\begin{align}
\end{align}
Odchylka přímek a rovin
Odchylka dvou přímek
Definice
Odchylka přímek p(P, u), q(Q, v) je číslo φ ∈ <0, π/2>, pro které platí:
\(\cosφ = \dfrac{|uv|}{|u||v|}\).
Úloha
Spočítejte odchylku dvou přímek p(A; u) a q(B; v), je-li A[-1; -9; -9], B[2; 4; 6], u = (4; 0; -7) a v = (8; 7; -8).
- Dosadíme do vzorce a spočítáme cosφ
\(\cosφ = \dfrac{|4 \cdot 8 + 0 \cdot 7 + (-7) \cdot (-8)|}{\sqrt{4^{2} + 0^{2} + (-7)^{2}} \cdot \sqrt{8^{2} + 7^{2} + (-8)^{2}}} = \dfrac{|88|}{\sqrt{11505}} \approx 0,82\) - φ ≈ 35°
Odchylka přímky a roviny
Odchylku přímky a roviny nepočítáme přímo, ale využijeme znalostí, které již máme.
Definice
Je-li přímka p kolmá k rovině ρ, je jejich vzájemná odchylka φ = π/2.
Není-li přímka p kolmá k rovině ρ, je jejich odchylka rovna odchylce přímky p a průsečnice p' rovin ρ a ψ, kde p ∈ ψ a ρ ⊥ ψ.
Poznámka
Ještě jednodušší je, sestrojit kolmici q k rovině ρ a počítat odchylku α přímek p a q. Vztah mezi hledanou a získanou odchylkou je:
φ = π/2 - α.
Pro výpočet odchylky φ přímky p(A, u) a roviny ρ(B, n) můžeme použít vzorec:
\(\sinφ = \cosα = \dfrac{|un|}{|u||n|}, φ \in \langle 0°;90° \rangle\).
Obr. 4.8: Odchylka přímky a roviny
Úloha
Spočítejte odchylku přímky p(A; u) a roviny ρ: 4x - 8y - 9z - 5 = 0, je-li A[-8; -5; 4], a u = (-9; -9; 9).
- Využijeme toho, že odchylka φ přímky p a roviny ρ je rovna
π/2 - α, kde α je odchylka kolmice na rovinu ρ a přímky p. Kolmice k rovině ρ má směrový vektor roven normálovému vektoru roviny ρ, který můžeme jednoduše určit z obecné rovnice této roviny.
- Dosadíme do vzorce a spočítáme cosα
\(\cosα = \dfrac{|4 \cdot (-9) + (-8) \cdot (-9) + (-9) \cdot 9|}{\sqrt{4^{2} + (-8)^{2} + (-9)^{2}} \cdot \sqrt{(-9)^{2} + (-9)^{2} + 9^{2}}} = \dfrac{|-45|}{\sqrt{39123}} \approx 0,23\) - α ≈ 77°.
- φ = π/2 - α ≈ 90° - 77° ≈ 13°.
Odchylka rovin
Definice
Odchylka rovin ρ a ψ, je rovna odchylce přímek p a q, pro které platí p = (ρ ∩ σ), q = (ψ ∩ σ), kde σ je rovina kolmá na ρ i ψ.
Slovy bychom výše uvedenou definici mohli rozepsat takto:
Odchylku φ dvou rovin ρ a ψ, vypočítáme následujícím způsobem. Nejprve najdeme rovinu, která je k oběma kolmá. Tato rovina protne roviny ρ a ψ v přímkách p a q. Odchylka φ rovin ρ a ψ je rovna odchylce přímek p a q.
Podobně jako když jsme hledali odchylku přímky a roviny, můžeme využít normálových vektorů rovin ρ a ψ. Na obr. 4.9 je vidět, že přímky r a s svírají úhel stejné velikosti jako p a q. Odchylku dvou rovin můžeme tedy snadno určit pomocí jejich normálových vektorů.
Obr. 4.9: Odchylka dvou rovin
Poznámka
Pro výpočet odchylky φ dvou rovin ρ(A, nρ) a ψ(B, nψ) můžeme použít vzorec vyplývající z předchozí úvahy:
\(\cosφ = \dfrac{|n_{ρ}n_{ψ}|}{|n_{ρ}||n_{ψ}|}, φ \in \langle 0°;90° \rangle\).
Úloha
Spočítejte odchylku rovin ρ: 6x + 1y + 2z - 8 = 0 a σ: 2x - 1y - 6z + 7 = 0.
- Normálové vektory rovin ρ i σ známe. Víme, že odchylka dvou rovin se rovná odchylce jejich normálových vektorů, můžeme tedy rovnou počítat jejich odchylku φ.
- Dosadíme do vzorce a spočítáme cosφ
\(\cosφ = \dfrac{|6 \cdot 2 + 1 \cdot (-1) + 2 \cdot (-6)|}{\sqrt{6^{2} + 1^{2} + 2^{2}} \cdot \sqrt{2^{2} + (-1)^{2} + (-6)^{2}}} = \dfrac{|-1|}{\sqrt{1681}} \approx 0,02\) - φ ≈ 89°.