1 Euclid's algorithm

We say that a divides b, denoted by $a \mid b$, if an element $k \in \mathbb{Z}$ exists such that ak = b.

Recall the Euclid's algorithm for finding the greatest common divisor of natural numbers a_0 and a_1 : We set $(u_0, v_0) = (1, 0)$, $(u_1, v_1) = (0, 1)$ and i = 1 and then until $a_i > 0$ we compute $a_{i+1} = (a_{i-1}) \mod a_i$, $q_i := (a_{i-1}) \dim a_i$ and then values $(u_{i+1}, v_{i+1}) = (u_{i-1}, v_{i-1}) - q_i(u_i, v_i)$ and i = i+1. The output is $a_{i-1} = \gcd(a_0, a_1)$ and the Bézout coefficients u_{i-1}, v_{i-1} satisfying $\gcd(a_0, a_1) = u_{i-1}a_0 + v_{i-1}a_1$.

1.1. Using the Euclid's algorithm

- (a) find gcd(37, 10) and the corresponding Bézout coefficients,
- (b) calculate 10^{-1} in the field \mathbb{Z}_{37} .

1.2. Using the Euclid's algorithm

- (a) compute gcd(1023, 96) and the corresponding Bézout coefficients,
- (b) find lcm(1023, 96) and its prime decomposition,
- (c) find some integer solution to the equation 1023x + 96y = 18.

1.3. Find gcd(89, 55) and the corresponding Bezout coefficients. Explain how the fact that these are two consecutive terms in the Fibonacci sequence affect the

1.4. Find inverse lements 27^{-1} , 2^{-1} , 8^{-1} in the field \mathbb{Z}_{41} .

1.5. Calculate the greatest common divisor and the corresponding Bézout coefficients

(a)
$$gcd(2^{92}-1,2^{31}-1)$$
,

(b) gcd(2k+1, 3k+1) for arbitrary $k \in \mathbb{N}$.

1.6. Find all the integer solutions or prove that there aren't any of the equations

(a)
$$3x + 4y = 1$$
,

- (b) 3x + 4y = 5,
- (c) 18x + 24y = 6,
- (d) 18x + 24y = 5,

(e)
$$18x + 24y = 12$$
.

We say that a is congruent to b modulo m, denoted by $a \equiv b \pmod{m}$ if $m \mid (a - b)$. We will prove soon that for any $a, b \in \mathbb{Z}, b \neq 0$ there exist unique $k, r \in \mathbb{Z}$, such that

$$a = bk + r \qquad \land \qquad 0 \le r < |b|$$

1.7. Let m be a natural number

- (a) Prove that the congruence modulo m is an equivalence relation.
- (b) Prove that $a \equiv b$ if and only if a and b have the same remainder after dividing by m.
- (c) Count the number of equivalence classes with respect to m.