11 Permutation groups and powers of elements

11.1. Let $\mathcal{G} = (G, \cdot, ', 1)$ be a group, $a, b \in G$ and $k, l \in \mathbb{Z}$. Prove that

(a)
$$a^{k+l} = a^k \cdot a^l$$
,

(b)
$$a^{kl} = (a^k)^l = (a^l)^k$$
,

(c) if \mathcal{G} is Abelian, then $(ab)^k = a^k b^k$.

11.2. Write the following permutations as the product of independent cycles and for each permutation σ determine σ^{-1} and σ^{2020} :

(a) $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix} \in \mathbf{S}_5,$ (b) $\tau = (46512) \in \mathbf{S}_6,$ (c) $\sigma = (156)(23847) \in \mathbf{S}_8,$ (d) $\rho = (435) \circ (512) \in \mathbf{S}_5.$

 $\begin{array}{l} Solutions: \ (a) \ \pi = (1 \ 4)(2 \ 3 \ 5), \ \pi^{-1} = (1 \ 4)(2 \ 5 \ 3), \ \pi^{2020} = (2 \ 3 \ 5), \\ (b) \ \tau = (4 \ 6 \ 5 \ 1 \ 2), \ \tau^{-1} = (2 \ 1 \ 5 \ 6 \ 4), \ \tau^{2020} = \mathrm{id}, \\ (c) \ \sigma = (1 \ 5 \ 6)(2 \ 3 \ 8 \ 4 \ 7), \ \sigma^{-1} = (6 \ 5 \ 1)(7 \ 4 \ 8 \ 3 \ 2), \ \sigma^{2020} = (1 \ 5 \ 6), \\ (d) \ \rho = (1 \ 2 \ 4 \ 3 \ 5), \ \rho^{-1} = (5 \ 3 \ 4 \ 2 \ 1), \ \rho^{2020} = \mathrm{id}. \end{array}$

11.3. Show that if $\pi(a) = b$ and $\sigma = \tau \pi \tau^{-1}$, then $\tau(b)$ is right after the element $\tau(a)$, i.e. $\sigma(\tau(a)) = \tau(b)$, and determine $\pi \tau \pi^{-1}$ and $\tau \pi \tau^{-1}$ for the permutations π and τ from example 11.2.

Solutions:
$$\pi \tau \pi^{-1} = (16243), \ \tau \pi \tau^{-1} = (143)(26)$$

Recall that the operation $\pi^{\tau} = \tau \pi \tau^{-1}$ is called *conjugation of the permutation* π by the permutation τ and the permutation π^{τ} is then *conjugated* with π .

11.4. Prove that the conjugation relation is an equivalence.

11.5. Find all permutations of α on the set $\{1, 2, 3, 4\}$ for which $\alpha \circ (123) \circ \alpha^{-1} = (124)$.

Solutions: (34), (1243), (1432)

11.6. Determine the order of the following elements:

- (a) 4 and 15 in \mathbb{Z}_{75} ,
- (b) 7 and 9 in \mathbb{Z}_{20}^* ,
- (c) 4 and 15 in \mathbb{Z} ,
- (d) (1234)(567)(89), (12)(5689) in **S**₉ and **A**₂₀₂₀.

Solutions: (a) $\operatorname{ord}(4) = n = 75$, $\operatorname{ord}(15) = m = 5$, (b) $\operatorname{ord}(7) = 4$ a že $\operatorname{ord}(9) = 2$ (c) ∞ , (d) $\operatorname{ord}((1234)(567)(89)) = 12$, $\operatorname{ord}((12)(5689)) = 4$.