Download
<< Back
OutputCode
function q3_solution
%% Test simulations, with various values of coefficient ($a$)
% $a=0.1$
ballode_withfriction(0.1)
%%
% $a=0.47$
ballode_withfriction(0.47)
%%
% $a=1$
ballode_withfriction(1)
%%
% $a=1.15$
ballode_withfriction(1.15)
%%
% $a=0$ (No friction)
ballode_withfriction(0)
end
%% Dynamical Friction Simulation Script
% Modification of BALLODE with handle dynamical friction
function ballode_withfriction(a)
%BALLODE_WITHFRICTION Run demo of a bouncing ball with dynamical friction
%
% Parameter: a - The coefficient for the dynamical friction
%
% Modification for dynamical friction of BALLODE by
% Mark W. Reichelt and Lawrence F. Shampine, 1/3/95
% Copyright 1984-2014 The MathWorks, Inc.
tstart = 0;
tfinal = 30;
y0 = [0; 20];
refine = 4;
options = odeset('Events',@events,'OutputFcn',@odeplot,'OutputSel',1,...
'Refine',refine);
fig = figure;
ax = axes;
ax.XLim = [0 30];
ax.YLim = [0 25];
box on
hold on;
tout = tstart;
yout = y0.';
teout = [];
yeout = [];
ieout = [];
for i = 1:10
% Solve until the first terminal event.
[t,y,te,ye,ie] = ode23(@(t,y)[y(2); -9.8-a*y(2)],[tstart tfinal],y0,options);
if ~ishold
hold on
end
% Accumulate output. This could be passed out as output arguments.
nt = length(t);
tout = [tout; t(2:nt)];
yout = [yout; y(2:nt,:)];
teout = [teout; te]; % Events at tstart are never reported.
yeout = [yeout; ye];
ieout = [ieout; ie];
ud = fig.UserData;
if ud.stop
break;
end
% Set the new initial conditions, with .9 attenuation.
y0(1) = 0;
y0(2) = -.9*y(nt,2);
% A good guess of a valid first timestep is the length of the last valid
% timestep, so use it for faster computation. 'refine' is 4 by default.
options = odeset(options,'InitialStep',t(nt)-t(nt-refine),...
'MaxStep',t(nt)-t(1));
tstart = t(nt);
end
plot(teout,yeout(:,1),'ro')
xlabel('time');
ylabel('height');
title('Ball trajectory and the events');
hold off
odeplot([],[],'done');
end
% --------------------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a decreasing direction
% and stop integration.
value = y(1); % detect height = 0
isterminal = 1; % stop the integration
direction = -1; % negative direction
end