé, že rovnost \displaystyle \frac {a^k}{a^k} = 1 platí pro každé nenulové reálné číslo
a a pro libovolné přirozené číslo k.
Využijeme-li navíc vztah 0 = k - k, který zjevně platí, pak můžeme psát:
\displaystyle 1 = \frac {a^k}{a^k} = a^{k \, - \, k} = a^0
Odtud definujeme:
Definice
Pro každé reálné nenulové číslo a platí a^0 = 1.Poznámka
Požadujeme, aby číslo a bylo nenulové, protože význam zápisu 0^0 není definován.
Z uvedených vztahů je vidět, že námi zkoumané pravidlo \displaystyle \frac {a^k}{a^l} = a^{k \, - \, l} platí i v případě,
že k = l.
2. \; k < l
Pro každé nenulové reálné číslo a a pro všechna přirozená čísla k,
l taková, že k < l, platí:
\displaystyle \frac {a^k}{a^l} = \frac {\overbrace {a \cdot a \cdot \dots \cdot a}^{k \, činitelů}}
{\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, činitelů}} =
\frac {\overbrace {a \cdot a \cdot \dots \cdot a}^{k \, činitelů}} {\underbrace {a \cdot a \cdot \dots \cdot a}_{k \, činitelů} \cdot
\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, - \, k \, činitelů}} = \frac {1} {\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, - \, k \, činitelů}} =
\frac {1} {a^{l \, - \, k}} , kde l - k je přirozené číslo
Odtud tedy definujeme mocninu s celým mocnitelem:
Definice
Pro každé nenulové reálné číslo a a pro každé celé číslo m je \displaystyle a^{-m} = \frac {1}{a^m} .Podle uvedené definice platí následující:
\displaystyle \frac {a^k}{a^l} = \frac {1}{a^{l \, - \, k}} = a^{-\,(l \, - \, k)} = a^{-\,l \, + \, k} = a^{k \, - \, l} ,
přičemž k - l je záporné celé číslo. Pak ale vidíme, že pravidlo \displaystyle \frac {a^k}{a^l} = a^{k \, - \, l} platí i v případě, že k < l.
Příklad 2.5
a) 5^0 | b) 0^0 | c) 2^{-3} | d) (0,3)^{-3} |
Řešení
a) 5^0 = 1 (podle definice)
b) Význam tohoto zápisu není definován.
c) \displaystyle 2^{-3} = \frac {1}{2^3} = \frac {1}{8}
d) \displaystyle (0,3)^{-3} = \left(\frac {3}{10}\right)^{-3} = \left(\frac {10}{3}\right)^3 =
\frac {1 \, 000}{27}
A nyní si můžeme uvést pravidla pro počítání s mocninami s celým mocnitelem. Pozorný čtenář si jistě všimne, že tato pravidla odpovídají pravidlům pro počítání s mocninami s přirozeným mocnitelem. Pouze zmizela podmínka pro exponent v pravidle 3 o dělení mocnin se stejným základem.
1. \displaystyle a^k \cdot a^l = a^{k\,+ \,l} | 2. \displaystyle \left(a^k\right)^l = a^{k \, \cdot \, l} | 3. \displaystyle \frac {a^k}{a^l} = a^{k \, - \, l} |
4. \displaystyle (a \cdot b)^k = a^k \cdot b^k | 5. \displaystyle \left(\frac {a}{b}\right)^k = \frac {a^k}{b^k} |
Příklad 2.6
a) \left(2x^3y^{-\,4}z^{-\,2}\right) \cdot \left(3x^{-\,3}y^6z^{-\,3}\right) | b) \left(3x^{-\,2}y^{4}z^{-\,3}\right)^{-\,2} \cdot \left(9x^{-\,3}y^6z^{3}\right) | c) \displaystyle \frac {16x^7y^{-\,3}}{z^{-\,2}} \div \left(\frac {2^{-\,1}y^5}{x^4z^{-\,3}}\right)^{-\,3} |
Řešení
a) \displaystyle \left(2x^3y^{-\,4}z^{-\,2}\right) \cdot \left(3x^{-\,3}y^6z^{-\,3}\right) =
6x^{\left[3 \, + \, (-\,3)\right]} \cdot y^{\left[-\,4 \, + \, 6\right]} \cdot z^{\left[-\,2 \, + \, (-\,3)\right]} =
6x^0y^2z^{-5} = \frac {6y^2}{z^5}
b) \displaystyle \left(3x^{-\,2}y^{4}z^{-\,3}\right)^{-\,2} \cdot \left(9x^{-\,3}y^6z^{3}\right) =
\left(3^{\left[1 \, \cdot \ (-\,2)\right]} \cdot x^{\left[-\,2 \, \cdot \, (-\,2)\right]} \cdot
y^{\left[4 \, \cdot \, (-\,2)\right]} \cdot z^{\left[-\,3 \, \cdot \, (-\,2)\right]}\right) \cdot \left(9x^{-\,3}y^6z^{3}\right) =
\displaystyle = \left(\frac {1}{9}x^4y^{-\,8}z^6\right) \cdot \left(9x^{-\,3}y^6z^3\right) =
1 \cdot x^{\left[4 \,+\,(-\,3) \right]} \cdot y^{\left[-\,8 \,+\,6 \right]} \cdot z^{\left[6 \,+\,3 \right]} =
xy^{-\,2}z^9 = \frac {xz^9}{y^2}
c) \displaystyle \frac {16x^7y^{-3}}{z^{-2}} \div \left(\frac {2^{-1}y^5}{x^4z^{-3}}\right)^{-3} =
\frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \left(\frac {y^5}{2x^4z^{-\,3}}\right)^3 =
\frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \frac {y^{[5 \,\cdot \,3]}}{2^3x^{[4 \,\cdot \,3]}z^{[-\,3 \,\cdot \,3]}} =
\displaystyle = \frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \frac {y^{15}}{8x^{12}z^{-\,9}} =
2x^{[7 \, - \, 12]} \cdot y^{[-\,3 \, + \, 15]} \cdot z^{\left[0 \, - \, (-\,2 \, - \, 9)\right]} =
2x^{-\,5}y^{12}z^{11} = \frac {2y^{12}z^{11}}{x^5}
Na závěr si ještě uvedeme přehledný způsob, jakým v matematice i v dalších přírodních vědách zapisujeme velká čísla. Využíváme k tomu mocniny se základem 10. Zápis vypadá takto:
a \cdot 10^n, kde 1 \leq a < 10, n \in \mathbb Z
Exponent n odpovídá řádu první platné číslice zapisovaného čísla.
Poznámka
Tento typ zápisu se nazývá semilogaritmický tvar.
Příklad 2.7
a) 31\,423 | b) 550 | c) 0,002\,8 | d) 0,000\,907 |
Řešení
Cvičení k této části.