Download
<< Back
OutputCode
%% Question 1
%
% We consider Van der Pol's oscillator:
%
% $$\begin{array}{rl}
% x_1'=& x_2 \\
% x_2'=& -x_1+2ax_2-x_1^2x_2
% \end{array}$$
function q1_solution
%% a) Backwards & Forwards solve with ode23s
%%
% $a=-0.1$; Initial condition $x_0=(1,1)^T$
a = -0.1;
x0 = [1;1];
% Plot initial point
plot(x0(1),x0(2),'r*','HandleVisibility','off');
hold on;
xlim([-4 7]);
ylim([-15, 15]);
% Solve forward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,20], x0);
plot(x(:,1),x(:,2),'r','DisplayName','a=-0.1, x_0=(1,1)^T; Forwards T_f=20');
% Solve backward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,-1.8], x0);
plot(x(:,1),x(:,2),':r','DisplayName','a=-0.1, x_0=(1,1)^T; Backwards T_b=-1.5');
%%
% $a=-0.1$; Initial condition $x_0=(0,0)^T$
a = -0.1;
x0 = [0;0];
% Plot initial point
plot(x0(1),x0(2),'b*','HandleVisibility','off');
hold on;
legend('Location','SouthEast');
% Solve forward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,20], x0);
plot(x(:,1),x(:,2),'b','DisplayName','a=-0.1, x_0=(0,0)^T; Forwards T_f=20');
% Solve backward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,-1.5], x0);
plot(x(:,1),x(:,2),':b','DisplayName','a=-0.1, x_0=(0,0)^T; Backwards T_b=-1.5');
%%
% $a=1.1$; Initial condition $x_0=(1,1)^T$
a = 1.1;
x0 = [1;1];
% Plot initial point
plot(x0(1),x0(2),'m*','HandleVisibility','off');
hold on;
% Solve forward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,20], x0);
plot(x(:,1),x(:,2),'m','DisplayName','a=1.1, x_0=(1,1)^T; Forwards T_f=20');
% Solve backward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,-1.5], x0);
plot(x(:,1),x(:,2),':m','DisplayName','a=1.1, x_0=(1,1)^T; Backwards T_b=-1.5');
%%
% $a=1.1$; Initial condition $x_0=(-1,6)^T$
a = 1.1;
x0 = [-1;6];
% Plot initial point
plot(x0(1),x0(2),'k*','HandleVisibility','off');
hold on;
% Solve forward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,20], x0);
plot(x(:,1),x(:,2),'k','DisplayName','a=1.1, x_0=(-1,6)^T; Forwards T_f=20');
% Solve backward
[~,x]=ode23s(@(t,x)vdpol(t,x,a), [0,-0.4], x0);
plot(x(:,1),x(:,2),':k','DisplayName','a=1.1, x_0=(-1,6)^T; Backwards T_b=-0.4');
%% b) Analysis of Steady States
%
% We now study the steady state $x^*=(0,0)^T \in R^2$
% for $a=-1.1,0.5,1.1$
disp('----------------------------------------');
vdpol_steady(-1.1);
disp('----------------------------------------');
vdpol_steady(0.5);
disp('----------------------------------------');
vdpol_steady(1.1);
disp('----------------------------------------');
%% c) Numerical approximation
%
% We calculate the numerical approximation for initial condition
% $x_0=(1,1)^T$ and $a=-0.1$
%
% We start using Euler with $\tau = 0.4$ and notice that the solution
% does not converge to the steady state, instead getting stuck in an orbit
% around the steady state as the the fixed point of the Euler method with
% $\tau=0.5$ is *NOT* $A$-stable
figure;
a = -0.1;
x0 = [1;1];
[~,x]=eul(@(t,x)vdpol(t,x,a), 0, 120, x0, 0.4);
plot(x(:,1),x(:,2));
%%
% Decreasing the time step size to $\tau=0.05$ the fixed point is now $A$-stable
figure;
a = -0.1;
x0 = [1;1];
[~,x]=eul(@(t,x)vdpol(t,x,a), 0, 120, x0, 0.05);
plot(x(:,1),x(:,2));
%%
% For implicit Euler, the fixed point is $A$-stable even with $\tau = 0.4$
figure;
a = -0.1;
x0 = [1;1];
[~,x]=ieuler(@(t,x)vdpol(t,x,a), 0, 120, x0, 0.4);
plot(x(:,1),x(:,2));
%% Utility function for analysis of Steady State $x^*=(0,0)^T \in R^2$
function vdpol_steady(a)
fprintf('a = %f\n\n', a);
% Jacobian at steady state:
A = [0 1; -1 2*a];
disp('Jacobian:');
disp(A);
% Eigenvalues:
ev = eig(A);
disp('Eigenvalues:');
disp(ev);
% A-stable?:
fprintf('Maximum of real part of eigenvalues: %f\n\n', max(real(ev)));
if max(real(ev)) < 0
disp('Steady state is A-stable')
else
disp('Steady state is NOT A-stable')
end
end
end