Homework 4

Deadline: Wednesday, 8 January at 14:00.

Please submit your solutions on paper at the beginning of the practicals or as a pdf file in the SIS using the Study group roster (Studijní mezivýsledky) application. A maximum of 5 points can be awarded for each task. The solution to each problem must be explained. Everything that is not immediately obvious needs to be proved or quoted from lecture notes.

- 1. Construct a splitting field \mathbb{F}_8 of the polynomial $x^7 + 1$ over the field \mathbb{Z}_2 and decompose it into linear factors in $\mathbb{F}_8[x]$ (you can use unproven facts from the lecture notes and observation that $x^8 x = x(x^7 + 1)$ in $\mathbb{Z}_2[x]$).
- 2. Determine the order of the element $\alpha \in \mathbb{F}_{16}^*$ in multiplicative group of the field $\mathbb{F}_{16} = \mathbb{Z}_2[\alpha]/(\alpha^4 + \alpha + 1)$ (it is not necessary to prove that \mathbb{F}_{16} is a field).
- 3. For the permutations $\alpha = (124)(378), \beta = (13)(56872) \in S_8$ calculate

$$\alpha^8 \circ \beta^{-11}, \quad \alpha \circ \beta \circ \alpha^{-1}, \quad \alpha \circ \beta^{10} \circ \alpha^5.$$

- 4. In the symmetric group $(\mathbf{S}_9, \circ, ^{-1}, \mathrm{id})$ find the order of the subgroup $\langle (1\,2)(3\,4\,5)(6\,7\,8\,9) \rangle_{\mathbf{S}_9}$, the index $[\mathbf{S}_9 : \langle (1\,2)(3\,4\,5)(6\,7\,8\,9) \rangle_{\mathbf{S}_9}]$, and all elements of \mathbf{S}_9 of the order 11.
- 5. Determine a generator of the cyclic subgroup $(28, 64, 96)_{\mathbb{Z}_{120}}$ of the group $(\mathbb{Z}_{120}, +, -, 0)$.