Obecné informace a odkazyMost of this page is available only in Czech. Office hours: Upon request. Online consultations are also possible. Sbírka příkladů z matematické analýzy - sestavil Pavel Pyrih Archiv přednášených kurzů Archiv příkladů ke cvičením Archiv zkouškových písemek Důkazy některých tvrzení Postřehy zkoušejícího, které by mohly být užitečné pro studenty, kteří chtějí studovat. Odpovědi na některé připomínky studentů IES Poznámky a tipy k písemkám z Úvodu do funkcionální analýzy Archiv - letní semestr 2023/2024 Archiv - zimní semestr 2023/2024 Archiv - letní semestr 2022/2023 Archiv - zimní semestr 2022/2023 Archiv - letní semestr 2021/2022 Archiv - zimní semestr 2021/2022 Archiv - letní semestr 2020/2021 Archiv - zimní semestr 2020/2021 Archiv - letní semestr 2019/2020 Archiv - zimní semestr 2019/2020 Archiv - letní semestr 2018/2019 Archiv - zimní semestr 2018/2019 Archiv - letní semestr 2017/2018 Archiv - zimní semestr 2017/2018 Archiv - letní semestr 2016/2017 Archiv - zimní semestr 2016/2017 Archiv - letní semestr 2015/2016 Archiv - zimní semestr 2015/2016 Archiv - letní semestr 2014/2015 Archiv - zimní semestr 2014/2015 Archiv - letní semestr 2013/2014 Archiv - zimní semestr 2013/2014 Archiv - letní semestr 2012/2013 Archiv - zimní semestr 2012/2013 Archiv - letní semestr 2011/2012 Archiv - zimní semestr 2011/2012 Archiv - letní semestr 2010/2011 Archiv - zimní semestr 2010/2011 Archiv - letní semestr 2009/2010 Archiv - zimní semestr 2009/2010 Archiv - letní semestr 2008/2009 |
Classes in Functional Analysis 1Information in Student Information System Content of the classes Novemeber 4: Bochner integral - computation using duality; computing integral of the function x↦χ[0,x] with values in Lp[0,1] for p<∞; nonmeasurability and weak measurability for p=∞; computing an integral with values in C[0,1]; Pettis integral, Pettis-integrable functions which are not Bochner integrable, relationship to absolute and unconditional convergence. November 12: Relationship of Bochner and Pettis integral to absolute and unconditional convergence (continuation); Banach algebras - renorming under which the unit has norm 1; algebra Cn with lp norm and its renorming; algebra lp(Γ); adding a unit to an algebra without unit and to an algebra with a unit; the unit of a subalgebra need not be the unit of the surrounding algebra (e.g. for matrices); alternative norms on the algebra with added unit (e.g. on the algebra of compact operators with added ientity); cartesian product of algebras; algebra of continuous functions with values in a Banach algebra; algebra of matrices with entries from a given Banach algebra November 18: Locally compact abelial groups, Haar measure, convolution algebra L1(G), algebra M(G); algebras with many left (or right) units, algebra with trivial product and its representation in an algebra of operators, spectrum in an algebra without unit, spectrum w.r.to a subalgebra may be larger. November 25: Spectrum w.r.to a subalgebra may be larger (finishing the example), holomorphic calculus in the algebra of continuous functions, in the matrix algebra (for a diagonal matrix, for a Jordan cell, for a general matrix, dependence not only on the values on the spectrum, aplication the the exponential of a matrix), spectrum in the algebra l1(Zm), holomorphic calculus in the algebra l1(Z2). Decemeber 2: In the matrix algebra there are no nontrivial two-sided ideals, there are one-sided ideals, description of complex homomorphisms on the algebra C(K) (evaluation functionals - a proof using Riesz theorem and a proof without use of Riesz theorem), complex homomorphisms on the algebra l1(G) as group homomorphisms G→T, concrete description for the groups Z and Zm. Decemeber 8: Description of dual groups to Q, Zn, Z(N) etc., Gelfand transform on the algebra l1(G) and especially on l1(Z), relationship to functions with absolutely convergent Fourier series; complex homomorphisms on algebras without unit, complex homomorphisms on the algebra L1(G) as continuous group homomorphisms G→T. Decemeber 16: Description of the dual group of R, Gelfand and Fourier transforms; description of the dual group of T, Gelfand transform and Fourier series; l1(Z) is not a C*-algebra, neither after renorming; continuous calculus on the algebra C(K). January 6: Characterization of normal matrices and function calculus on them, absolute value of an element of a C*-algebra, polar decomposition of an operator on a Hilbert space, application of polar decomposition to find Schmidt representation of a compact operator, properties of a compact operator and Schmidt representation, spectrum of the operator T(f)(x)=f(-x). January 13: Spectral decomposition of the operator T(f)(x)=f(-x) and more generally of a symmetry, spectral decomposition of the Plancherel transform, unitary equivalence with a multiplication operator - for the two previous cases, method of the proof in case of existence of a cyclic vector, application to a shift operator on l2(Z). |