General research interests: Various topics in Banach space theory, real analysis, general topology and descriptive set theory, in particular the areas where two or more of those theories meet.
Papers and preprints:
- M. Rmoutil, T. Zürcher: On sets where lip(f) is infinite for monotone continuous functions, preprint.
- M. Rmoutil: Elementary construction of Hölder functions such that the Kurzweil-Stieltjes integral does not exist, Czechoslovak Math. J. To appear (2024)
- T. Kania, Denny H. Leung, M. Rmoutil: Erratum and addendum to 'Recovering a compact Hausdorff space X from the compatibility ordering on C(X)' (Fund. Math. 242 (2018), 187–205). Fund. Math. 257 (2022), no. 2, 217–228.
- Z. Buczolich, B. Hanson, M. Rmoutil, T. Zürcher: On sets where lip f is finite, Studia Math. 249 (2019), no. 1, 33–58.
- T. Kania, M. Rmoutil: Recovering a compact Hausdorff space X from the compatibility ordering on C(X), Fund. Math. 242 (2018), no. 2, 187–205.
- T. Kania, M. Rmoutil: Restricting uniformly open surjections, C. R. Math. Acad. Sci. Paris 355 (2017), no. 9, 925–928.
- M. Rmoutil: Norm-attaining functionals need not contain 2-dimensional subspaces, J. Funct. Anal. 272 (2017), no. 3, 918-928.
- M. Doležal, M. Rmoutil, B. Vejnar, V. Vlasák: Haar meager sets revisited, J. Math. Anal. Appl. 440 (2016), 922-939.
- M. Cúth, M. Rmoutil, M. Zelený: On separable determination of sigma-P-porous sets in Banach spaces, Topology Appl. 180 (2015) 64-84.
- D. Pokorný, M. Rmoutil: On removable sets for convex functions, J. Math. Anal. Appl. 415 (2014), no. 2, 803-815.
- M. Rmoutil: On the nonexistence of a relation between sigma-left-porosity and sigma-right-porosity, J. Math. Anal. Appl. 414 (2014), 30-36.
- M. Cúth, M. Rmoutil: Sigma-porosity is separably determined, Czechoslovak Math. J. 63 (2013), 219-234.
- M. Rmoutil: Products of non-sigma-lower porous sets, Czechoslovak Math. J. 63 (2013), 205-217.
- M. Doležal, P. Ludvík, P. Pošta, P. Pyrih, M. Rmoutil, B. Vejnar: Arcwise connected continuum with a free arc and with the fixed set property for monotone onto maps, Questions Answers Gen. Topology 30 (2012), 135-137.
- M. Doležal, P. Pošta, P. Pyrih, M. Rmoutil, B. Vejnar: Chain of dendrites without monotone supremum, Questions Answers Gen. Topology 29 (2011).