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Abstract. A right R-module M is called (generalized) Bassian if the exis-

tence of an injective homomorphism M → M/N for some submodule N of M

implies that N = {0} (N is a direct summand of M). We partially describe
relationships between the classes of Bassian and generalized Bassian modules.

In particular, we show that generalized Bassian abelian groups are precisely di-

rect sums of Bassian and semisimple abelian groups, which is a positive answer
for Conjecture 1.3 in [9].

1. Introduction

The classical theorem about modules over a Dedekind domain says that each
finitely generated torsion-free module M is isomorphic to a direct sum of ideals. In
the case R is an integrally closed Noetherian ring, thenM contains a free submodule
N such thatM/N ∼= I, where I is an ideal of the ring R (see [2]). In [10], the authors
obtained an analog was proved for integral rings R such that each ideal in R has
two generators, and such rings were called Bassian in their paper, which has a
closed relation with Hopfian. A ring R is Hopfian if R cannot be isomorphic to a
proper homomorphic image R/I ([14], [19]), and R is Bassian, if there cannot be
an injection of R into a proper homomorphic image R/I (see [18]).

As Rowen and Small pointed out in [18] that we often get more with a stronger
definition, by turning to modules and abelian groups. The notion of a Hopfian
module, which is a module M over which every epimorphism M → M is an iso-
morphism was studied in the pioneer paper [14]. The structural description of
Bassian abelian groups, which are defined as groups that cannot be embedded in
a proper homomorphic image of itself, and related notions was the topic of series
of recent papers [5], [6], [7], [8], [9], [15].

In this paper, following those, we say that an R-module M is (generalized)
Bassian if the existence of a monomorphism M → M/N , for some submodule
N of M , forces that N is a (direct summand) trivial submodule of M . Notice
that Bassian property of M is equivalent to M cannot be embedded in a proper
homomorphic image of itself, a property that was critically observed by Bass for a
commutative ring in [4].

The paper consists of four sections, and is organized as follows.
Section 2 is devoted to examples, counter examples and constructions which

contains relationships between the classes of (generalized) Bassian modules and
related module classes as (co-) Hopfian modules. For example, Bassian modules are
Hopfian, and the class of Bassian modules is not closed under taking submodules
and factor modules, in general. In section 3, we consider the reverse inclusions
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of some examples and closure properties of the studied classes of modules. The
last section is devoted to study relations between Bassian and generalized Bassian
modules. As a consequence we characterize generalized Bassian abelian groups as
a direct sums of a Bassian and semisimple group, which gives a positive answer to
[9, Conjecture 1.3].

Throughout this paper we will be following the standard convention in ring
theory. The rings R we consider will be associative rings with an identity element
1 ̸= 0, and all right R-modules will be unitary. We write MR to denote that M is
a right R-module. We write N ≤ M if N is a submodule of M . A submodule N of
a module M is called proper if N ⊊ M . For a module M , we write N ≤ess M if N
is an essential submodule of M and we shall denote the socle of M by Soc(M). We
denote by Sing(M) the singular submodule of the right (left) module M over the
ring R, i.e. the subset of all elements of M whose annihilators are essential right
(left) ideals of the ring R. We say that a module A is a subfactor of B provided there
exists embedding of A into some factor of B and a homogeneous component of a
module is a maximal submodule of the module such that all its simple subfactors are
isomorphic to a single simple module. A module M is called nonsingular (singular)
if Sing(M) = 0 (Sing(M) = M). The torsion submodule of M is the second
singular submodule Tor(M) defined by Sing(M/Sing(M)) = Sing2(M). Here a
module M is called torsion-free if Tor(M) = 0. The category of left (resp. right)
R-modules will be denoted by R-Mod (resp. Mod-R). Morphisms will be written
on the side opposite to that of scalars. The n × n matrix ring over a ring R is
denoted by Mn(R). The symbols Z and Q denote the set of integer and rational
numbers, respectively.

We refer to [1, 2, 16, 17] for any undefined notion used in the text.

2. Examples

Firstly, we observe how finiteness conditions relate to different variants of the
Bassian property.

Example 2.1. Noetherian modules are Bassian. In particular, all finitely generated
modules over a right Noetherian ring and every modules of finite composition length
are Bassian.

Proof. We prove indirectly that each non-Bassian module is not Noetherian. As-
sume that M is not Bassian. Then there exist non-zero submodules, say K and N ,
of M such that K ≤ N and N/K ∼= M . We will construct two chains of submodules

(Ki | i < ω) and (Ni | i < ω)

such that Ki ⊊ Ki+1 and Ni ⊇ Ni+1 and Ni/Ki
∼= M , where i < ω. First, we

let K0 := K and N0 := N . Hence if we have constructed Ki and Ni, we can
find a non-zero submodule L̂ of the factor Ni/Ki

∼= M for which there exists an

embedding µ : M → (Ni/Ki)/L̂ by the hypothesis. Now it is enough to take

pre-images Ki+1 = π−1(L̂) ⊋ Ki and Ni+1 = π−1(µ(M)) where π : Ni → Ni/Ki

is the natural projection. Since we have strictly increasing chain of submodules
(Ki | i < ω) of M , it is not Noetherian.

Finally note that, finite length modules as well as finitely generated modules
over a right Noetherian ring are Noetherian. □
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The situation appears to be trivial in case of vector spaces:

Example 2.2. Any vector space over a field is generalized Bassian and it is Bassian
if and only if it is finite-dimensional.

It is easy to see that even arbitrary semisimple modules are generalized Bassian,
and semisimple Bassian modules can be described in a simple way. First we observe
useful closure property of classes of (generalized) Bassian modules.

Lemma 2.3. The classes of Bassian and generalized Bassian modules are closed
under taking direct summands.

Proof. The proof of the fact that a direct summand of a Bassian module is Bassian
is the same as in the abelian group case [5, Proposition 2.1].

Let M = A⊕B be decomposition of a generalized Bassian module M and let N
be a submodule of A. Then there exists submodule X of M such that M = N ⊕X,
hence A = (N ⊕X) ∩A = N ⊕ (X ∩A) by modularity. □

Example 2.4. A semisimple module is Bassian iff all its homogeneous components
are finitely generated. In particular,

⊕
p∈P Zp is infinitely generated Bassian abelian

group, where P denotes the set of all primes.

Proof. Let M be a semisimple module. Assume on contrary that M contains in-
finitely generated homogeneous component. Then it contains a direct summand
module, say L, which is isomorphic to S(ω) which is isomorphic to any its factor
module L/F , where F is a finitely generated submodule. Hence M ∼= M/F . By
Lemma 2.3, the module M is not Bassian, a contradiction.

For the converse, assume that N is a submodule of M such that M embeds into
M/N . Then, for each simple module S, the rank of homogeneous component of
M for S is equal to the sum of corresponding ranks of M/N and N , which implies
that all ranks of N are zero and so N = 0. □

A module is called uniform if any two of its nonzero submodules have a nonzero
intersection and M is called distributive if A∩ (B +C) = (A∩B) + (A∩C) for all
submodules A,B and C of M .

Recall that, over prime rings, distributive modules are uniform and uniform
modules need not be Bassian, in general.

Example 2.5. The Prüfer p-group Zp∞ , for a prime number p, as a Z-module, is
a distributive artinian abelian group, which is not Bassian.

A module M is said to be monoform if every non-zero homomorphism from a
submodule N of M to M is a monomorphism. Notice that monoform modules are
uniform by [13, Proposition 2.6 (i)].

Example 2.6. Monoform modules are Bassian.

Proof. Let M be a monoform module and f : M → M/N be a monomorphism.
Write Im(f):= L/N for some submodules N ≤ L ≤ M . Suppose ϕ : M → L/N
is an isomorphism and consider the canonical projection η : L → L/N . Clearly,
g := ϕ−1η : L → M is an R-homomorphism. By the assumption, Ker(g)= 0. Hence
N =Ker(η) ≤ Ker(g)= 0, as desired. □
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A module is called (co-)Hopfian if any (injective) surjective endomorphism is an
isomorphism.

Lemma 2.7. A module M is Hopfian if and only if N = 0 whenever M/N ∼= M
for some N ≤ M .

Proof. Let M be Hopfian and α : M/N → M be an isomorphism for some N ≤ M ,
and π : M → M/N be the natural epimorphism. Then απ : M → M is an
epimorphism. Since M is Hopfian, we have απ as an isomorphism. Because α
is a monomorphism, we have Ker(απ) = Ker(π). Then Ker(π) = N = 0. For
the converse, α : M → M is an epimorphism. Then M/Ker(α) ∼= M . By the
hypothesis, Ker(α) = 0, and hence α is an isomorphism. □

A module M is called semi-Hopfian if N is a direct summand of M whenever
M/N ∼= M for some N ≤ M (see [3]). Note that, by Lemma 2.7, the Bassian
property is a strengthening of the Hopfian property with the isomorphism being
replaced by a monomorphism. The same relationship exists in the notion of gener-
alized Bassian modules and semi-Hopfian modules.

A module M is called Dedekind-finite or directly finite if whenever N is a sub-
module of M such that M is isomorphic to the module M ⊕N , then N = 0. Note
that the module M is Dedekind-finite if and only if for any endomorphisms f and
g of M such that fg = 1, we have gf = 1.

Bassian modules are Hopfian, and generalized Bassian modules are semi-Hopfian.
Furthermore, we have the following chart.

Generalized Bassian // Semi-Hopfian

Bassian

OO

// Hopfian

OO

// Dedekind-finite

All domains R (not necessarily commutative) are Bassian R-modules because of
the Dedekind-finiteness and being monoform by [16, Corollary 8.4]. We also note
that they are not Bassian as rings (see, for instance, [4, Example 1.2])).

Example 2.8. Any prime ring R is Bassian as a (right) R-module.

Proof. Let R be a prime ring and f : R → R/I be an R-monomorphism for some
right ideals I of R. Write f(1) = a + I for some a ∈ R. Suppose I ̸= 0. By
[16, Corollary 8.4(3)], there exist 0 ̸= r ∈ R such that ar ∈ I, which implies that
f(r) = ar + I = I and hence r = 0, a contradiction. Therefore, I = 0. □

A submodule N of a right R-module M is called fully invariant if f(N) is
contained in N for every R-endomorphism f of M . The right R-module M is called
a duo module provided every submodule of M is fully invariant. For example, if M
is a simple right R-module, then M is a duo module but M ⊕M is not duo.

The ring R is called a right duo ring if the right R-module R is a duo module.
Note that a ring R is a right duo ring if and only if every right ideal of R is a two-
sided ideal; equivalently Ra is contained in aR for every element a ∈ R. Clearly
commutative rings and division rings are right (and left) duo rings.
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Example 2.9. Right (respectively, left) duo rings are Bassian as right (respectively,
left) modules.

Proof. Let R be a right duo ring, and f : R → R/I be an R-monomorphism for
some right ideals I of R. Suppose I ̸= 0. Then there exist 0 ̸= x ∈ I. Now f is
a right R-linear map, then we have f(1) = a + I for some a + I ∈ R/I. Hence
f(x) = f(1)x = (a + I)x = ax + I = I since I is a two-sided ideal. But f is a
monomorphism, which gives x = 0, a clear contradiction. Therefore, I = 0, as
desired. □

Note that duo modules need not be Hopfian or co-Hopfian, in general. Moreover,
Hopfian modules need not be duo and neither need co-Hopfian modules be duo.

The following two example show that the class of Bassian modules is not closed
under taking submodules and factor modules, in general.

Example 2.10. QZ is a Bassian abelian group and any its non-trivial factor group
is not Bassian as it contains a direct summand isomorphic to non-Bassian group
Zp∞ for some prime number p.

Example 2.11. Let p be any prime integer and let S be the trivial extension of the
Z-module Zp∞ by Z, i.e. S = Z ⊕ Zp∞ . Firstly, we note that S is a commutative
ring and hence S is a Bassian S-module. On the other hand, S has a submodule
which is not Bassian.

Proof. Take I := {(0,m) : m ∈ Zp∞}. It is easy to see that I is an ideal of S
and θ : I → I, defined by θ(0,m) = (0, pm), is an S-linear map. Moreover, θ
is surjective, but it is not injective (because if we take m = 1

p + Z ∈ Zp∞ , then

θ(0,m) = (0, pm) = (0, 0) ∈ I. Hence we have I/Ker(θ) ∼= I as an S-linear map).
This shows that I is not a Bassian S-module. □

A collection of examples where submodules of a Bassian module is not Bassian
can be given as follows.

Example 2.12. Let R be a commutative ring and M be an R-module which is not
Bassian. Then there exists a surjection ϕ : M → M which is not an isomorphism.
Now consider S be the trivial extension ring of M by R i.e., S = R ⊕M . Firstly,
we note that S is a commutative ring and hence S is a Bassian S-module. Write
I = {(0,m) : m ∈ M}. Then I is an ideal of S. Now define the map f : I → I
by f(0,m) = (0, ϕ(m)). Clearly, f is an S-linear map which is surjective but not
injective. Hence I/Ker(f)∼= I. This shows that I is not a Bassian S-module.

A submodule N of a module M is said to be dense if, for any y ∈ M and
x ∈ M\{0}, there exists r ∈ R such that xr ̸= 0, and yr ∈ N (for example, see [16,
Definition 8.2]).

Example 2.13. Modules whose all proper submodules are dense are Bassian.

Proof. Assume that M is an R-module such that all its proper submodules are
dense submodules. If N a dense submodule of M , then for any submodule P such
that N ≤ P ≤ M , we have HomR(P/N,M) = 0 by [16, Proposition 8.6]. □
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A concrete non-trivial (i.e. non-semisimple) example of a Bassian module where
all submodules are Bassian can be seen in the following by precisely highlighting a
pair of non isomorphic submodules.

Recall that a moduleM is critical providedM has Krull dimension and all proper
quotient modules of M have Krull dimension strictly less than the Krull dimension
of M (see [13, §2]). Every critical module is monoform (see [13, Corollary 2.5]).

Example 2.14. ([12, p.1846-1848]) We consider the formal power series ring
S = K[[t]] an indeterminate t, where K a field of characteristic zero. Let R = S[θ]
be the formal linear differential operator ring (i.e. the Ore extension) over (S,δ),
where δ is a K-linear derivation on S. Since sθ = θs − δ(s) for all s ∈ S, the
ring S can be made into a right R-module isomorphic to R/θR with a module
multiplication ∗ defined so that s ∗ s′ = ss′ and s ∗ θ = −δ(s) for all s, s′ ∈ S. Note
that tn ∗ θ = −ntn for all n ∈ N, which gives that the ideals tnS are also right R-
submodules (pairwise non-isomorphic) of S. Thus, the nonzero right R-submodules
of S form a strictly descending chain

S > tS > t2S > · · ·,
which implies that S (and hence, R/θR) is a 1-critical right R-module of Krull
dimension 1 (see [13, §2]). Now,
(a) S is a monoform module and hence a Bassain right R-module by Example 2.6,
and
(b) each tiS, i ∈ N, is a critical R-submodule of S of Krull dimension 1 (see [13,
Proposition 2.3]), which gives that all of these submodules are Bassian.

3. Classes of Bassian modules

We begin with a partial description for (generalized) Bassian modules. Note
that, the equivalence between (1) and (2) for the case ”the generalized Bassian” in
the following lemma is similar.

Lemma 3.1. The following statements are equivalent for a module M .

(1) M is Bassian (respectively, generalized Bassian).
(2) For any R-module M ′, if there exixts a monomorphism σ : M → M ′, then

the kernel of any epimorphism π : M → M ′ is 0, i.e. π is an isomorphism
(respectively, π : M → M ′ is a direct summand of M).

Proof. (1) ⇒ (2). Assume that there exist a monomorphism σ : M → M ′ and an
epimorphism π : M → M ′. Clearly, there is an isomorphism α : M ′ → M/Ker(π),
and hence ασ : M → M/Ker(π) is a monomorphism. Since M is a Bassian module,
then Ker(π) = 0, i.e. π is an isomorphism.
(2) ⇒ (1). Let f : M → M/N be a monomorphism for some submodule N of M
and consider the natural epimorphism π : M → M/N be. By the hypothesis, we
have N =Ker(π)= 0, as desired. □
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Proposition 3.2. The following statements are equivalent for a module M .

(1) M is Bassian;
(2) M is generalized Bassian and there exists no a monomorphism from M to

any proper direct summands of M .

Proof. (1) ⇒ (2). Clearly, M is generalized Bassian. Assume on contrary that
f : M → N is a monomorphism, where N is a proper direct summand of M . Write
M = N ⊕ N ′ for some N ′ ≤ M . Clearly, gf : M → M/N ′ is a monomorphism,
where g : N → M/N ′ is the natural isomorphism. Since M is Bassian, we get
N ′ = 0 which shows that M = N , a contradiction.
(2) ⇒ (1). Let σ : M → M/N be a monomorphism for some submodule N of M .
Since M is generalized Bassian, N is a direct summand of M . Write M = N ⊕N ′

for some N ′ ≤ M . Then there exist a monomorphism θ ◦ σ : M → N ′, where
θ : M/N → N ′ is the natural isomorphism. Therefore N ′ = M by (2), and hence
N = 0. □

It has already been noted that there exist uniform modules which are not Bassian.
On the other hand, by Example 2.6, monoform modules are Bassian.

Proposition 3.3. Nonsingular uniform modules are monoform. Hence, nonsingu-
lar uniform modules are Bassian.

Proof. LetM be a nonsingular and uniform module. We prove thatM is monoform.
Consider a submodule N of M and f : N → M . If f = 0, then the module
M is monoform. Suppose f ̸= 0, i.e. Im(f) ̸= 0. In case, Ker(f )̸= 0, we have
Ker(f)≤ess N since M is uniform. Hence N/Ker(f)∼=Im(f) which implies that
Im(f) is a singular module. This is a contradiction. Therefore, Ker(f)= 0, i.e. M
is a monoform module.

Although the second part directly follows from Example 2.6, we give a direct
proof for the claim: Again, let M be a nonsingular and uniform module. Suppose
on contrary that M is not Bassain. By Lemma 3.1, there exist a triple (M ′, f, θ),
where M ′ is a module, f : M → M ′ is a monomorphism and θ : M → M ′ is
an epimorphism with Ker(θ)̸= 0. Call K :=Ker(θ). Since M is uniform, we have
K ≤ess M . Hence M/K ∼= M ′ which implies that M ′ is a singular module, i.e.
Im(f) is a singular submodule of M ′. Since Im(f)∼= M (via ϕ say), which infers
that ϕ(Sing(Im(f))= ϕ(Im(f)⊆ Sing(M) = 0, a contradiction. □

A module M is said to be polyform if Ker(f) is a closed submodule of K, for
every submodule K of M and f : K → M . Notice that any nonsingular module is
polyform.

Proposition 3.4. Both uniform and polyform modules are Bassian.

Proof. Assume that M is a polyform and uniform module. Let f : M → M/N be
a monomorphism. Write Im(f):= L/N for some submodules N ≤ L ≤ M . Let ϕ :
M → L/N be the isomorphism and consider the canonical projection η : L → L/N .
Clearly, g = ϕ−1η : L → M is an R-homomorphism. By the assumption, Ker(g) is
a closed submodule of L. But L is uniform, we have either Ker(g)= L or Ker(g)= 0
by [16, Examples 6.42(1)]. If Ker(g)= L, a clear contradiction. Therefore Ker(g)= 0
which implies that η is a monomorphism. Hence N = 0, as required. □
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Proposition 3.5. The following statements are equivalent for a module M .

(1) M is Hopfian.
(2) M is semi-Hopfian and Dedekind-finite.

Proof. (1) ⇒ (2). The implication is clear.
(2) ⇒ (1). Assume that there exists an isomorphism between M and M/N for
some N ≤ M . Since M is semi-Hopfian, we obtain that N is a direct summand of
M . Write M = N ⊕N ′, where N ′ ≤ M . Now we have

M = N ⊕N ′ ∼= N ⊕M/N ∼= N ⊕M.

The Dedekind-finiteness of the module M gives that N = 0, as desired. □

The following assertion collects some properties of (generalized) Bassian modules.

Proposition 3.6. Let M be a module.

(1) If M is a free and Bassian, then it is of finite rank.
(2) If M has a submodule, say N , such that N/X ∼= M for some 0 ̸= X ≤ N ,

then M is not Bassian.
(3) If M/N is Bassian for every nonzero submodule N of M , then M is Hop-

fian.

Proof. (1) The claim follows from [14, Proposition 12].
(2) If M has a submodule N such that N/X ∼= M for some 0 ̸= X ≤ N , then
certainly M embeds in M/X, and hence M cannot be Bassian because X ̸= 0.
(3) Assume on contrary that M is not Hopfian. Then there exists a surjection,
say f , of M which is not an isomorphism. Let N := Kerf . Clearly, 0 ̸= N and
f induces an isomorphism, say f̄ : M/N → M . Consider the canonical quotient
morphism η : M → M/N . It is easy to check that ηf̄ : M/N → M/N is an
epimorphism which is not an isomorphism, a contradiction. □

Recall that two modules are Morita equivalent if their module categories are
equivalent as exact categories.

Theorem 3.7. Being Bassian for modules is Morita invariant.

Proof. Let R and S be Morita equivalent rings with inverse category equivalences
α : Mod-R → Mod-S and β : Mod-S → Mod-R. Suppose M ∈ Mod-R is
Bassian. We must show that α(M) is Bassian. Take α(M ′) ∈ Mod-S. Let
f : α(M) → α(M ′) be an S-module monomorphism and θ : α(M) → α(M ′) be an
S-module epimorphism. Since any category equivalence preserves monomorphisms
and epimorphisms, we obtain β(f) : βα(M) → βα(M ′) is an R-module monomor-
phism and β(θ) : βα(M) → βα(M ′) is an R-module epimorphism. Note that
βα(M) ∼= M and βα(M ′) ∼= M ′. Hence there exist a monomorphism f̄ : M → M ′

and an epimorphism θ̄ : M → M ′. By Lemma 3.1, we have Ker(θ̄)= 0, i.e.
Ker(θ)=0, as required. □
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Corollary 3.8. Let n ≥ 2. Then the following statements are equivalent for a ring
R.

(1) Every n-generated R-module is Bassian.
(2) Every cyclic Mn(R)-module is Bassian.

Proof. Let P = (Rn)R and S = End(PR). Then

HomR(P,−) : NR 7→ HomR(SPR, NR)

defines a Morita equivalence between Mod-R and Mod-S with inverse equivalence

−⊗S P : XS 7→ X ⊗ P.

Note that, HomR(P,N) is a cyclic S-module for any n-generated R-module N ,
and M ⊗S P is an n-generated R-module for any cyclic S-module M . Thus, every
cyclic S-module is Bassian if and only if every n-generated R-module is Bassian by
Proposition 3.7. □

Recall that if ϕ : R → S is a ring homomorphism (with ϕ(1) = 1) and M is a
right S-module, then Mϕ denotes the right R-module M by pull back along ϕ, i.e.
mr = mϕ(r) for m ∈ M and r ∈ R (see [11, p. 334]).

Proposition 3.9. Suppose that ϕ : R → S is a ring homomorphism and M is an
S-module.

(1) If Mϕ is Bassian, then so is MS.
(2) If ϕ is surjective, then MS is Bassian iff Mϕ is Bassian.

Proof. (1) Assume that f : M → M/N is a monomorphism in Mod-S. Then
f : Mϕ → (M/N)ϕ is a monomorphism in Mod-R. Hence, by the hypothesis,
Nϕ = 0, i.e. N = 0, as desired.
(2) Assume that f : Mϕ → Mϕ/Nϕ is an R-monomorphism. Since ϕ is surjective
and f(ms) = f(mϕ(r)) = f(mr) = f(m)r = f(m)ϕ(r), we see that f is an S-
module monomorphism. Hence N = 0, i.e. Nϕ = 0. □

Corollary 3.10. Let I be an ideal of a ring R and M be a right R-module. If
M/MI is Bassian as an R/I-module, then M is Bassian as a right R-module.

A ring R is said to be right Goldie if u.dim(RR) < ∞ and R has ACC on right
annihilator ideals.

Proposition 3.11. Let R be a semiprime right Goldie ring, Q be a classical right
ring of fractions of R and M be a right R-module. Then the (right) Q-module
M ⊗R Q with finite uniform dimension is Bassian.

Proof. By [16, Theorem 11.13], Q is semisimple. Hence, the reduced rank ρ(M)
is defined as ρ(M) = u.dim(M ⊗R Q) by [16, Proposition 11.15]. Moreover, for
any submodule N of M , we have ρ(M) = ρ(N) + ρ(M/N) by [16, Theorem 7.38].
Now if there exists a Q-monomophism f : M ⊗R Q → (M ⊗R Q)/(N ⊗R Q) , then
u.dim(N ⊗R Q) = 0, i.e. N ⊗R Q = 0. Hence M ⊗R Q is a Bassian Q-module. □
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LetM be a rightR-module. The elements of the moduleM [X] with a commuting
indeterminate X over R are formal sums of the form

k∑
i=0

miX
i = m0 +m1X +m2X

2 + · · ·+mkX
k

with k ≥ 0 an integer andmi ∈ M . Addition is defined by adding the corresponding
coefficients. The R[X]-module structure is given by

(

k∑
j=0

mjX
j).(

l∑
i=0

riX
i) =

k+l∑
t=0

m̄tX
t,

where m̄t =
∑

j+i=t mjri for any mj ∈ M and ri ∈ R.

Proposition 3.12. Let M ∈ Mod-R. If M [X] is Bassian in Mod-R[X], then M
is Bassian in Mod-R.

Proof. Let f : M → M ′ be a monomorphism in Mod-R and g : M → M ′ be an
epimorphism in Mod-R. Then one can check that

f [X] : M [X] → M ′[X] given by f [X](

k∑
i=0

miX
i) =

k∑
i=0

f(mi)X
i

is a monomorphism in Mod-R[X] and

g[X] : M [X] → M ′[X] given by g[X](

n∑
i=0

miX
i) =

n∑
i=0

g(mi)X
i

is an epimorphism in Mod-R[X]. Since M [X] is Bassian in Mod-R[X], we obtain
that Ker(g[X])= 0, which implies Ker(g)= 0. □

Let us remark that a module M over a domain R is divisible iff M = Mr for
any 0 ̸= r ∈ R, and a module M over a domain R is torsion-free iff mr ̸= 0 for any
0 ̸= m ∈ M and 0 ̸= r ∈ R.

Proposition 3.13. Let R be a commutative domain and M be a divisible R-module.
If M is Bassian, then M is torsion-free.

Proof. Let t ∈ Tor(M). Then there exist 0 ̸= r ∈ R such that rt = 0. Now, for the
fixed r ∈ R, define θ : M → M by θ(m) = rm for all m ∈ M . Then θ is an R-linear
map. Moreover, for each n ∈ M , there exists n′ ∈ M such that rn′ = n (since M
is a divisible module), which gives that θ is onto. Since M is a Bassian module, we
have θ is a monomorphism. Therefore, θ(t) = rt = 0, i.e. t = 0. Thus Tor(M) = 0,
as desired. □

Finally note that, torsion-free Bassian R-modules M need not be divisible, in
general (take for example R = M = Z).
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4. Bassian vs. generalized Bassian modules

The main theme of this section can be described as a study of the relations
between classes of Bassian modules and generalized Bassian modules.

We start with one particular case when the classes coincides.

Proposition 4.1. The following statements are equivalent for a co-Hopfian module
M .

(1) M is generalized Bassian.
(2) M is Bassian.

Proof. (2) ⇒ (1). The implication is clear.
(1) ⇒ (2). Let N ≤ M and σ : M → M/N be a monomorphism. Since M is
generalized Bassian, we obtain that N is a direct summand of M . Let M = N⊕N ′

for some N ′ ≤ M . Clearly, there exists an isomorphism between M/N and N ′, say
α, and ασ : M → N ′ is a monomorphism. Since M is co-Hopfian, we get that ασ
is an isomorphism. Since α is a monomorphism, we have Ker(ασ) = Ker(σ). So,

Ker(ασ) = Ker(σ) = N = 0

because σ is a monomorphism. Hence M is Bassian. □

The following proposition offers a way how to construct new examples of Bassian
modules.

Proposition 4.2. Let Fi, i ∈ I, be finitely generated modules with the essential
socle over a Noetherian ring R such that

HomR(Soc(Fi), Fj/K) = 0

for each submodule K of Fj with i ̸= j. Then
⊕

i∈I Fi is a Bassian module.

Proof. Let M :=
⊕

i∈I Fi. Note that Soc(M) =
⊕

i∈I Soc(Fi) and it is essential
in M . Let N be a submodule of M and ν : M → M/N be a monomorphism. If
there exists i such that ν(Fi) ⊈ Fi + N/N , then there exist j ̸= i and nonzero
homomorphisms

Soc(Fi) → Fj +N/N ∼= Fj/(N ∩ Fj),

a contradiction. Hence

ν(Fi) ⊆ Fi +N/N ∼= Fi/(N ∩ Fi)

and

N ∩ Fi = 0

by Example 2.1. They imply that

N ∩ Soc(M) =
⊕
i∈I

N ∩ Soc(Fi) = 0.

Thus N = 0, i.e. M is Bassian. □

Corollary 4.3. A torsion module over a Dedekind domain with finitely generated
homogeneous components is Bassian.

Proof. Since any torsion module over a Dedekind domain decomposes into a direct
sum of homogeneous components, the assertion follows from Proposition 4.2. □



12 SOUMITRA DAS, M. TAMER KOŞAN, ÖZGÜR TAŞDEMİR, JAN ŽEMLIČKA

The next technical observation allows us to say more about structure of gener-
alized Bassian modules.

Proposition 4.4. Let M be a generalized Bassian module and µ : M → M/K be
an embedding where K ≤ M . Then

(1) K is semisimple,
(2) K(ω) is embeddable into M ,
(3) there exist submodules S and N such that K ≤ S is semisimple, µ(M) is

essential submodule of N and M = S ⊕N .

Proof. (1) It is enough to show that K is completely reducible. Let A ≤ K.
Then there exists a decomposition M = N ⊕ K such that M is embeddable into
N ∼= M/K because M is generalized Bassian. Thus M is also embeddable into
M/A ∼= N ⊕K/A, which implies that there exists a direct summand B of M such
that M = A⊕B. Now by modularity we get

K = M ∩K = (A⊕B) ∩K = A⊕ (B ∩K),

which proves that K is completely reducible and so semisimple.
(2) Using (1), we can construct a pair of chains

(Ki | i < ω) and (Ni | i < ω)

of submodules such that K ∼= Ki+1 ≤ Ni is a direct summand of Ni, M is embed-
dable into Ni, Ni ⊇ Ni+1 and Ni ∩

∑
j≤i Kj = 0 for each i. Let K0 := K. Assume

that N0
∼= M/K is a direct complement of K in M , which contains a submodule,

isomorphic to M , by the hypothesis. Suppose Ki and Ni are defined. Since there
exist an embedding ν : M → Ni, a submodule Ki+1, isomorphic to K, is a direct
summand in ν(M), we have a submodule Ni+1 satisfying ν(M) = Ki+1 ⊕ Ni+1.
Now it is easy to see that K(ω) ∼=

⊕
i<ω Ki is embeddable into M .

(3) Let S be a maximal submodule of M containing K such that S/K ∩µ(M) = 0.
Then the composition πµ, where π : M/K → M/S is the natural projection, forms
an embedding. Thus S is a semisimple direct summand of M containing K, and
hence there exists N for which µ(M) ≤ N . Now, by the maximality of the choice
of S, we get that µ(M) is essential submodule of N . □

Now we can formulate an analogue of Proposition 4.1.

Proposition 4.5. Let M be a module such that every homogeneous component of
Soc(M) is finitely generated. The following statements are equivalent.

(1) M is generalized Bassian.
(2) M is Bassian.

Proof. If M is generalized Bassian and, for a submodule K, there exists embedding
µ : M → M/K, then by Lemma 4.4 K is semisimple and every nonzero for simple
submodule S of K, there exists embedding s(ω) into M . As every homogeneous
component of Soc(M) is finitely generated, K = 0, and so M is Bassian. □

Corollary 4.6. The following statements are equivalent for a module M with the
zero socle.

(1) M is generalized Bassian.
(2) M is Bassian.
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The following series of observations describe generalized Bassian modules which
are the sum of an Bassian module and a semisimple module. Of course, we recall
that exactly semisimple modules with finitely generated homogeneous components
are Bassian by Example 2.4.

Lemma 4.7. Let π : M → H be a homomorphism of modules where H is semisim-
ple.

(1) If K ⊆ Soc(M) and K ∩ Ker(π) = 0, then K ∼= π(K) and there exists a
decomposition M = A⊕K.

(2) There exist decompositions M = A ⊕ D and H = π(D) ⊕ Y such that
π(D) = π(Soc(M)), π(Soc(A)) = 0 and Ker(π) ∩D = 0.

Proof. (1) Since π(K) is a direct summand of the semisimple module H, there exist
an epimorphism ρ : M → π(K) (induced by π) and a monomorphism ν : π(K) → M
such that ν(π(K)) = K, πν = idπ(K) and Ker(π) ⊆ Ker(ρ). Now it is easy to see
that the module M has a decomposition M = A⊕K, where A := Ker(ρ).
(2) As π(Soc(M)) is isomorphic to a direct summand, say D, of Soc(M), it is
enough to apply (1) on K = D. □

We say that a module A is directly bounded if there exists a finite n such that,
for each simple submodule T of A, there exist no a direct summand of A which is
isomorphic to T (n).

Lemma 4.8. Let B, H and F be submodules of a module M such that B contains
no a direct simple summand, H is semisimple and M/F ∼= B ⊕H.

If there exists a finite n such that for each simple module T which has no a factor
of F is isomorphic to T (n), then there exists a decomposition M = A⊕D such that
A is directly bounded and D is semisimple.

Proof. Denote by

π : M → M/F ∼= B ⊕H

ensured by the hypothesis and πB : M → B, πH : M → H the compositions of
π and the corresponding natural projections. Then, by Lemma 4.7, there exist
decompositions M = A ⊕ D and H = π(D) ⊕ Y such that π(Soc(A)) ⊆ B and
π acts injectively on D. Thus the factorization π(D) gives us an epimorphism
ρ : A → B ⊕ Y with Ker(ρ) = F and ρ(Soc(A)) ⊆ B.

It remains to prove that A is directly bounded. Assume that, there exists a
simple module, say T , and submodules L ⊆ Soc(A) and X ⊆ A such that L ∼= T (n)

and A = L⊕X. Then

ρ(A) = ρ(X) + ρ(L),

where ρ(L) is semisimple, which implies ρ(A) = ρ(X)⊕ U for suitable submodules
U ⊆ ρ(L) ⊆ ρ(Soc(A)) ⊆ B. Thus

B = (U ⊕ ρ(X)) ∩B = U ⊕ (ρ(X) ∩B)

by the modularity. Since B contains no a simple direct summand, we obtain that
U = 0 and so ρ(A) = ρ(X). Now, this implies that A = F + X = L ⊕ X and
T (n) ∼= L ∼= A/X ∼= F/(F ∩M), which contradicts to the hypothesis that no factor
of F is isomorphic T (n). □
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Lemma 4.9. Assume M and S are modules such that S is semisimple, N is a
submodule of M ⊕ S and ν : M → (M ⊕ S)/N is an embedding.

Then there exist submodules, say T and L, of the module S and a decomposition
M = A⊕D such that M ⊕ S = (M +N)⊕ T ⊕ L, M1 embeds into M/(M ∩N),
and D ∼= T .

Proof. Since (M +N)∩ S is a submodule of a semisimple module S, we can find a
direct summand, say U , such that S = U⊕((M+N)∩S). By the modularity we get
that (U+(M+N))∩S = U+((M+N)∩S) = S, which implies M+S ⊆ U+M+N .
Thus M⊕S = (M+N)⊕U and so (M⊕S)/N = (M+N)⊕U ∼= U⊕M/(M ∩N).
Let us denote π1 : (M⊕S)/N → U and π2 : (M⊕S)/N → M/(M ∩N) the natural
projections, νi = πiν and Ki = Kerνi for i = 1, 2. Note that K1 ∩K2 = 0 as ν is
injective, hence there exists submodules D = K2 and A of M satisfying M = A⊕D
and D ∼= ν1(D) by Lemma 4.7.

As A ∩K2 = 0, the homomorphisms ν2 embeds A into M/(M ∩N). Similarly,
since S1∩K1 ⊆ K2∩K1 = 0, the homomorphisms ν1 embeds D into the semisimple
module U . Hence, there exists a decomposition U = T ⊕ L such that D ∼= T . □

Now we already can formulate an assertion employing all technical results of this
section.

Theorem 4.10. Let M be a directly bounded Bassian module and S a semisimple
module. Then M ⊕ S is generalized Bassian.

Proof. Let N be a submodule of M ⊕ S and let ν : (M ⊕ S) → M ⊕ S/N . First,
we define M0 = M , S0 = S, N0 = N and let ν0 denote the restriction ν |M of
the monomorphism ν. Then Lemma 4.9 allow us to construct, by the induction on
n > 0, sequences of modules Mi, Si, Ti, Li, Ni such that

Mi−1 = Mi ⊕ Si, Ni = Ni−1 ∩Mi−1, Mi ⊕ Si = (Mi +Ni)⊕ Ti ⊕ Li

satisfying that Li−1
∼= Si Mi embeds into Mi−1/Ni and Si embeds into Si−1.

Since M is directly bounded, we can fix n for which there is no a direct summand
of M which is isomorphic to T (n) for an arbitrary simple module, say T . We will
show that the sequence of direct summands Si terminates in the n-th step by
the zero module. To prove it, let us assume on contrary that Sn−1 ̸= 0 and T
is a simple submodule of Sn−1. Since Si is embeddable into Si−1 for each i, we
get that an isomorphic copy of T is a submodule of Si for each i < n. Hence
T (n) is isomorphic to a direct summand of the semisimple module

⊕
i<n Si, which

is a contradiction because M = M0 = Mn−1 ⊕
⊕

i<n Si. Thus Sn−1 = 0 and
Mi−2 = Mi−1 ⊕ Sn−1 = Mi−1 .

Note that M0 is Bassian by the hypothesis and Mi is a direct summand of the
Bassian module M , and hence it is Bassian by Lemma 2.3 for each i > 0. Since the
Bassian module Mn−1 is embeddable into Mn−2/Nn−1 = Mn−1/Nn−1, we get that
Nn−1 = 0. Thus, we have k such that Sk+1 = 0, Nk = 0, and M = Mk ⊕

⊕
i≤k Si.

Since Mk =
⋂k

i=0 Mi and Ni = Ni−1 ∩Mi, we get that

N0 ∩Mk = N0 ∩
k⋂

i=0

Mi = (N0 ∩M0) ∩
k⋂

i=1

Mi = N1 ∩
k⋂

i=2

Mi = · · · = Nk = 0

and
∏

M →
⊕

i≤k Si is a projection such that Ker(π) = Mk and N0 ∩ Mk = 0.
Now, Lemma 4.7 implies that N = N0 is a direct summand of M ⊕ S. □
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Corollary 4.11. If M is a Bassian module and S is a semisimple module such that
there exists n such that either all dimensions of homogeneous components either of
socle of M or of S are bounded by n, then M ⊕ S is generalized Bassian.

The following lemma may be well known, but we give a proof for completeness.

Lemma 4.12. Let Mi, i ∈ I be modules with a finitely generated socle Soc(Mi).
Then there exists a decomposition

⊕
i∈I Mi = B⊕H such that B contains no simple

direct summand and H is semisimple.

Proof. Since Soc(Mi) is finitely generated, there exists a maximal semisimple direct
summand of Mi, i.e. there is a decomposition Mi = Bi ⊕ Hi where Bi contains
no a simple direct summand and Hi is semisimple, i ∈ I. Put B :=

⊕
i∈I Bi

and H :=
⊕

i∈I Hi. Now, it is easy to see that
⊕

i∈I Mi = B ⊕ H, where H is
semisimple. In order to prove that B contains no a simple direct summand, we
assume that C is a maximal submodule of B, which is a direct summand if B.
Hence, there exist i ∈ I and a simple submodule S ⊆ Bi for which B = S ⊕ C.
Now, by the modularity, we obtain that Bi = (S ⊕ C) ∩Bi = S ⊕ (C ∩Bi), which
is a contradiction. □

The following assertion is the main result of this section.

Theorem 4.13. Assume that M is a Bassian module, F is a submodule of M and
Mi, i ∈ I, are modules with a finitely generated socles. If there exists a finite n
such that, for each simple module T , no a factor of F is isomorphic to T (n), then

(1) there exist a decomposition M = A ⊕D such that A is a directly bounded
Bassian module and H is a semisimple module with finitely generated ho-
mogeneous components,

(2) M ⊕ S is a generalized Bassian module for every semisimple module S.

Proof. (1) The claim follows from Lemma 4.12 that M/F decomposes into a direct
sum of a submodule containing no a simple direct summand and a semisimple
module. Then the assertion is implied by Lemma 4.8.
(2) Since M = A ⊕D for a directly bounded Bassian module A and a semisimple
module D by (1), we obtain that the module M ⊕ S ∼= A⊕ (D ⊕ S) is generalized
Bassian by Theorem 4.10. □

The following consequence answers the [9, Conjecture 1.3] in positive.

Corollary 4.14. If A is a Bassian abelian group and S is a semisimple abelian
group, then A⊕ S is generalized Bassian.

Proof. By [5, Main Theorem], there exists a free subgroup, say F , of finite rank
n − 1 of A such that Tor(A) ⊕ F is essential in A. Since all ranks of the group A
are finite and A/F is a torsion group, we obtain that all p-components has finite
socles and no a factor of F is a homogeneous semisimple module of rank n. Hence
the claim follows from Theorem 4.13(2). □
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Finally, we formulate the characterization of the generalized Bassian property
summing up results of the paper [9] and of the present paper.

Corollary 4.15. The following statements are equivalent for an abelian group A.

(1) A is generalized Bassian,
(2) There exists a decomposition A = B ⊕H such that A is Bassian and H is

elementary,
(3) There exists decomposition A = B ⊕ H such that A is directly bounded

Bassian and H is elementary.

Proof. (1)⇒(2) The implication is proved in [9, Corollary 3.6].
(2)⇒(3) The implication follows from Theorem 4.13(1).
(3)⇒(1) The implication is an immediate consequence of Corollary 4.14. □
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