The Kaplan-Meier [KM] estimator of the survival function is \[ \widehat{S}(t)=\prod_{\{i: t_i\leq t\}}\biggl[1-\frac{\Delta\overline{N}(t_i)}{\overline{Y}(t_i)}\biggr]. \] A uniformly consistent estimator of the variance of \(\sqrt{n}[\widehat{S}(t)-S(t)]\) is \[ \widehat{V}(t)=\widehat{S}^2(t)\widehat{\sigma}(t)= \widehat{S}^2(t)\int_0^t \frac{n \,\mathrm{d}\overline{N}(u)}{\overline{Y}(u)[\overline{Y}(u)-\Delta\overline{N}(u)]} = \widehat{S}^2(t) \cdot n \cdot \sum \limits_{\{j:t_j \leq t\}} \dfrac{\Delta \overline{N}(t_j)}{\overline{Y}(t_j)[\overline{Y}(t_j)-\Delta\overline{N}(t_j)]} \] (Greenwood formula).
An asymptotic pointwise \(100(1-\alpha)\)% confidence interval for \(S(t)\) at a fixed \(t\) is \[ \biggl( \widehat{S}(t)\Bigl[1-u_{1-\alpha/2}\sqrt{\widehat{\sigma}(t)/n}\Bigr],\, \widehat{S}(t)\Bigl[1+u_{1-\alpha/2}\sqrt{\widehat{\sigma}(t)/n}\Bigr] \biggr). \] Asymptotic simultaneous \(100(1-\alpha)\)% Hall-Wellner confidence bands for \(S(t)\) over \(t\in\langle 0,\tau\rangle\) (for some pre-specified \(\tau\)) are \[ \biggl( \widehat{S}(t)\Bigl\{1-k_{1-\alpha}(\widehat{K}(\tau))\bigl[1+\widehat{\sigma}(t)\bigr]/\sqrt{n}\Bigr\},\, \widehat{S}(t)\Bigl\{1+k_{1-\alpha}(\widehat{K}(\tau))\bigl[1+\widehat{\sigma}(t)\bigr]/\sqrt{n}\Bigr\} \biggr), \] where \(\widehat{K}(t)=\widehat{\sigma}(t)/[1+\widehat{\sigma}(t)]\) and \(k_{1-\alpha}(t)\), \(t\in(0,1\rangle\), satisfies the equation \[ \text{P}\bigl[\sup_{u\in\langle 0,t\rangle}|B(u)|>k_{1-\alpha}(t)\bigr]=\alpha, \] where \(B\) is the Brownian bridge.
There are variations of confidence intervals and confidence bounds for \(S(t)\) based on various transformations (\(\log\), \(\log(-\log)\), \(\arcsin\), …). Formulae for these intervals can be derived by the delta method.
The use of the delta-method: pointwise CI.
The function survfit in the package
survival calculates pointwise confidence intervals. The
argument conf.type specifies the transformation
(conf.type = "plain" means no transformation), the argument
conf.int specifies the coverage probability (default 0.95).
Be careful, the default value is conf.type = "log"!
Regardless of selected conf.type, variable
std.err always refers to \(\sqrt{
\widehat{\sigma}(t)/n}\), which can be computed as follows:
se <- sqrt(cumsum(fit$n.event/(fit$n.risk*(fit$n.risk-fit$n.event))))
summary(fit$std.err - se)
Confidence intervals are stored in the output object of the function
survfit, the components are called upper and
lower. The contents of survfit objects can be
also displayed by the function summary.
The function plot called on survfit objects
plots the confidence intervals included in the input object. The
argument conf.int determines whether or not confidence
intervals are plotted (NA for no plotting, otherwise coverage with
default 0.95).
For demonstration we will again use aml dataset from
library(survival).
library("survival")
fit <- survfit(Surv(time, status) ~ 1, data = aml, conf.type = "plain", conf.int = 0.95)
summary(fit)
## Call: survfit(formula = Surv(time, status) ~ 1, data = aml, conf.type = "plain",
## conf.int = 0.95)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 5 23 2 0.9130 0.0588 0.7979 1.000
## 8 21 2 0.8261 0.0790 0.6712 0.981
## 9 19 1 0.7826 0.0860 0.6140 0.951
## 12 18 1 0.7391 0.0916 0.5597 0.919
## 13 17 1 0.6957 0.0959 0.5076 0.884
## 18 14 1 0.6460 0.1011 0.4477 0.844
## 23 13 2 0.5466 0.1073 0.3364 0.757
## 27 11 1 0.4969 0.1084 0.2844 0.709
## 30 9 1 0.4417 0.1095 0.2270 0.656
## 31 8 1 0.3865 0.1089 0.1731 0.600
## 33 7 1 0.3313 0.1064 0.1227 0.540
## 34 6 1 0.2761 0.1020 0.0762 0.476
## 43 5 1 0.2208 0.0954 0.0339 0.408
## 45 4 1 0.1656 0.0860 0.0000 0.334
## 48 2 1 0.0828 0.0727 0.0000 0.225
par(mar = c(4, 4, 1, 1))
plot(fit, conf.int = TRUE, xlab = "Time", ylab = "Survival probability")

You may also compute and plot confidence intervals for several groups:
fit_grouped <- survfit(Surv(time, status) ~ x, data = aml, conf.type = "plain", conf.int = 0.9)
par(mfrow = c(1, 1), mar = c(4, 4, 1, 1))
plot(fit_grouped[1], conf.int = TRUE, col = "darkgreen", xlab = "Time", ylab = "Survival probability")
lines(fit_grouped[2], conf.int = TRUE, col = "magenta")
legend("topright", levels(aml$x), col = c("darkgreen", "magenta"), lty = 1, bty = "n")

You can also use library("ggplot2") in cooperation with
library("survminer") to obtain nicer plots:
library("survminer")
library("ggplot2")
ggsurvplot(fit_grouped, conf.int = 0.95, censor= FALSE, ggtheme = theme_minimal())
## Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): semi-transparency is
## not supported on this device: reported only once per page
The function ggsurvplot inherits the chosen confidence
interval from the survfit object.
The Hall-Wellner simultaneous confidence bands can be calculated and
plotted using the ‘km.ci’ package. This package includes a function
called km.ci, which requires a survfit object
as the input and returns another survfit object with
recalculated lower and upper components. The
output can be processed by any function that accepts
survfit objects – e.g., plot,
summary, lines.
library("km.ci")
fit <- survfit(Surv(time,status)~1, data=aml, conf.type="plain", conf.int=0.95)
out <- km.ci(fit, conf.level=0.95, tl=5, tu=48, method="hall-wellner")
par(mfrow = c(1, 1), mar = c(4, 4, 1, 1))
plot(out, xlab = "Time", ylab = "Survival Probability")

The arguments tl and tu are lower and upper
limits of the interval for which the bands are calculated. Not all
choices of these limits will lead to a useful result, so be careful and
try different inputs. Default values are set to the smallest and the
largest event time
(tl = min(aml$time[as.logical(aml$status)]) = 5,
tu = max(aml$time[as.logical(aml$status)]) = 48).
Other methods for calculating confidence intervals are the following:
peto, linear,
log, loglog, rothman,
grunkemeier,hall-werner,
loghall, epband, logep.See Details of the km.ci function for explanation of
these abbreviations.
Download the dataset km_all.RData.
The dataframe inside is called all. It includes 101
observations and three variables. The observations are acute lymphatic
leukemia [ALL] patients who had undergone bone marrow transplant. The
variable time contains time (in months) since
transplantation to either death/relapse or end of follow up, whichever
occured first. The outcome of interest is time to death or
relapse of ALL (relapse-free survival). The variable
delta includes the event indicator (1 = death or relapse, 0
= censoring). The variable type distinguishes two different
types of transplant (1 = allogeneic, 2 = autologous).
Calculate and plot the Kaplan-Meier estimate, 95% pointwise confidence intervals and 95% Hall-Wellner confidence bounds for all patients together, for patients with allogeneic transplants, and for patients with autologous transplants.
Generate \(n=50\) censored observations as follows: the survival distribution is Weibull with shape parameter \(\alpha=0.7\) and scale parameter \(1/\lambda=2\). Its expectation is \(\Gamma(1+1/\alpha)/\lambda=2\Gamma(17/7)\doteq 2.53\). The censoring distribution is exponential with rate \(\lambda=0.2\) (the expectation is \(1/\lambda=5\)), independent of survival.
Calculate and plot the Kaplan-Meier estimator of \(S(t)\) together with 95% pointwise confidence intervals and 95% Hall-Wellner confidence bounds. Include the true survival function in the plot (use a different color). Include a legend explaining which curve is which and comment on the coverage.
Conduct a simulation study with data created according to (homework) assignment 2 Generate such datasets repeatedly and estimate the probability that the true survival curve is wholly covered by the 95% pointwise confidence intervals and 95% Hall-Wellner confidence bounds (restrict the task to a reasonable finite interval).