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Abstract. The main aim of the paper is to describe the structure of modules

and corresponding rings satisfying the property (P ), which says that M/ im(α)

is embeddable into ker(α) for each endomorphism α and which generalizes the

morphic property. In particular, it is proved that the class of rings with the

property (P ) is closed under taking products and summands and contains

unit regular rings. We also explain connections between the virtually internal

cancellation property and the property (P ) and characterize the structure of

particular classes of rings satisfying the property (P ).

1. Introduction and preliminaries

Among other algebraic dualities, the concept of homomorphisms satisfying the

dual condition to that from the first isomorphism theorem has appeared fruitful

during the last two decades. While an arbitrary endomorphism α of a module

M satisfies the condition im(α) ∼= M/ ker(α), it is called morphic if it holds

ker(α) ∼= M/ im(α). The research of morphic modules (and rings), i.e. of modules

over which every endomorphism is morphic, was started by Nicholson and Sánchez

Campos in papers [20, 21].

The concept of morphic rings, which naturally generalizes widely studied unit

regular rings [11, Theorem 1], have motivated other generalizations. Given a

ring R, if P denotes the set of all its right principal ideals (i.e. images of endo-

morphisms of RR) and A the set of all right annihilators (i.e. kernels of endo-

morphisms of RR), then we say that R is right quasi-morphic (pseudo-morphic,

generalized morphic, respectively) if P = A (P ⊆ A, P ⊇ A, respectively). The

structure of quasi-morphic rings and modules satisfying the corresponding con-

dition on endomorphism rings is partially described in papers [2, 5, 6, 9], while

pseudo-morphic rings are studied in [7, 27] and generalized morphic rings in [28].
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This paper is focused to another intermediate class of pseudo-morphic modules

containing the class of all morphic modules (see Example 2.1). For a module

M , we say that α ∈ End(M) satisfies the property (P ) if M/ im(α) embeds

into ker(α), the module M satisfies the property (P ) if every its endomorphism

satisfies (P ), and the ring R satisfies the property (right) (P ) if RR satisfies (P ).

The main aim of the paper is to place the class of modules and rings satisfying

the property (P ) in the context of other generalizations of the idea of morphicity

as well as in the general context of ring theory. In particular, we prove that the

class of all rings satisfying the condition (P ) is closed under taking products and

summands (Proposition 2.15), regular endomorphism rings of modules satisfying

the property (P ) are exactly unit regular (Theorem 2.11) and reversible rings

satisfying the property (P ) are already morphic (Theorem 2.7). Theorem 2.9

shows that if α in any Jacobson pair {α, β} satisfies the property (P ), then so is β.

The third section of the paper is devoted to relations between properties virtually

(internal) cancellation and (P ). Among the other results, we obtain that a module

M satisfies the virtually-IC property iff every regular element in End(M) satisfies

the property (P ) (Theorem 3.4) and hence End(M) is unit-regular iff M satisfies

the virtually-IC property and End(M) is regular (Corollary 3.6) and End(M)

is unit-regular iff M satisfies the virtually-IC property and End(M) is regular

iff M satisfies the virtually-C property and End(M) is regular (Corollary 3.11).

Notice that the property (P ) ⇒ the virtually-IC property and the property (P )

⇒ the virtually-C property if a module M is either injective or satisfies the finite

exchange property. The fourth section of the paper is devoted to the structure of

particular classes of rings satisfying the property (P ), in particular, it is proved

that local semiartinian rings with the property (P ) are precisely right artinian

right chain rings (Theorem 4.4). The final section describes group rings that are

ring satisfy the property (P ). We proved that if RGRG satisfies the property (P ),

then RR satisfies the property (P ) and G is a locally finite group (Theorem 5.1),

and if G = H ⋊K with |H| < ∞ (i.e. G is a semidirect product of H by K) and

RGRG satisfies the property (P ), then RKRK satisfies the property (P ) (Theorem

5.3).

Throughout this paper, R denotes an associative ring with identity and modules

are unitary right R-modules. For a right R-moduleM , we useN ⊆ MR, N ≤ MR,

N ≤e MR, N ≪ M and N ≤⊕ MR, to mean that N is a subset, a submodule,

an essential submodule, a superfluous submodule and a direct summand of MR,

respectively. Rad(M) denotes the intersection of all maximal submodules of M ,

Soc(M) denotes the socle of M and (Si(M) | i ≤ σ) denotes the socle sequence

of M . In case R = M , we use J(R) instead of Rad(R) and it is called the
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Jacobson radical of R. For any x ∈ R, the left and right annihilator of x ∈ R

denoted by l(x) (or lR(x)) and r(x) (or rR(x)), respectively. We write module

morphisms opposite the scalars. If there exists an R-monomorphism (respectively,

R-epimorphism) from X to Y then we write X ↪→ Y (respectively, X ↠ Y ). The

notations End(M) and E(M) denote the ring of R-endomorphisms of M and the

injective hull of MR, respectively. For a set ∧, let M (∧) and M∧ denote direct

sum and direct product of copies of MR indexed over ∧, respectively. We use

Mn(R) to stand for the ring of all n× n matrices over a ring R. In what follows

N, Z, Q and Zn denote the natural numbers, integers, rational numbers and the

ring of integers modulo n, respectively.

For unexplained notions and results, we refer the reader to [3, 18, 24, 25, 26].

2. the property (P )

Example 2.1. Morphic modules (elements) satisfy the property (P ). On the

other hand, as a Z-module Zp∞ satisfies the property (P ) but it is not a morphic

Z-module.

Lemma 2.2. The following conditions are equivalent for α ∈ End(M):

(1) α satisfies the property (P ).

(2) There exists β ∈ End(M) such that α ◦ β = 0 and α(M) = ker(β).

(3) There exists β ∈ End(M) such that im(β) ≤ ker(α) and α(M) = ker(β).

(4) There exists β ∈ End(M) such that im(β) ↪→ ker(α) and α(M) = ker(β).

Proof. (1) ⇒ (2) Consider the natural projection π : M → M/ im(α), the inclu-

sion map ι : ker(α) → M and call ϕ : M/ im(α) ↪→ ker(α). Take

β = ι ◦ ϕ ◦ π : M → M.

Clearly, α ◦ β = 0 and α(M) = ker(β) as desired.

(2) ⇒ (3) ⇒ (4) The implications are obvious.

(4) ⇒ (1) Assume that there exists β ∈ End(M) such that im(β) ↪→ ker(α) and

α(M) = ker(β). It is easy to see that

M/α(M) = M/ ker(β) ∼= β(M) ↪→ ker(α),

as desired. □

Corollary 2.3. The following conditions are equivalent for an element a ∈ R.

(1) a satisfies the property (P ).

(2) There exists b ∈ R such that aR = r(b) and bR ≤ r(a).
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(3) aR = r(b) and bR ↪→ r(a) for some b ∈ R.

Lemma 2.4. The following conditions are equivalent for a ring R:

(1) RR satisfies the property (P ).

(2) For each a ∈ R, there exists b ∈ r(a) such that aR = r(b).

(3) For each a ∈ R, there exists s ∈ R and b ∈ r(a) such that aR = r(b) and

bR = r(as).

Proof. The equivalence (1)⇔(2) follows from Corollary 2.3 and (3)⇒(2) is clear.

(2)⇒(3) Since there exists c ∈ r(b) = aR such that bR = r(c), it is enough to

take s ∈ R satisfying c = as. □

A ring R is called left principally injective (left P-injective for short) if every R-

homomorphism Ra → R, a ∈ R, extends to R. It is well-known that a ring is left

P -injective if and only if all principal right ideals are annihilators by [19, Lemma

1.1], cf. [5, Lemma 3]. We can formulate the following consequence identifying a

class of rings that elements satisfy the property (P ) of Corollary 2.3 which follows

from Lemma 2.4:

Corollary 2.5. If RR satisfies the property (P ), then the ring R is left P-injective.

Recall that, a ring R is said to be Dedekind-finite if ab = 1 implies ba = 1 for

any two a ∈ R and b ∈ R. In other words, all one-sided inverses in the ring are

two-sided. The following result is also a direct consequence of Lemma 2.2.

Corollary 2.6. An endomorphism satisfying the property (P ) is a monomor-

phism if and only if it is an isomorphism. In particular, every ring satisfying the

property (P ) is Dedekind-finite.

Recall that a ring is reversible if ba = 0 whenever ab = 0, for details see [8, 12].

The last consequence of Lemma 2.4 generalizes [5, Corollary 4] and [27, Theorem

11(2)].

Corollary 2.7. Let R be a reversible ring. Then RR satisfies the property (P ) if

and only if R is morphic.

Proof. Let a ∈ R. From Lemma 2.4, it infers that there exist s ∈ R and b ∈ r(a)

such that aR = r(b) and bR = r(as). Since R is reversible and ba = 0 = ax for

each x ∈ r(a), we have ab = 0 and 0 = xa = xas = asx, hence bR ⊆ r(a) ⊆
r(as) = bR and b = r(a) (cf. [12, Lemma 1.8]). □
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Recall that a module M is said to be pseudo-morphic if for any α ∈ End(M)

there exists β ∈ End(M) for which im(α) = ker(β). From Lemma 2.2, it is

clear that all modules satisfying the property (P ) are pseudo-morphic and the

following example shows that the converse does not hold.

Example 2.8. The abelian group Z2×Z4 is a pseudo-morphic Z-module but it

does not satisfy the property (P ).

Two elements α, β ∈ R are said to form a Jacobson pair if there exist elements

a, b ∈ R such that α = 1− ab and β = 1− ba.

For such a pair, “Jacobson’s Lemma” is the statement that α is a unit if and

only if β is a unit (this result is known as Jacobson’s Lemma for units). There

are several analogous results in the literature. In [13], the authors observed that,

for any Jacobson pair {α, β} in any ring R, if α is left morphic (quasi-morphic),

then so is β.

Theorem 2.9. For any Jacobson pair {α, β} in any ring R, if α satisfies the

property (P ), then so is β.

Proof. By the basic commutation rules, we have αa = aβ and bα = βb for the

Jacobson pair {α, β}.
Assume that α satisfies the property (P ). Then, there is x ∈ R such that

αR = r(x) and xR ≤ r(α).

Claim: βR = r(xa): The inclusion βR ⊆ r(xa) follows from the fact that

x(aβ) = x(αa) = (xα)a = 0 which implies β ∈ r(xa).

For the reverse inclusion, let t ∈ r(xa). Then x(at) = (xa)t = 0, i.e. at ∈
r(x) = αR. Hence, at = αs for some s ∈ R. We have

(ba)t = b(at) = b(αs) = (bα)s = (βb)s = β(bs)

which implies (1− β)t = (ba)t = β(bs), and so t = β(bs+ t) ∈ βR.

Call y := bxa.

Claim: yR ≤ r(β) and r(y) = βR : The first follows from the fact that

βy = β(bxa) = (βb)xa = (bα)xa = b(αx)a = 0,

i.e. y ∈ r(β).

On the other hand, we have

yβ = (bxa)β = bx(aβ) = bx(αa) = b(xα)a = 0

It follows that β ∈ r(y) or βR ≤ r(y). For the converse inclusion, if yt = 0 then

(bxa)t = 0, and so abxat = a(bxa)t = 0. Moreover, we have

α(xat) = (1− ab)xat = xat− abxat = xat
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Then, xat = (αx)at = 0. Hence, t ∈ r(xa) = βR by Claim. Now r(y) ≤ βR, as

desired □

An element a of a ring R is said to be unit-regular in R if a = aua for some

unite u ∈ R. A ring R is called unit-regular if every element is unit-regular.

Theorem 2.10. If α ∈ End(M) satisfies the property (P ) and γ is an automor-

phism of M , then both α ◦ γ and γ ◦ α satisfy the property (P ).

In particular, every unit-regular morphism satisfies the property (P ).

Proof. Assume that α ∈ End(M) satisfies the property (P ) and γ is an automor-

phism of M . Then, by Lemma 2.2, there exists β ∈ End(M) such that α ◦ β = 0

and α(M) = ker(β). Therefore, (αγ)(γ−1β) = 0 and (γα)(βγ−1) = 0. Note that

γ is an automorphism of M . It follows that

(αγ)(M) = α(M) = ker(β) = ker(γ−1β)

and (γα)(M) = γ(ker(β)) = ker(βγ−1). By Lemma 2.2, we obtain that α ◦ γ and

γ ◦ α satisfy the property (P ). □

An element a of a ring R is said to be regular in R if a = aba for some b ∈ R.

A ring R is called regular if every element is regular.

Theorem 2.11. Let M be a right R-module. Then End(M) is unit-regular if

and only if End(M) is regular and M satisfies the property (P ).

Proof. Suppose that End(M) is a regular ring. For every α ∈ End(M), α(M)

and ker(α) are direct summands of M . So, there exist submodules K and H of

M such that M = α(M)⊕K = ker(α)⊕H, and so K ∼= M/α(M) ↪→ ker(α) and

M = α(H)⊕K. Call β : K ↪→ ker(α). Let γ : M → M be an R-homomorphism

via γ(α(h) + k) = h + β(k). One can check that γ is a monomorphism. Now,

α = α ◦ γ ◦ α and γ is an isomorphism by Corollary 2.6.

The reverse implication is clear. □

Recall that a module M is called (dual) Rickart if ker ρ ≤⊕ M (ρ(M) ≤⊕ M)

for every ρ ∈ EndR(M) [16, 17].

Proposition 2.12. If M is a Rickart module and it satisfies the property (P ),

then M is dual-Rickart.
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Proof. Let α ∈ End(M). Since M satisfies the property (P ), there exists β ∈
End(M) such that imα = ker β and αoβ = 0. Then ker β ≤⊕ M as M is Rickart.

Thus imα ≤⊕ M which implies M is dual-Rickart. □

Corollary 2.13. If M is a Rickart module and it satisfies the property (P ), then

End(M) is regular.

Corollary 2.14. Let M be a right R-module.

(1) End(M) is unit-regular if and only if M is a Rickart module and it satisfies

the property (P ).

(2) If M is quasi-projective, then End(M) is unit-regular if and only if M is

a dual-Rickart module and it satisfies the property (P ).

Proof. (1) The claim is clear by Theorems 2.11, Proposition 2.12 and Corollary

2.13.

(2) Assume M is a dual-Rickart module and it satisfies the property (P ). Let

α be an endomorphism of M . By the assumption, im(α) is a direct summand

of M . Since M/ ker(α) ∼= im(α), M/ ker(α) is M -projective and so ker(α) is a

direct summand of M . It is shown that End(M) is regular. Thus, End(M) is

unit-regular by Theorem 2.11.

The reverse implication is obvious. □

Proposition 2.15. The following statements hold:

(1) A direct product
∏

I Ri of rings Ri satisfies the property (P ) if and only

if each Ri satisfies the property (P ).

(2) A module M satisfies the property (P ) if and only if whenever γ : M/K ↪→
M where K is a submodule of M, then M/ im(γ) ↪→ K. Furthermore, A

module M satisfies the property (P ) if and only if whenever M/K ∼= H

where K and H are submodules of M , then M/H ↪→ K.

(3) If M and N satisfy the property (P ) and Hom(M,N) = 0 = Hom(N,M),

then M ⊕N satisfies the property (P ).

(4) The class of modules satisfying the property (P ) is closed under taking

direct summands.

Proof. (1) If x = (xi) ∈
∏

I Ri, then xR =
∏

I xiRi and r(x) =
∏

I r(xi).

(2) (⇒) Let γ : M/K → H be an isomorphism for some submodule H of M

(H = im(γ)). Consider the natural projection π : M → M/K, the inclusion map

ι : H → M and call α := ι ◦ γ ◦ π : M → M . Then, we have ker(α) = K and

im(α) = H. By the hypothesis, there exists β ∈ End(M) such that im(β) ≤
ker(α) = K and α(M) = ker(β) = H. It follows that M/ im(γ) = M/ ker(β) ∼=
im(β) ≤ ker(α) = K.
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(⇐) Let α ∈ End(M). Then, M/ ker(α) ∼= im(α). It follows that M/ im(α) ↪→
ker(α) and so α satisfies the property (P ).

(3) Let α ∈ End(M ⊕ N). Then α =

(
β 0

0 γ

)
is in the matrix form, where β ∈

End(M) and γ ∈ End(N). Now, there exist β′ ∈ End(M) and γ′ ∈ End(N) such

that ββ′ = 0, im(β) = ker(β′), γγ′ = 0 and im(γ) = ker(γ′). Call α′ :=

(
β′ 0

0 γ′

)
.

One can check that αα′ = 0 and im(α) = ker(α′), as desired.

(4) Assume that M = M1 ⊕ M2 satisfies the property (P ). Let K and H be

submodules of M1 with M1/K ∼= H. We show that M1/H ↪→ K. In fact, we

have M/K ∼= M1/K ⊕M2
∼= H ⊕M2 and obtain that M/(H ⊕M2) ↪→ K. We

deduce that M1/H ↪→ K. □

Remark 2.16. From Example 2.1, we infer that the class of modules satisfying

the property (P ) is closed under taking direct sums.

A moduleM is called image-projective if im(β) ⊆ im(α), where β, α ∈ End(M),

implies β ∈ α(End(M)).

Clearly, quasi-projective modules are image projective.

Proposition 2.17. Let M be a right R-module and S = End(M). The following

statements hold:

(1) If S satisfies the property (P ), then M is image-projective.

(2) If M satisfies the property (P ) and it is image-projective, then S satisfies

the property (P ).

(3) If S satisfies the property (P ) and M generates its kernels, then M satis-

fies the property (P ).

Proof. (1) If f(M) ≤ g(M) with f, g ∈ S, then lS(g) ≤ lS(f). Since S satisfies

the property (P ), S is left P-injective by Corollary 2.5. It follows that fS ≤ gS.

Thus, M is image-projective.

(2) Let α be an endomorphism of M . Call β ∈ S with im(β) ≤ ker(α) and

im(α) = ker(β). One can check that βS ≤ rS(α) and αS ≤ rS(β). If γ ∈ rS(β)

then γ(M) ≤ ker(β) = α(M). We have that M is image-projective and obtain

that γS ≤ αS and so γ ∈ αS. We deduce that αS = rS(β).

(3) Let α be an endomorphism of M . Call β ∈ S with βS ≤ rS(α) and αS =

rS(β). One can check that α ◦ β = 0 and α(M) ≤ ker(β). Since M generates its

kernels, we get ker(β) =
∑

f∈H f(M) for some H ⊆ S. For all f ∈ H, we have
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β ◦ f = 0 and so f ∈ rS(β) = αS. It follows that f(M) ≤ α(M). It is shown

that ker(β) ≤ α(M). We deduce that ker(β) = α(M). □

We recall the following notion used in Proposition 2.17: a moduleMR generates

its submodule, say K, if

K =
∑

{Mλ : λ ∈ End(M),Mλ ⊆ K},

and M generates its kernels if it generates ker(β) for all β ∈ End(M).

Theorem 2.18. The following conditions are equivalent for a right R-module M

which generates its kernels.

(1) M is morphic and image-projective.

(2) End(M) satisfies the property (P ).

Proof. The claim follows from Propositions 2.15 and 2.17. □

Theorem 2.19. Let R be a ring and n > 1.

(1) Mn(R) satisfies the property (P ) if and only if Rn satisfies the property

(P ).

(2) If R satisfies the property (P ) and e2 = e ∈ R, then eRe satisfies the

property (P ).

Proof. (1) The claim follows from Theorem 2.18 and because of the fact that Rn

is image-projective and generates its submodules.

(2) The claim follows from Theorem 2.18 and because of the fact that eR is a

projective right R-module that satisfies the property (P ) by Theorem 2.15. □

Recall that if {Si} are the homogeneous components of M , S = End(M) and

Ti = End(Si), then S ∼=
∏

I Ti.

Theorem 2.20. The following conditions are equivalent for a semisimple right

R-module M :

(1) M satisfies the property (P ).

(2) End(M) is unit-regular.

(3) Each homogeneous component of M is artinian.

In this case End(M) is a direct product of matrix rings over division rings.

Proof. (1) ⇒ (2). Assume that M satisfies the property (P ). Then M is image-

projective (being semisimple) and obtain that S satisfies the property (P ) by

Proposition 2.17(2). Note that S is regular. By Theorem 2.11, the ring S =
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End(M) is unit-regular.

(2) ⇒ (3) By Proposition 2.15, each Ti satisfies the property (P ). Suppose that

each Si is not artinian. Then, Si = H ⊕ H ⊕ · · · where H is simple. Hence

the monomorphism (h1, h2, h3 . . . ) → (0, h2, h3, . . . ) in Ti is not an epimorphism,

which contradicts to Corollary 2.6. Thus, Si is artinian.

(3) ⇒ (1) Assume that each homogeneous component ofM is artinian. Then each

Ti is artinian and obtain that S ∼=
∏

I Ti is unit- regular, and hence it satisfies

the property (P ). Moreover M generates its kernels because M is semisimple,

and so M satisfies the property (P ) by Proposition 2.17.

The last statement follows from (3) because S ∼=
∏

I Ti. □

3. virtually internal cancellation property

An R-module M is said to have internal cancellation property (IC) if it satisfies

the condition:

M = N ⊕K = N1 ⊕K1 and N ∼= N1 implies that K ∼= K1.

Notice that summand-morphic modules are precisely modules with IC property,

where M is said to be a summand-morphic module if M/A ∼= B where A, B ≤⊕

M , then M/B ∼= A ([23, Proposition 3.2]).

According to [4] ( see also [12]), a module X is said to be subisomorphic to a

module Y if X is isomorphic to a submodule of Y , and denoted by X ⪯ Y , and

a module M is called a virtually semisimple module if every submodule of M is

isomorphic to a direct summand of M .

Remark 3.1. A virtually semisimple module is morphic iff it is iso-summand-

morphic ([23, Corollary 3.8]), where M is said to be an iso-summand-morphic

module if M/A ∼= B where A, B ⪯⊕ M , then M/B ∼= A.

A module M is said to satisfy virtually internal cancellation property (for

short, virtually-IC) or iso internal cancellation property (for short, iso-IC) if it

satisfies the following condition:

If M = N ⊕K = N1 ⊕K1 and N ∼= N1, then K ⪯ K1 and K1 ⪯ K

Example 3.2. The IC property ⇒ the virtually-IC property. The converse im-

plication holds when on the C2-property (a module M is C2 if whenever A is a

direct summand of M and B is a submodule of M isomorphic to A, then B is

also a direct summand of M).
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Proof. Let M be a C2 module with the virtually-IC property. Assume that

M = A ⊕ B = A1 ⊕ B1 and A ∼= A1. We show that B ∼= B1. Then there a

monomorphism α : B → B1. Hence, B ∼= α(B) and so α(B) is a direct summand

of M . It follows that α(B) is a direct summand of B1. Write B1 = α(B) ⊕ B2

for some direct summand B2 of B1. Thus, we have

M = A⊕B = (A1 ⊕ α(B))⊕B2

Note that A⊕B ∼= A1 ⊕ α(B), which implies B2 = 0. Thus, B1 = α(B) ∼= B, as

required. □

Proposition 3.3. The class of modules satisfying the virtually-IC property is

closed under taking direct summands.

Proof. Assume that M = N ⊕K satisfies the virtually-IC property and N has a

decomposition

N = N1 ⊕N2 = N ′ ⊕N ′′

where N1
∼= N ′. ThenM = (N1⊕K)⊕N2 = (N ′⊕K)⊕N ′′ and N1⊕K ∼= N ′⊕K.

By the hypothesis, we get N2 ⪯ N ′′ and N ′′ ⪯ N2, as required. □

Theorem 3.4. The following conditions are equivalent for a right R-module M :

(1) M satisfies the virtually-IC property.

(2) Every regular element in End(M) satisfies the property (P ).

Proof. (1) ⇒ (2) Let α be regular in End(M). Then, the module M has a

decomposition M = α(M)⊕K = ker(α)⊕N . Clearly, α(M) ∼= M/ ker(α) ∼= N ,

and so K ↪→ ker(α). Hence M/α(M) ∼= K ↪→ kerα, i.e. α satisfies the property

(P ).

(2) ⇒ (1) Assume the moduleM has a decompositionM = N⊕K = N1⊕K1 and

γ : N → N1 is an isomorphism. Consider α : M → M by α(n+ k) = γ(n) for all

n ∈ N and k ∈ K. Then α ∈ End(M) and α(M) = γ(N) = N1, ker(α) = K are

both direct summands of M . Thus α is regular in End(M) and so our hypothesis

gives M/α(M) ↪→ ker(α). Hence K1
∼= M/N1 = M/α(M) ↪→ ker(α) = K. The

above process is completely similar if we replace γ by γ−1, it infers that K ↪→ K1,

as required. □

Corollary 3.5. The property (P ) implies the virtually-IC property.

Corollary 3.6. The following conditions are equivalent for a right R-module M :

(1) End(M) is unit-regular.

(2) M satisfies the virtually-IC property and End(M) is regular.
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Proof. (2)⇒ (1) If M satisfies the virtually-IC property and End(M) is regular,

then End(M) satisfies the property (P ) by Theorem 3.4. By Theorem 2.11,

End(M) is unit-regular.

(2)⇒ (1) This implication follows from Theorem 2.11 and 3.4. □

Remark 3.7. By Theorem 2.20, a semisimple right R-module M satisfies the

property (P ) iff End(M) is unit-regular.

We recall that every ring satisfying the property (P ) is Dedekind-finite (Corol-

lary 2.6).

Corollary 3.8. Every module satisfying the virtually-IC property is Dedekind-

finite.

Proof. Assume a moduleM satisfies the virtually-IC property andM has a proper

direct summand that is isomorphic to M . It means that M = A⊕B with A ∼= M

and A ̸= M . Then, M = A⊕ B = M ⊕ 0 and so B is embedded to 0. It follows

that B = 0 and A = M , a contradiction. Thus, M is Dedekind-finite. □

Corollary 3.9. The following conditions are equivalent for a semisimple module

M :

(1) M satisfies the property (P ).

(2) M satisfies the virtually-IC property.

(3) There exist a cardinal κ, simple modules Sα and natural numbers nα for

each α < κ such that M ∼=
⊕

α<κ S
nα and Sα ̸∼= Sβ for each α ̸= β.

Proof. (1)⇒ (2) It is clear form Theorem 3.4.

(2)⇒ (3) Since infinite direct powers are not Dedekind finite, the claim follows

from Corollary 3.8.

(3)⇒ (1) As End(M) ∼=
∏

α<κMnα(End(Sα)) is a unit regular ring, M satisfies

the property (P ) by Theorem 2.11. □

A module M satisfies the cancellation property if M ⊕ A ∼= M ⊕ B implies

A ∼= B. We say that a module M satisfies the virtually cancellation property

(virtually-C) or the iso cancellation property (iso-C) if M ⊕ A ∼= M ⊕B implies

A ⪯ B and B ⪯ A.

Proposition 3.10. The virtually-C property implies the virtually-IC property.
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Proof. Assume M has the virtually cancellation property. Let M = A ⊕ B =

A1 ⊕B1 with A ∼= A1. Then, we have

M ⊕B1 = A⊕B ⊕B1
∼= A1 ⊕B ⊕B1

∼= M ⊕B

Since M has the weak cancellation property, B ⪯ B1 and B1 ⪯ B, as desired. □

It is well-known that if End(M) is unit-regular, then M has the cancellation

property.

From Proposition 3.10 and Corollary 3.6, we have the following result.

Corollary 3.11. The following conditions are equivalent for a right R-module

M .

(1) End(M) is unit-regular.

(2) M satisfies the virtually-IC property and End(M) is regular.

(3) M satisfies the virtually-C property and End(M) is regular.

Given a cardinal ℵ, an R-module M is said to have the ℵ-exchange property if

for any module X and decompositions X = M ′ ⊕ Y =
⊕

i∈I Ni, where M ′ ∼= M

and |I| ≤ ℵ, there exist submodules N ′
i ⊂ Ni such that X = M ′ ⊕ (

⊕
i∈I N

′
i).

A module M has the exchange property if it has the ℵ-exchange property for

every cardinal ℵ.
A module M has the finite exchange property if it has the ℵ-exchange property

for every finite cardinal ℵ.

Proposition 3.12. Assuming the finite exchange property, we have

the virtually-C property ⇔ the virtually-IC property.

Proof. Let M be a module with the finite exchange property.

(:⇒) This implication is Proposition 3.10.

(⇐:) Assume that M satisfies the virtually-IC property. Let M⊕A = N⊕B with

M ∼= N . From the finite exchange property, we infer that M ⊕A = M ⊕N1⊕B1

for some submodules N1 of N and B1 of B. It follows that A ∼= N1 ⊕ B1. Write

N = N1 ⊕ N2 and B = B1 ⊕ B2 for some submodules N2 of N and B2 of B.

Therefore, we have

M ⊕N1 ⊕B1 = M ⊕ A = N ⊕B = N2 ⊕B2 ⊕N1 ⊕B1

It follows that M ∼= N2 ⊕ B2 and so N2 ⊕ B2
∼= M ∼= N = N1 ⊕ N2. Since M

satisfies the virtually-IC property, we obtain B2 ↪→ N1 and N1 ↪→ B2. Thus, we

have

A ∼= N1 ⊕B1 ↪→ B2 ⊕B1 = B
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B = B1 ⊕B2 ↪→ B1 ⊕N1
∼= A

which shows that M satisfies the virtually-C property. □

Theorem 3.13. For a module M , we have

the property (P ) ⇒ the virtually-C property,

if M is either injective or satisfies the finite exchange property.

Proof. Recall that if a module M satisfies the property (P ), then M is Directly-

finite (i.e. End(M) is Dedekind-finite) by Corollary 2.6.

If M is injective, then M has the cancellation property by [18, Theorem 1.29]

and hence M has the virtually-C property.

Now suppose that M has the finite exchange property. Since M satisfies the

virtually-IC property, it satisfies the virtually-C property by Proposition 3.12. □

The following theorem characterizes the (unit-)regularity of the endomorphism

ring a right R-module in terms of the virtually-C property in view of Corollary

3.11.

Theorem 3.14. The following conditions are equivalent for a right R-module M

with E := End(M):

(1) E is unit-regular.

(2) E is regular and (γ − γ2)(M) satisfies the virtually-C property for any

γ ∈ E.

(3) E is regular and M/[im(γ)+ker(γ)] is embeddable into im(γ)∩ker(γ) for

any γ ∈ E.

Proof. Assume that E is regular. For any γ ∈ E,

im(γ), ker(γ), im(γ) ∩ ker(γ) and im(γ) + ker(γ)

are direct summands of M by [1, Theorem 2.7]. Call A and B submodules of M

such that

[im(γ) ∩ ker(γ)]⊕ A = ker(γ)

im(γ)⊕ A = im(γ) + ker(γ)

im(γ) + ker(γ)⊕B = M.

On the other hand, we have M = ker(γ)⊕ ker(1− γ)⊕C for some submodule C

of M . It is straightforward to verify that

γ(ker(1− γ)) = ker(1− γ), C ∼= γ(1− γ)(C) = γ(1− γ)(M) and C ∼= γ(C).
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Hence,

[im(γ) ∩ ker(γ)]⊕ A⊕ ker(1− γ)⊕ C = ker(γ)⊕ ker(1− γ)⊕ C

= M = im(γ)⊕ A⊕B

= ker(1− γ)⊕ C ⊕ A⊕B

= ker(1− γ)⊕ C ⊕ A⊕B,

i.e. [im(γ) ∩ ker(γ)]⊕ C ∼= γ(C)⊕B ∼= C ⊕M/[im(γ) + ker(γ)].

(1) ⇒ (2) Assume that E is unit-regular. Let γ ∈ E (and so (γ − γ2)(M) is a

direct summand of M). One can check that End((γ − γ2)(M)) is unit-regular.

Consequently, (γ − γ2)(M) satisfies the virtually-C property by Corollary 3.11.

(2) ⇒ (3) Note that [im(γ)∩ker(γ)]⊕C ∼= C⊕M/[im(γ)+ker(γ)] and C ∼= (γ−
γ2)(M). By (2), we obtain that M/[im(γ)+ker(γ)] is embedded in im(γ)∩ker(γ).
(3) ⇒ (1) Let γ be an arbitrary endomorphism of M . Then,

M/ im(γ) ∼= A⊕B ∼= A⊕M/[im(γ) + ker(γ)] ↪→ A⊕ [im(γ) ∩ ker(γ)] = ker(γ),

which implies M satisfies the property (P ). By Theorem 2.11, E is unit-regular.

□

4. On more rings satisfying the property (P )

A ring R is said to be right semi-artinian if every non-zero right R-module has

a non-zero socle.

Lemma 4.1. If RR satisfies the property (P ) and S is a simple submodule of RR,

then there exists principal maximal right ideal mR such that S ∼= R/mR.

Proof. Since S is a nonzero principal right ideal, there exists m ∈ R\R∗ such that

0 ̸= R/mR embeds into S by Lemma 2.4. As S is simple, we get R/mR ∼= S,

and so mR is a maximal right ideal. □

An epimorphism π : P → M is said to be a projective cover of M provided P

is projective and the kernel ker π ≪ P , and a projective module is semiperfect if

every homomorphic image has a projective cover.

Lemma 4.2. Let R be a semiperfect ring such that RR satisfies the property (P )

and s ∈ R. If sR is simple, then rR(s) is a right principal ideal.
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Proof. Since R is semiperfect, there exists a projective cover π : P → sR. More-

over, by Lemma 4.1 there exists m ∈ R and an epimorphism ρ : R → sR such

that mR is the kernel of ρ. Since ρ factorizes through π, the kernel of π is a

homomorphic image of mR, so it is a cyclic submodule. If τs : R → sR is defined

by τs(r) = sr, then it factors through π again which implies that the kernel of τs
is mR⊕Q where R ∼= P ⊕Q, hence it is a principal right ideal. □

A ring R is said to be right Kasch if lR(I) ̸= 0 for every maximal ideal I of R.

Lemma 4.3. Let R be a semiperfect right Kash ring satisfying the property (P ).

Then the following statements hold:

(1) All maximal right ideals of a ring R are principal.

(2) Every maximal submodule of a cyclic R-module is cyclic.

(3) For each c0 ∈ R\{0}, there exists κ ≤ ω and a strictly decreasing chain of

principal ideals (ciR | i < κ) such that ciR/ci+1R is simple and cκ−1 = 0

for κ finite.

Proof. (1) Since a right Kasch ring contains as submodules copies of all simple

modules, the claim follows from Lemmas 4.1 and 4.2.

(2) The claim follows from (1) as maximal submodules of cyclic modules are

factors of maximal ideals.

(3) Constructing by induction, we have in a nonzero cyclic module, say ciR, its

cyclic maximal submodule ci+1R by (2). □

Recall that a ring in which the right and left ideals are linearly ordered by

inclusion is called a chain ring. An artinian ring R is called Frobenius if as right

R-modules Soc(RR) ∼= R/J(R), and as left R-modules Soc(RR) ∼= R/J(R).

Since every local ring with nilpotent (or even left T-nilpotent) Jacobson radical

is semiartinian, the following assertion generalizes the results [5, Lemma 9] and

[28, Proposition 2.8].

Theorem 4.4. The following conditions are equivalent for a local right semiar-

tinian ring R:

(1) RR satisfies the property (P ).

(2) R is right morphic.

(3) R is right chain right artinian.

(4) R is Frobenius right chain.
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Proof. (1)⇒(3) Since any local ring is semiperfect and a semiartinian ring con-

tains simple submodules, J(R) is right principal by Lemmas 4.1 and 4.2. Fur-

thermore, a local right semiartinian ring is right Kasch and it contains no infinite

strictly decreasing chain of principal right ideals. Hence RR is of finite length

by Lemma 4.3. Finally, since J(cR) = cJ(R) is a maximal ideal of cR for each

nonzero c ∈ R, we obtain that each ideal J(R)n are right principal and superflu-

ous in J(R)n−1, which implies that R is a right chain ring.

(3)⇒(2) The implication follows from [5, Theorem 19].

(2)⇒(1) The implication is obvious.

(4)⇔(3) The implication is well known (see, e.g. [15]). □

AmoduleM is called uniserial if the family of its submodules is linearly ordered

under inclusion. A ring R is said to be serial if RR as well as RR are finite direct

sums of uniserial modules.

Corollary 4.5. The following conditions are equivalent for a commutative semilo-

cal semiartinian ring R:

(1) R satisfies the property (P ).

(2) R is morphic.

(3) R is an artinian uniserial ring.

Proof. Since a commutative semilocal semiartinian ring has a T-nilpotent Jacob-

son radical by [22, Proposition 3.2], we obtain that it is semiperfect, and hence

it is a finite product of local semiartinian rings. Now the assertion follows from

Theorem 4.4. □

Proposition 4.6. If R is a left perfect right Kasch ring such that RR satisfies

the property (P ), then it is right artinian such that all right ideals are principal.

Proof. Note that a left perfect ring is semiperfect and right semiartinian. Since a

right semiartinian ring contains no infinite strictly decreasing chain of principal

right ideals, we get that R is a right artinian ring by Lemma 4.3(3).

Now, using the argument of the proof of Theorem 4.4, assume that RR contains

a non-principal right ideal and suppose that I is a maximal such an ideal. Since

R/I ̸= 0 is semiartinian, there exists a right ideal K such that K/I is simple.

By the maximality of choice of I, the ideal K is principal and I is its maximal

submodule, which contradicts Lemma 4.3. □

If M is a finite length module, denote by length(M) the composition length of

M .
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Theorem 4.7. Let R be a left perfect right Kasch ring. Then RR satisfies the

property (P ) if and only if R is right morphic and all right ideals are principal.

Proof. Let RR satisfy the property (P ) and x ∈ R. Note that RR is of finite length

by Proposition 4.6. Since R/xR embeds into rR(x) and R/rR(x) ∼= xR, we get

that length(R/xR) = length(R)− l(xR) = length(rR(x)), hence R/xR ∼= rR(x).

The reverse implication is clear. □

5. On group rings which satisfy the property (P )

Given a ring R and a group G, we denote the group ring of G over R by RG.

An arbitrary element of RG, say α ∈ RG, is of the form α =
∑

g∈G rgg where

rg ∈ R and {g ∈ G| rg ̸= 0} is finite.

The augmentation mapping is of the form:

ε : RG −→ R∑
g

rgg 7−→
∑
g

rg.

Theorem 5.1. Let R be a ring and G be an arbitrary group. If RGRG satisfies

the property (P ), then RR satisfies the property (P ) and G is a locally finite group.

Proof. Assume that RGRG satisfies the property (P ). Corollary 2.5 infers that

RG is left P-injective. Then, G is locally finite by [19, Theorem 4.1]. Next,

we show that RR satisfies the property (P ). Let a ∈ R. Then there exists a

u ∈ RG such that a(RG) = rRG(u) and u(RG) ≤ rRG(a). Take u =
∑n

i=1 aigi
and H =< g1, g2, . . . , gn >. Since G is a locally finite group, we get H is a finite

group. Now ua = 0 = au and hence ε(u)a = ε(ua) = 0 and aε(u) = ε(au) = 0.

Call b := ε(u). Then we have the following cases aR ≤ rR(b) and bR ≤ rR(a).

Case: aR ≤ rR(b): Then a is satisfies the property (P ) and hence RR satisfies

the property (P ).

Case: bR ≤ rR(a): Let y ∈ rR(b). Then by = 0. Put Ĥ =
∑

h∈H h. From

u ∈ RH, we infer that uĤ = Ĥε(u) = Ĥb and so uĤy = Ĥby = 0. This implies

that Ĥy ∈ rRG(u) = a(RG). Write Ĥy =
∑

g aagg. Comparing the coefficients

of the identity on both sides, we obtain that y = aae ∈ aR. This gives that

rR(b) = aR. Therefore, a is satisfies the property (P ) and so is R. □

Corollary 5.2. If G = H ×K, where H and K are subgroups of G, and RGRG

satisfies the property (P ), then RHRH and RKRK satisfy the property (P ).



A NEW MEMBER OF NICHOLSON’S MORPHIC FOLKS 19

Proof. It is well-known that RG = R(H×K) ∼= RH(K). By Theorem 5.1, RHRH

satisfies the property (P ). Similarly RKRK satisfies the property (P ). □

A group G is called a semidirect product of H by K, denoted by G = H ⋊K,

if G contains subgroups H and K such that H ▷G, G = HK and H ∩K = {1}.

Theorem 5.3. Let G = H ⋊ K with |H| < ∞. If RGRG satisfies the property

(P ), then RKRK satisfies the property (P ).

Proof. Let a be an arbitrary element of RK. We show that a satisfies the property

(P ). Since a is an element of RG and RGRG satisfies the property (P ), there exists

u ∈ RG such that a(RG) = rRG(u) and u(RG) ≤ rRG(a). Let a =
∑

j ajkj with

aj ∈ R, kj ∈ K and u =
∑

i uiki where ui ∈ RH, ki ∈ K (since G = HK, the

expression of u is unique). Denote b =
∑

i ε(ui)ki, and so b ∈ RK. We show that

a(RK) = rRK(b) and b(RK) ≤ rRK(a).

Let ω : G → G/H be the natural group homomorphism. We extend to a ring

homomorphism (still denote it by ω).

ω : RG −→ R(G/H)∑
g

rgg 7−→
∑
g

rgω(g)

One can check that Ker(ω) ∩ RK = 0 and ω(v) = ε(v) for all v ∈ RH. Since

ua = 0, we have

0 = ω(ua) = ω(u)ω(a) = ω(
∑

i uiki)ω(a)

= (
∑

i ω(ui)ω(ki))ω(a)

= ω(
∑

i ω(ui)ki)ω(a)

= ω(b)ω(a) = ω(ba)

Since ba ∈ RK, we conclude that ba = 0. Similarly, ab = 0. This shows that

a(Rk) ≤ rRK(b) and b(Rk) ≤ rRK(a). Let y ∈ rRK(b). Then by = 0. We have

that H ▷G, Ĥ =
∑

h∈H h is central in RG. We now have

uĤy =
∑
i

uikiĤy = (
∑
i

uikiĤ)y =
∑
i

ε(ui)kiĤy = Ĥby = 0.

It implies that Ĥy ∈ rRG(u) = a(RG) and so Ĥy = yĤ = aw with w =
∑

j hjuj,

hj ∈ H and uj ∈ RK. We have y
∑

j hj = yĤ = aw =
∑

j hj(auj). Since

H ∩K = {1}, the expression of aw is unique. Comparing the coefficients of the

identity h0 = e, we obtain y = au0 ∈ a(RK). It is shown that rRK(b) ≤ a(RK)

and so rRK(b) = a(RK).
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Example 5.4. (1) Let K be a field and G a torsion abelian group. Then KG

is commutative P-injective by [19, Corollary 4.1], hence it satisfies the property

(P) by Lemma 2.4.

(2) Let K be a field and G be a locally finite group containing no element of

order 2 such that all units of KG are of the form ag for a ∈ K∗ and g ∈ G. Then

KG is reduced by [14, Proposition 6.21] and left P-injective by [19, Corollary 4.1].

Then for each a ∈ KG there exists b such that r(b) = aR. Since KG is reduced

and (ab)2 = 0 we have b ∈ r(a), hence KG satisfies the property (P) again by

Lemma 2.4.

□
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