
ALGEBRA 1 FOR COMPUTER SCIENTISTS

MICHAEL KOMPATSCHER

kompatscher@karlin.mff.cuni.cz

These are the lecture notes to Algebra 1, given in Winter Term 2021/22. They
will be updated regularly and follow closely David Stanovský’s script Základy Al-
gebry pro informatiky, which is available (in Czech) on his website https://www2.
karlin.mff.cuni.cz/~stanovsk/vyuka/2021/alginf.htm.

The goals of this lecture are to

• introduce you to important algebraic structures (rings, fields, groups,...),
their properties, and “abstract algebraic reasoning” in general

• show you that algebra (and number theory) are useful in CS:
– for the efficient representation of data, e.g. using finite fields (error-

correcting codes, secret sharing, cryptoanalysis), or modular arith-
metic (Chinese remainder theorem),

– as a source of difficult computational problems (discrete logarithms in
cyclic groups, extracting roots modulo n, RSA),

• show how groups can be used to describe the symmetries of objects,
• discuss concrete applications: in cryptography (RSA, discrete logarithms
and Diffie-Hellman, secret sharing), and error-correcting codes (Reed-Salomon).

Date: November 12, 2024.

1

https://www2.karlin.mff.cuni.cz/~stanovsk/vyuka/2021/alginf.htm
https://www2.karlin.mff.cuni.cz/~stanovsk/vyuka/2021/alginf.htm

2

Contents

I. Number theory 4
1. Prime factorization and the greatest common divisor 5
1.1. Divisibility and the fundamental theorem of arithmetic 5
1.2. Euclid’s algorithm and Bézout’s identity 6
2. Modular arithmetic 8
2.1. Congruences 8
2.2. Euler’s theorem and the cryptosystem RSA 10
2.3. The Chinese remainder theorem 13

II. Polynomials 16
3. Fields, rings and integral domains 17
3.1. Definitions and examples 17
3.2. Basic properties 20
3.3. Quotient fields 21
4. Polynomials 22
4.1. Polynomial rings 22
4.2. Polynomial maps 24
4.3. Division of polynomials with remainder 24
4.4. Roots and divisibilty 25
5. Basic notions of divisibility 26
5.1. Divisors and associates 26
5.2. Greatest common divisor 27
5.3. Irreducible polynomials and decompositions 28
5.4. Divisibility in unique factorization domains 30
6. Divisibility in polynomial rings 31
6.1. Polynomials in one variable over a field 31
6.2. Polynomials over a ring vs. polynomials over a quotient field 32
6.3. Rational roots and Eisenstein’s criterion for irreducibility 34
7. Abstract divisibility theory 35
7.1. Generalization of the fundamental theorem of arithmetic 35
7.2. Euclid’s algorithm and Bézout coefficients 37
8. Computations modulo polynomials 40
8.1. The Chinese remainder theorem and interpolation 40
8.2. Quotient rings modulo polynomials 42
9. Finite fields and some applications 45
9.1. Finite fields and data representation 45
9.2. Secret sharing 47
9.3. Error-correcting codes 48
9.4. Mutually orthogonal latin squares and experimental design 50

III. Groups 54
10. Groups 55
10.1. Definition and examples 55
10.2. Powers and the order of a group element 58
11. Subgroups 60
11.1. Generators 60
11.2. Langrange’s theorem 62

3

12. Group actions 65
12.1. Counting orbits with Burnside’s lemma 67
13. Cyclic groups 70
13.1. Subgroups, generators, elementary properties 70
13.2. The multiplication group of finite fields are cyclic 72
13.3. Discrete logarithms and cryptography 73

4

Number theory

5

1. Prime factorization and the greatest common divisor

In this first chapter, we give an introduction to basic number theory. We are go-
ing to discuss some fundamental notions and results, including: divisibility, primes
and prime factorisation, the Euclidean algorithm, congruences, Euler’s theorem,
and the Chinese remainder theorem. We will generalize some of these concepts in
later sections (e.g. to polynomial rings), but it is still important to start with this
special case.

Many of the results in this chapter have been known in one or another form since
ancient times. However, they were first presented in a modern and rigorous way
by Carl Friedrich Gauss in his famous book Disquisitiones Arithmeticae of 1801,
which laid the foundation of modern number theory.

The mathematical object that we are going to study are the natural numbers
N = {1, 2, 3, . . .} and the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} together with the
arithmetic operations +,−, · (addition, subtraction and multiplication). Note that
we exclude 0 from the natural numbers, although some other authors might include
it. For short, “number” in this chapter, always refers to an integer.

There are several different ways to formally define the integers: they can be
constructed within set theory, or be introduced axiomatically (usually by Peano
axioms, which are based on the principle of mathematical induction). None of these
definitions are addressed here - for our purposes it is enough to have a basic/intuitive
understanding of N and Z from secondary school.

1.1. Divisibility and the fundamental theorem of arithmetic. Let a, b be
integers. We say b divides a, and write b | a, if there exists an integer q, such that
a = b · q. In this case b is also called a divisor or factor of a. If b does not divide
a, it makes sense to ask for its remainder after the division:

Proposition 1.1 (Division with remainder). Let a, b ∈ Z, and b ̸= 0. Then there
exist unique numbers q, r ∈ Z, such that

a = q · b+ r and 0 ≤ r < |b|.(1)

We call q = adiv b the (integer) quotient and r = a mod b the remainder. Note
that b | a if and only if a mod b = 0.

Proof. We are only going to discuss the case a, b > 0, other cases can be handled
similarly. Let q be the largest number, such that q ·b ≤ a, and let r = a−q ·b. Note
that 0 ≤ r < b (otherwise q would not be maximal). Therefore we found values q, r
such (1) holds.

In order to prove that q and r are unique, let q1, q2 and r1, r2 be such that
a = q1 · b+ r1 = q2 · b+ r2, and 0 ≤ r1, r2 < b. Then b(q1 − q2) = r2 − r1, and thus
b | r2 − r1; together with 0 ≤ |r2 − r1| < |b| this implies r2 − r1 = 0. It follows that
r1 = r2, and as a consequence q1b = q2b ⇒ q1 = q2. □

Note that the numbers 1 and −1 are special, in the sense that they divide all
other integers. Also ±a | a holds for every a ∈ Z. We therefore call 1,−1, a,−a
the trivial divisors of a. Any natural number p > 1 that only has trivial divisors is
called a prime number. All natural numbers that have non-trivial divisors are called
compound numbers. A fundamental fact in number theory is that every number
can be unambiguously be expressed as a product of prime numbers:

6

Theorem 1.2 (Fundamental theorem of arithmetic). For every natural number a >
1 there are pairwise different primes p1, p2, . . . , pn and natural numbers k1, k2, . . . , kn
such that

a = pk1
1 · pk2

2 · · · pkn
n .

This product is called the prime factorization or prime decomposition of a. It is
unique, up to reordering the primes.

The first recorded proof of this seemingly self-evident fact is by Euclid in the
4th century BC, and today every high school student knows it (or should know
it). However, let’s admit, who of you know how to prove it? The existence of
factorization can be proved relatively easily by induction:

Proof of Theorem 1.2 (existence of prime factorization). For contradiction, assume
that there are numbers that do not have a prime factorization; let a be the smallest
such number. Note that a cannot be a prime itself, since then a = a1 would be a
prime factorization. Hence there exist two numbers b, c, such that 1 < b, c < a and
a = b · c. By the induction hypothesis, both b and c have prime factorizations. By
taking the product of these prime factorizations, we obtain a prime factorization
for a - contradiction! □

However we did not prove the uniqueness of the prime factorization, claimed by
Theorem 1.2. We are going to prove it in the next section, using Bézout’s identity.

A simple fact of the existence of prime decompositions is that there are infin-
itely many primes. If there are only finitely many, then let us number them by
p1, p2, . . . , pn. By what we have seen, the number p1 · p2 · · · pn + 1 must have a
prime factorization (How can we use this to obtain a contradiction? Discuss!).

1.2. Euclid’s algorithm and Bézout’s identity. The greatest common divisor
of two natural numbers a, b is the largest number c, such that c | a and c | b. For
short, we write c = gcd(a, b). Two numbers a, b are called coprime, if gcd(a, b) = 1.

Similarly, the least common multiple of two numbers is the smallest number c,
such that a | c and b | c. We denote it by c = lcm(a, b). Using the fundamental
theorem of arithmetic, it is easy to see that

a · b = gcd(a, b) · lcm(a, b),

(we leave the proof as an exercise). Furthermore gcd(±a,±b) = gcd(a, b), therefore
we will only deal with non-negative numbers in the following.

A possible way of calculating gcd(a, b) is by the means of prime factorizations.
If we take for instance 168 = 23 · 3 · 7 and 396 = 22 · 32 · 11, then we see that
gcd(168, 396) = 22 · 3 = 12, by taking the product of all prime factors that a and b
have in common.

However this method has two main problems: Firstly, it requires that we al-
ready know the prime decompositions of both a and b. However, computing prime
decompositions can be a hard task (for big numbers a, b) - in fact no reasonably
efficient algorithm is known up to date.

Secondly, our method to compute gcd(a, b) is based on the assumption that
every number has a unique prime factorization. If, in our example, the number 396
would have an alternative prime decomposition to 23 · 3 · 7, we would get another

7

result. Therefore we are not able to prove the correctness of this method, without
completing the proof of the basic theorem of arithmetic. 1

A better method to calculate gcd(a, b) is Euclid’s algorithm. It is based on
the following observation, which is independent of the fundamental theorem of
arithmetic:

Lemma 1.3. For two any two integers a, b ∈ Z it holds that

gcd(a, b) = gcd(b, a mod b).

Proof. Let q = adiv b. Then

a = q · b+ (a mod b).

This equation implies that any number c that divides b and (a mod b) also divides
a. On the other hand, c | a and c | b implies that c | (a − q · b), which is equal
to (a mod b). Thus c is a common divisor of a and b if and only if it is a common
divisor of b and (a mod b). It follows that gcd(a, b) = gcd(b, a mod b). □

Now, for two numbers a ≥ b ≥ 1, Euclid’s algorithm computes a sequence, of
numbers, by exchanging the pair a, b, by b, a mod b, and iterating this step. More
precisely, we define this sequence a0, a1, a2, . . . by the induction a0 = a, a1 = b, and

ai+1 = ai−1 mod ai.

When the sequence reaches an+1 = 0, the algorithm outputs the previous value an
as gcd(a, b).

In our example gcd(168, 396), Euclid’s algortihm computes the sequence 396,
168, 60, 48, 12,0, and thus gcd(168, 396) = 12.

Note that the algorithm always terminates, since 0 ≤ ai+1 < ai, for every i > 2.
It is further easy to see that the algorithm is correct, since, by Lemma 1.3:

gcd(a, b) = gcd(a0, a1) = gcd(a1, a2) = · · · = gcd(ak, 0) = ak.

The following theorem can be shown by studying Euclid’s algorithm in more
detail:

Proposition 1.4 (Bézout’s identity). For each pair of integers a, b ∈ Z, there
exists integers u, v ∈ Z (so called Bézout coefficients), such that

gcd(a, b) = u · a+ v · b

Proof. Let a0, a1, a2, . . . , an be the sequence of numbers computed by the Euclidean
algorithm. We claim that, for every index i, there are coefficients ui, vi such that
ai = u1 · a + vi · b. For the initial values this is clear, for (u0, v0) = (1, 0) and
(u1, v1) = (0, 1). For an induction step i → i+ 1, note that ai+1 = ai−1 mod ai =
ai−1 − qiai, for qi = ai−1 div ai, and therefore

(ui+1, vi+1) = (ui−1, vi−1)− qi · (ui, vi).

We have shown above, that gcd(a, b) = an−1, and thus u = un−1, v = vn−1 are
Bézout coefficients for a, b. □

1Note that in other “number systems”, prime factorizations is indeed not unique. For instance,

in the ring Z[
√
5], the element 4 has the two different prime factorizations 4 = 2 · 2 = (1 +√

5)(−1+
√
5). Using our method, we would deduce gcd(4, 2) = 2 from the first factorization, but

gcd(4, 2) = 1 from the second. We are going to discuss rings like Z[
√
5] later, in Section 5.

8

Example. For gcd(168, 396) we get

ai ui vi
396 1 0
168 0 1
60 1 −2
48 −2 5
12 3 −7
0

Hence gcd(168, 396) = 3 · 396− 7 · 168.

Using Bézout coefficients, we can prove the following auxiliary statement:

Lemma 1.5. Let p be a prime, and a, b ∈ Z such that p | ab. Then p | a or p | b
holds.

Proof. Suppose that p ∤ a. Then gcd(p, a) = 1, and by Proposition 1.4, there are
integers u, v, such that au + pv = 1. Multiplying this identity with b, we obtain
abu + pbv = b. Note that p | abu (by assumption), and p | pbv. It follows that
p | abu + pbv = b, which is what wanted to prove. Symmetrically, p | ab and p ∤ b
implies p | a. Thus if p | ab, either p | a or p | b must hold. □

By induction, we can easily deduce the following consequence of Lemma 1.5:

Lemma 1.6. Let p be a prime, and a1, a2, . . . , an ∈ Z. If p | a1a2 · · · an then p | ai
holds for at least one index i ∈ {1, 2, . . . , n}.

We can now finish the proof of the fundamental theorem of arithmetic:

Proof of Theorem 1.2 (uniqueness of prime factorization). For contradiction, let us
assume that there is a natural number that does not have a unique prime factor-
ization; let a be the smallest such number. Note that a cannot be a prime itself.
Let

a = pk1
1 · pk2

2 · · · pkm
m = ql11 · ql22 · · · qlnn

be two prime factorizations of a (which are not equal, up to reordering the primes).
Since p1 | a, by Lemma 1.6, there is a prime qi in the right factorization, such
that p1 | qi. Since qi is a prime, it follows that p1 = qi. Therefore, if we define
b = adiv p1, we get:

b = pk1−1
1 · pk2

2 · · · pkm
m = ql11 · ql22 · · · qli−1

i · · · qlnn ,

which are two different prime factorizations of b. But b < a, contradicting the
minimality of a. □

2. Modular arithmetic

2.1. Congruences. The symbol ≡ for congruences, was introduced by Gauss in
his Disquisitiones Arithmeticae, and makes it easier to write down computations
modulo a given number m:

Definition. Let a, b,m be integers, and m ̸= 0. We then say that a is congruent
to b modulo m, and write

a ≡ b (mod m),

if m | a− b.

9

Note first, that a ≡ b (mod m), if and only if a and b have the same remainder,
after dividing with m: to see this, let a = q1 · m + r1 and b = q2 · m + r2 with
0 ≤ r1, r2 < m. Then a − b = (q1 − q2)m + (r2 − r1). Because of this m | a − b
is equivalent to m | r2 − r1. But since |r2 − r1| < m, this is in turn equivalent to
r2 − r1 = 0.

From this observation it directly follows “begin congruent modulo some fixed
integer m” is an equivalence relation, i.e. it satisfies:

• a ≡ a (mod m) (reflexivity),
• If a ≡ b (mod m) then b ≡ a (mod m) (symmetry),
• If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m) (transitivity).

The other important property of a congruence, is that it is invariant under the
arithmetic operations:

Proposition 2.1 (Properties of congruences). If a ≡ b (mod m) and c ≡ d
(mod m), then

a+ c ≡ b+ d (mod m), a− c ≡ b− d (mod m), a · c ≡ b · d (mod m),

and for every natural number k ∈ N:
ak ≡ bk (mod m).

Proof. Exercise. □

The above properties allow us to use ≡ in a similar way to the equality sign
=: Reflexivity means that a = b implies a ≡ b (mod m). By the symmetry of
≡, it does not matter if we read congruences from left to right or right to left;
the transitivity implies, that a chain of congruences a1 ≡ a2 (mod m), a2 ≡ a3
(mod m), . . . , an−1 ≡ an (mod m) implies a1 ≡ an (mod m). Proposition 2.1 al-
lows us to replace any number in a computation by a congruent number.

Let us demonstrate this with a simple example:

Exercise. Compute (77123 + 66321) mod 6.

Solution. Note that 77 ≡ 5 ≡ −1 (mod 6) and 66 ≡ 0 (mod 6). Hence

77123 + 66321 ≡ (−1)123 + 0321 = −1 + 0 ≡ 5 (mod 6).

Thus (77123 + 66321) mod 6 = 5. □

If we want to solve ”equations” involving congruences, there are two very useful
properties: We can reduce cx ≡ cy by the factor c, if c is coprime with the modulus
m. Furthermore, if all 3 numbers involved have a common factor, we can also
divide them (including the modulus!) by it, to obtain an equivalent equation. We
formally state these two properties in the following theorem:

Proposition 2.2 (Properties of congruences). Let a, b, c,m be integers, and m ̸= 0.
Then

(1) a ≡ b (mod m) ⇔ ca ≡ cb (mod cm);
(2) If m and c are coprime, then a ≡ b (mod m) ⇔ ca ≡ cb (mod m).

Proof. Exercise. □

Exercise. Find all x, such that (a) 6x ≡ 9 (mod 21); (b) 10x ≡ 5 (mod 21).

Solution. We solve this exercise by using Proposition 2.2:

10

(a) Note that by (1), 6x ≡ 9 (mod 21) is equivalent to 2x ≡ 3 (mod 7). By (2)
we can multiply both sides with 4, which gives us the equivalent equation
x ≡ 5 (mod 7). Therefore, the solution are all x that are of the form
x = 5 + 7k, k ∈ Z.

(b) By (2), this identity is equivalent to 2x ≡ 1 (mod 21). Since 11 is coprime
to 21, we get (again by (2)) the equivalent equation x ≡ 11 (mod 21). Thus
all x = 11 + 21k, k ∈ Z are solutions.

□

2.2. Euler’s theorem and the cryptosystem RSA. We are next going to prove
Euler’s theorem. As motivation, let us look at another exercise, that looks similar
to the previous ones:

Exercise. Compute the last digit of 77123 (in base 10).

Solution. The last digit of 77123 is equal to 77123 mod 10. We can rewrite 77123 ≡
7123 ≡ (−3)123 (mod 10); but now (without a good strategy) we have to either
compute the powers of either 7 or (−3) modulo 10. We do it for 7:

71 = 7, 72 = 49 ≡ 9, 73 ≡ 7 · 9 ≡ 3, 74 ≡ 7 · 3 ≡ 1, 75 ≡ 1 · 7 ≡ 7, . . .

So the sequence 7, 9, 3, 1 is just repeating itself (with period 4). Since 123 mod 4 =
3, we obtain 7123 ≡ 73 ≡ 3 (mod 10). □

The periodic behaviour of the sequence in the above example is not an accident,
but a consequence of Euler’s theorem. The length of the period is given by Euler’s
function φ, which is defined as follows:

Definition. Euler’s totient function φ(n), is the function that assigns to every
natural number n the number of integers k ∈ {1, 2, . . . , n−1}, such that gcd(k, n) =
1.

For example φ(10) = 4, since there are are 4 numbers that are coprime to 10,
namely 1, 3, 7, 9. For any prime p, it is not hard to see that φ(p) = p− 1.

However, calculating φ(n) directly from its definition is not very efficient for big
numbers n. Fortunately, there is a formula that makes it easier, if we already know
the prime factorization:

Proposition 2.3. Let n = pk1
1 · · · pkm

m be a prime factorization for a natural number
n > 1. Then

φ(n) = pk1−1
1 (p1 − 1) · · · pkm−1

m (pm − 1).

Exercise. Compute φ(4056)

Solution. φ(4056) = φ(23 · 31 · 132) = 2 · 1 · 30 · 2 · 131 · 12 = 1248. □

The formula in Proposition 2.3 is quite easy to prove knowing the Chinese Re-
mainder Theorem, which we will encounter in the next section.

We now are able to state Euler’s theorem:

Theorem 2.4 (Euler’s theorem). Let a,m be coprime, natural numbers. Then

aφ(m) ≡ 1 (mod m).

11

Leonhard Euler published this theorem in 1763. Already earlier, in 1736, he
proved it for the special case, in which m is a prime number. This special case is
sometimes also attribute to Pierre de Fermat, who already stated it 1640 in one of
his letters (without giving a proof):

Corollary 2.5 (Fermat’s little theorem). Let p be a prime number, and p ∤ a. Then

ap−1 ≡ 1 (mod p).

For the rest of this section, we are going to prove Euler’s theorem. For this, let
Φm = {k ∈ {1, . . . ,m− 1} : gcd(k,m) = 1}. Euler’s totient function then clearly is
given by φ(m) = |Φm|.

Lemma 2.6. Let f : X → Y be a map between two finite sets X,Y of the same
size. If f is injective, then f is also bijective.

‘Proof’: Let n = |X| = |Y |. Then, since f is injective, it always assigns pairwise
different elements of X to pairwise different elements. Thus, the image of X under
f must contain n pairwise different elements, and is therefore equal to all of Y . So
f is bijective. □

Although Lemma 2.6 might seem pretty obvious to you, you may try to think
for a moment, why the same is not true for infinite sets (or look up Hilbert’s Hotel).
We use Lemma 2.6 in the proof of the following lemma:

Lemma 2.7. Let a,m ∈ N be coprime natural numbers. and let fa be the map

fa : Φm → Φm,

x 7→ ax mod m.

Then fa is well-defined and a bijective map.

Proof. We first show, that if x ∈ Φm, then also fa(x) ∈ Φm. For this note that
if x and a are coprime with m, then also ax is coprime with m: If this was not
the case, there would be a prime p dividing both m and ax. By Lemma 1.5, then
p | ax implies that either p | a or p | x. But then either x or a would have the
common divisor p with m, which is a contradiction. Lemma 1.3 now implies that
1 = gcd(m, ax) = gcd(m, ax mod m), hence fa(x) = ax mod m ∈ Φm.

Next, we show that fa is bijective. By Lemma 2.6, it is enough to prove that it
is injective. So assume that ax mod m = ay mod m for x, y ∈ Φm. By Proposition
2.2 (2) this is equivalent to x mod m = y mod m. Since x and y are from the
set {1, 2, . . . ,m − 1}, they must be equal. Thus fa is injective, which finishes the
proof. □

We are now ready to prove Euler’s theorem:

Proof of Theorem 2.4. By Lemma 2.7, the map fa : Φm → Φm is a bijection. This
implies that ∏

b∈Φm

b =
∏

b∈Φm

fa(b) ≡
∏

b∈Φm

ab = aφ(m)
∏

b∈Φm

b (mod m).

If we set

c =
∏

b∈Φm

b

12

this means that c ≡ aφ(m) · c (mod m). Since c is the product of numbers that
are coprime to m, also c must be coprime to m (this follows from Lemma 1.6; see
also the proof of Lemma 2.7). By Proposition 2.2 (1) c ≡ aφ(m) · c (mod m) is
equivalent to 1 ≡ aφ(m) · 1 = aφ(m) (mod m), which finished the proof of Euler’s
theorem. □

We remark that we will derive another proof of Euler’s theorem later in Section
11.2, as the special case of Lagrange’s theorem for Z∗

m.
We are now ready to give a way more efficient solution to our previous exercise:

Exercise. Compute the last digit of 77123.

Solution. By Proposition 2.3 we know that φ(10) = 4. Since further gcd(77, 10) =
gcd(7, 10) = 1, we can apply Euler’s theorem and get:

77123 ≡ 7123 = 74·30+3 = (74)30 · 73 ≡ 130 · 3 = 3 (mod 10).

(We extended all the single solution steps in this example for clarity, in practice it
can be however more convenient for you to abbreviate 7123 ≡ 73 ≡ 3 (mod 10).) □

Exercise. Compute 1010
10

mod 21

Solution. Using Proposition 2.3 we compute φ(21) = 12. Since gcd(21, 10) = 1, so
we can apply Euler’s theorem to obtain:

1010
10

≡ 10(10
10 mod 12) (mod 21).

To compute the exponent 1010 mod 12 note first that gcd(1010, 12) = gcd(210 ·
510, 12) = 4, so we cannot apply Euler’s theorem straight away. But, by Proposition
2.2 (2), 4k ≡ 210 ·510 mod 12 is equivalent to to k ≡ 28 ·510 ≡ 1 (mod 3). Therefore
(1010 mod 12) ≡ (4 mod 12). This implies that

1010
10

≡ 10(10
10 mod 12) = 104 ≡ 4 (mod 21).

Thus 1010
10

mod 21 = 4. □

Observation 2.8. Lemma 2.7 implies, that for every pair of coprime numbers
a,m, there is a unique b ∈ {1, 2, . . . ,m− 1} such that

a · b ≡ 1 (mod m).

This b can be found in two different ways:

• as b ≡ aφ(m)−1 mod m, by Euler’s theorem;
• using the Euclidean algorithm: we calculate the Bézout coefficients (u, v)
for 1 = gcd(a,m), so 1 = ua+ vm. Then b = u mod m.

We will see later, why knowing/computing such b for given a is useful. In the
language of Section 5, we just described how to determine the multiplicative inverse
of a in the ring Zm.

Number theory has numerous applications in computer science, especially in
cryptography. An example of this is the RSA cryptosystem (named after the three
mathematicians Rivest, Shamir, Adleman), that is used for so called public-key
encryption.

In public-key encryption, the problem is as follows: Bob receives many messages
from many different clients that he would like to encrypt. It is impractical to

13

exchange a secret password with every single one of them. Therefore Bob publishes
a so-called public key with which everyone can generate encrypted messages. Bob
secretly keeps a private key, with which only he can decrypt messages. We are going
to describe how to generates the keys, and how to encrypt and decrypt a message
in the RSA system:

At the beginning, Bob chooses two different primes p, q and computes their
product N = pq. Then he randomly selects a number e, which is coprime with
φ(N) = (p − 1)(q − 1). Using Euclid’s algorithm, he computes a number d, such
that

de ≡ 1 (mod φ(N))

(as in Observation 2.8). The numbers e and N are the public key, which Bob shares
with everybody. The numbers d, p, q are the private key, which Bob keeps secret.

We next describe, how a client (Alice) can send a secret message to Bob. For
simplicity, we assume that the message is a natural number x with 0 < x < N .
Using the public key Alice computes the value

y = xe mod N,

and sends the result y to Bob. Bob, with the knowledge of the private key d can
then encode the original message by computing

x = yd mod N.

This works, since de ≡ 1 (mod φ(N)), and therefore, by Euler’s theorem:

yd ≡ (xe)d = xed ≡ x1 (mod N).

If attackers intercept the message that Alice sent, they only know the encrypted
message y and the public key N , e. In order to compute the original message x
they would need to know some kind of procedure to compute x from xe mod N (so
a method to compute the “e-th root modulo N”). The obvious solution would be
to compute the prime factorization N = pq of N , use it to compute d, and then
proceed as Bob. However, up to date, there is no efficient way is know how to
compute the prime factorization of a number (subject to certain assumptions, e.g.
that the number has not too many small prime divisors, and the prime divisors are
all about the same size). Thus, if p, q are picked big enough (at the state of the art,
it is enough to choose primes with around 1000 digits), this attack will not succeed.
Also (up to date) there is no other known algorithm to efficiently compute roots
modulo N .

2.3. The Chinese remainder theorem. We finish the chapter on number theory
with the Chinese remainder theorem. As the name suggests, this theorem was
already known to the ancient Chinese - it is mentioned for instance in the book
The Art of War by Sun Tzu from the 5th century BC.
It is said Sun Tzu used it to keep track of his soldiers: He knew he had 1,000 soldiers
before a battle, and he wanted to count them after it. It is easy to make mistakes
when counting big groups of people. So instead of counting them all at once, he let
them first form groups of ten, then groups of eleven, and then groups of thirteen;
each time he only counted how many soldiers were left after the “grouping up”. In
others words, he counted how many soldiers there were modulo 10, modulo 11 and
modulo 13. By the Chinese remainder theorem, the total number of soldiers can
then be determined from these remainders alone:

14

Theorem 2.9 (The Chinese remainder theorem). Let m1,m2, . . . ,mn be mutually
coprime numbers, and let M = m1 · m2 · · ·mn. Let u1, u2, . . . , un be arbitrary
integers. Then there exists a unique x ∈ {0, 1, . . . ,M − 1}, such that

x ≡ u1 (mod m1), x ≡ u2 (mod m2), . . . , x ≡ un (mod mn).

Proof. We first prove the uniqueness of the solution x. For this, assume that there
are two solutions x, y ∈ {0, 1, . . . ,M −1}, such that x ≡ y ≡ ui (mod mi) for every
i. Then, for every i:

mi | x− y,

and since allmi are coprime we obtainM = m1·m2 · · ·mn | x−y. Since |x−y| < M ,
this implies that x− y = 0, so the two solutions are equal.

Next we prove that there is a solution x. For this, let f be the function be
defined by

f : {0, . . . ,M − 1} → {0, 1, . . . ,m1 − 1} × {0, 1, . . . ,m2 − 1} × · · · × {0, 1, . . . ,mn − 1}
x 7→ (x mod m1, x mod m2, . . . , x mod mn)

By the ‘uniqueness’ part of our proof, this map is injective. On the other hand,
note that the domain {0, 1, . . . ,M − 1} and the codomain {0, 1, . . . ,m1 − 1} ×
{0, 1, . . . ,m2 − 1}× · · · × {0, 1, . . . ,mn − 1} of f have the same size, namely M . So
by Lemma 2.6 f must be a bijection. In other words, every n-tuple (u1, u2, . . . , un)
is in the image of exactly one x under f - this x is the unique solution to the system
of equations. □

The proof of Theorem 2.9 is not constructive, in the sense that it only shows
that there is a unique solution to every such system of equations, but it does not
tell us, how to find it. We are going to describe a procedure by just giving the
following example:

Exercise. Find a solution x to the following system of equations:

x ≡ 2 (mod 3), x ≡ 1 (mod 4), x ≡ 3 (mod 5).

Proof. From the first equation we can infer that x = 2 + 3k for some k ∈ Z. If we
substitute this in the second equation, we get (2 + 3k) ≡ 1 (mod 4), and therefore
k ≡ 1 (mod 4). So k = 1+4l for some l ∈ Z. Re-substituting, gives us x = 5+12l,
l ∈ Z. Plugging this into the third equation then implies 12l+5 ≡ 3 (mod 5), which
simplifies to l ≡ 4 (mod 5); thus l = 4+5m and as a consequence x = 53+60m for
m ∈ Z. Note that x = 53 is the only solution that satisfies x ∈ {0, 1, . . . , 59}. □

The Chinese remainder theorem applies in a more general sense also to polynomi-
als - we will discuss this later in Section 8.1. Both for numbers and for polynomials,
the Chinese remainder theorem has important applications in computer algebra: It
allows to reduce a problem about a large object (a big number, or a polynomial of
high degree) to several problems over with smaller objects (as for instance in the
example of counting soldiers at the beginning of this section). This can be very ad-
vantageous, not only in parallel computing, but also when working with algorithms
that exploit modular arithmetics. We refer the interested among you, e.g. to the
Computer Algebra lecture.

Finally, using the Chinese theorem on residues, we can prove the formula to
compute Euler’s function in Proposition 2.3:

15

φ(pk1
1 · · · pkm

m) = pk1−1
1 (p1 − 1) · · · pkm−1

m (pm − 1).

Proof of Proposition 2.3. Note that it is enough to prove the following two rules
for φ:

(1) φ(pk) = pk−1(p− 1), for every prime p and k ∈ N
(2) φ(a · b) = φ(a) · φ(b), for coprime numbers a, b

It then follows directly from (1) and (2) that

φ(pk1
1 · · · pkm

m)
(2)
= φ(pk1

1) · · ·φ(pkm
m)

(1)
= pk1−1

1 (p1 − 1) · · · pkm−1
m (pm − 1).

To show (1), note that a number is coprime to pk if and only if it is not a
multiple of p. There are pk−1-many multiples of p in the set {0, 1, . . . , pk − 1}.
Thus φ(pk) = pk − pk−1 = pk−1(p− 1).

For (2) let us look at the map

f : {0, 1, 2, . . . , ab− 1} → {0, 1, 2, . . . , a− 1} × {0, 1, 2, . . . , b− 1}
x 7→ (x mod a, x mod b)

By the Chinese remainder theorem, f is a bijective map. Now let us consider
the restriction of f to the set Φab. We are going to show that the image of this
restriction is equal to Φa × Φb. This would then prove (2), since then φ(ab) =
|Φab| = |Φa × Φb| = |Φa| · |Φb| = φ(a) · φ(b).

To prove it, let x ∈ Φab, so gcd(x, ab) = 1. This is equivalent to the statement
that every prime divisor of ab does not divide x. By Lemma 1.5, this is equivalent
to gcd(x, a) = 1 and gcd(x, b) = 1. Therefore f maps Φab bijectively to Φa × Φb,
so φ(ab) = φ(a) · φ(b). □

16

Polynomials

17

3. Fields, rings and integral domains

3.1. Definitions and examples. In this chapter we are going to discuss, how
some of the results on divisibility that we showed for integers (Z,+,−, ·, 0) can be
generalized to other algebraic structures. But first we need to clarify: to which
structures?

First and foremost, it makes sense to only consider rings, which are algebras that
have an addition and multiplication operation (in a meaningful way). Besides the
rings Z,Q,R,C, you very likely already encountered the rings of real polynomials
R[x] and integer polynomials Z[x]. We are further going to look at other examples,
such as the ring of Gaussian integers (which consists of the complex numbers with
integer coefficients) and other extensions of Z.

Integral domains are those rings, for which it makes sense to also discuss divisi-
bility. All of the above examples are integral domains, however, they don’t all share
the properties of the integers. For example, elements can be uniquely decomposed
into “primes” in Z[x] and the Gaussian integers. However this is not true for some

other extensions of Z (such as Z[
√
5]). For real valued polynomials in one vari-

able it makes sense to define the greatest common divisor, and to compute it using
Euclid’s algorithm. However this fails for polynomials in more than one variable.
Thus, there is a lot to explore.

We start by giving a formal definition of ring:

Definition. A ring R = (R,+,−, ·, 0) consists of a non-empty set R, together with
binary operations +: R×R → R and · : R×R → R, a unary operation − : R → R,
and a constant 0 ∈ R, such that for all a, b, c ∈ R:

(Associativity of +) a+ (b+ c) = (a+ b) + c

(Commutativity of +) a+ b = b+ a

(additive identity) a+ 0 = a

(additive inverse) a+ (−a) = 0

(Associativity of ·) a · (b · c) = (a · b) · c
(Distributivity of ·) a · (b+ c) = (a · b) + (a · c),

(a+ b) · c = (a · b) + (b · c)

A ring R is called a commutative ring, if additionally the identity a · b = b · a holds
for all a, b ∈ R. Further R is called a ring with unity, if it has an element 1 ∈ R,
such that 1 · a = a · 1 = a for all a ∈ R.

We formally distinguish between the set R, which is called the carrier set of
the ring, and the ring R = (R,+,−, ·, 0) itself, which also contains the information
about the algebraic operations +,−, ·, 0. When writing down terms over rings
we can reduce parenthesis by using the standard convention that multiplications
precede additions (so, for instance a + b · c = a + (b · c)). We further write a − b
instead of a+ (−b).

Definition. Let R be a commutative ring with unity 1 ̸= 0. Then R is called

• an integral domain, if it satisfies

a, b ̸= 0 ⇒ a · b ̸= 0.

18

• a field if for every a ̸= 0 there is an element b with a · b = 1
We then call b a (multiplicative) inverse of a and write b = a−1.

Example. The sets of numbers Z,Q,R,C together with the standard operations
+,−, · and constants 0, 1 are commutative rings with unity. The integers Z are an
integral domain, but not a field; Q,R,C are all fields. We are later going to see
that there also interesting examples of integral domains that lie between Z and C,
and fields that lie between Q and C.

Example. Another important example are the finite commutative rings of the form

Zn = ({0, 1, . . . , n− 1},+ mod n,− mod n, · mod n, 0),

where n is a natural number. The operations here are all defined modulo n. Note
that then following are equivalent:

(1) Zn is a field,
(2) Zn is an integral domain,
(3) n is a prime.

Proof. Every field is an integral domain (see Theorem 3.3), so (1)⇒(2). For (2)⇒(3)
note that if n is a compound number n = k · l, then k, l ̸= 0, and k · mod n l = 0,
so Zn is not an integral domain. For (3)⇒(1), assume that n is a prime. Then by
Observation 2.8, every element a ̸= 0 has a multiplicative inverse (modulo n), so
Zn is a field. □

Example (Finite fields). In addition to the fields Zp from the last example, we
are going to see that there is a finite field of size q if and only if q is a power of a
prime. These fields are uniquely determined by their size. We are going to discuss
finite fields in Section 9.

Example. For a given commutative ring R, the ring of polynomials R[x] consists
of all formal expressions a0+a1x+ · · ·+anx

n, such that the coefficients come from
R. We are going to give a more formal definition in Section 4.

Example. An example of a non-commutative ring is Mn(F), the ring of n ×
n-matrices over a given field F, with the standard matrix addition and matrix
multiplication. In this lecture we are however only going to work with commutative
rings.

By taking subsets of a ring (or a field) that are closed under the algebraic oper-
ations, we can obtain so called subrings (and subfields):

Definition. For a (commutative) ring R = (R,+,−, ·, 0), let S ⊆ R be a subset
of the carrier set, such that 0 ∈ S, and for every a, b ∈ S also −a ∈ S, a + b ∈ S
and a · b ∈ S (we say that S is closed under the operations of the ring). Then S,
together with the restrictions of +,−, ·, 0 to S also forms a (commutative) ring S.
We call S a subring of R, and write S ≤ R.
A subring S of a field R is a field itself if a ∈ S \ {0} ⇒ a−1 ∈ S. In this case we
call S a subfield of R.

Example. The rational numbers Q are a subfield of the real numbers R, and R is
a subfield of the complex numbers C. The integers Z are a subring of Q (but not
a subfield!).

19

Figure 1. The subring S of R

In algebraic number theory, subrings (and subfields) of C that contain Z (respec-
tively Q) are important objects of study. We give some examples:

Example (Gaussian integers and Gaussian rationals).

• The set Z[i] = {a + ib : a, b ∈ Z} together with the standard arithmetical
operations +,−, · forms the Gaussian integers. The Gaussian integers are
a subring of C. To see this, simply note that Z[i] contains 0 and is closed
under subtraction −(a+ ib) = (−a) + i(−b), addition (a+ ib) + (c+ id) =
(a+c)+ i(b+d) and multiplication (a+ ib) · (c+ id) = (ac−bd)+ i(ad+bc).

• The set Q(i) = {a + ib : a, b ∈ Q} together with the standard arithmetical
operations +,−, · is a subfield of C, the Gaussian rational numbers. Note
that for a+ ib ∈ Q(i)\{0} also (a+ ib)−1 ∈ Q(i), since 1

a+ib = 1
a+ib ·

a−ib
a−ib =

a
a2+b2 + i · b

a2+b2 .

Example (Quadratic extensions). More generally, for every s ∈ Z we can define

• the quadratic integers Z[
√
s] = {a+

√
sb : a, b ∈ Z} ≤ C

• the quadratic field Q[
√
s] = Q(

√
s) = {a+

√
sb : a, b ∈ Q} ≤ C

Figure 2. The Gaussian integers and Eisenstein integers

20

It is not hard to see that both Z[
√
s] and Q(

√
s) are closed under +,−, ·, and

therefore subrings of C; with a little bit of extra work, you can also check thatQ(
√
s)

is closed under multiplicative inverses, and therefore a subfield of C. Depending
on the integer s, the ring Z[

√
s] has different properties (we are for instance later

going to prove that the Gaussian integers Z[i] = Z[
√
−1] have unique “prime”

factorization, but Z[
√
5] does not).

Example (Eisenstein integers). The set Z[ω] = {a + bω : a, b ∈ Z}, where ω =

e
2πi
3 = −1+i

√
3

2 , is a complex third root of 1, is a subring of C, called the Eisenstein
integers. It is easy to see that Z[ω] is closed under + and −. Furthermore, since
ω2 = −1 − ω we have that Z[ω] is closed under multiplication (a + bω)(c + dω) =
ac+ (ad+ bc)ω + bdω2 = (ac− bd) + (ad+ bc− bd)ω.

3.2. Basic properties. In modern mathematics it is standard to define abstract
algebras using the smallest necessary set of axioms. In this section we are going to
derive some simple properties from the axioms of commutative rings, which will be
useful in the rest of the chapter.

Proposition 3.1. Let ∗ be an associative operation on a set X, i.e. x1 ∗(x2 ∗x3) =
(x1 ∗x2)∗x3, for all x1, x2, x3 ∈ X. Then the result of any product x1 ∗x2 ∗ . . .∗xn

does not depend on the position of brackets.

Proof. left as exercise for motivated students. □

Because of Proposition 3.1, we can also write sums a1+a2+. . .+an and products
a1 · a2 · . . . · an in rings without specifying the bracketing.

Proposition 3.2 (Basic properties of commutative rings). Let R be a commutative
ring and a, b, c ∈ R. Then

(1) If a+ c = b+ c, then a = b;
(2) a · 0 = 0
(3) −(−a) = a, −(a+ b) = −a− b
(4) −(a · b) = (−a) · b = a · (−b), (−a) · (−b) = a · b
(5) if R is an integral domain, then a · c = b · c and c ̸= 0 imply a = b.

Proof. (1) If a+c = b+c, then also (a+c)+(−c) = (b+c)+(−c). By the ring
axioms we get (a+ c)+ (−c) = a+(c+(−c)) = a+0 = a, and analogously
(b+ c) + (−c). Hence a = b

(2) From 0 = 0+ 0 it follows that a · 0 = a · (0 + 0) = a · 0 + a · 0. Adding 0 to
the left side gives us 0 + a · 0 = a · 0 + a · 0, which by (1) implies 0 = a · 0.

(3) Since 0 = a + (−a) = −(−a) + (−a), from (1) it follows that a = −(−a).
For the second equation, note that 0 = (a + b) + (−(a + b)), but also 0 =
a+(−a)+b+(−b) = (a+b)+(−a−b), so by (1) we obtain −(a+b) = −a−b.

(4) To show the first identity −(a ·b) = (−a) ·b, note that 0 = 0 ·b = (a+(−a)) ·
b = a·b+(−a)·b. By subtracting a·b on both sides we get −(a·b) = (−a)·b.
All other identities can be proved similarly.

(5) If a · c = b · c, then 0 = a · c − b · c = (a − b) · c. Since R is an integral
domain, either a− b or c must be equal to 0. But, by assumption c ̸= 0, so
a− b = 0, and thus a = b.

□

21

We remark that (5) helps to study divisibility in integral domains, and will allow
us to construct their “quotient fields” in the next section. We finish this section by
proving:

Proposition 3.3. Every field R is an integral domain.

Proof. For contraiction, let us assume that there are a, b ∈ R, a, b ̸= 0 such that
a · b = 0. But then

b = 1 · b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0,

which contradicts to our assumptions. Note that we used Proposition 3.2 (2) in the
last equation. □

3.3. Quotient fields. The ring of integers can naturally be extended to the field
of rational numbers by forming fractions. Similarly, the ring of polynomials R[x]
can be extended to the field of rational functions (formal expressions like x2+1

4x3−7).
This idea can be generalized to any integral domain R, the resulting field is called
the quotient field of R. In later sections we will see how quotient fields help us in
finding greatest common divisors and performing Euclid’s algorithm in polynomial
rings.

Definition. Let R be an integral domain, and M = R \ {0}. Then we define a
relation ∼ on the set R×M by

(a, b) ∼ (c, d) ⇔ ad = bc.

It is not hard to see, that this is an equivalence relation: both the reflexivity
and symmetry of ∼ follow directly from the definition. For the transitivity let
(a, b) ∼ (c, d) ∼ (e, f), so ad = bc and cf = de. This implies adf = bcf =
bde. Since d ̸= 0, we can cancel by d and get af = be (here we used that R is
an integral domain). We then define the fraction a

b to be the equivalence class
[(a, b)]∼ = {(c, d) : (c, d) ∼ (a, b)}. The quotient field Q then consists of the set Q
of all fractions, together with the operations/constants

a

b
+

c

d
=

ad+ bc

ad
, −a

b
=

−a

b
,

a

b
· c
d
=

a · c
b · d

, 0 =
0

1
, 1 =

1

1
.

We are going to prove that Q is a field. But before of that we need to check if
the operations are even well-defined.

Let us discuss this for the example of the addition: First, note that the denomi-
nator ad of the sum ad+bc

ad must be non-zero (otherwise it would not be a fraction).
But this follows from a, d ̸= 0 and the fact that R is an integral domain.

Secondly, we need to prove that the result of the sum a
b +

c
d does not depend on

how we represent both fractions. So let us pick representations a
b = a′

b′ (equivalent

to ab′ = a′b in R) and c
d = c′

d′ (equivalent to cd′ = c′d). We then need to prove

that also a
b + c

d = a′

b′ +
c′

d′ . In other words, we want to show that ad+bc
ad = a′d′+b′c′

a′d′ ,
which by definition, is equivalent to (a′d′)(ad + bc) = (ad)(a′d′ + b′c′). But this
follows straightforwardly from ab′ = a′b and cd′ = c′d. The proofs for · and − are
similar.

Theorem 3.4. Let R be an integral domain, and Q be its quotient field. Then Q
indeed is a field.

Proof. We simply need to check the field axioms:

22

• Associativity of addition: a
b + (cd + e

f) = a
b + cf+de

df = adf+b(cf+de)
bdf =

adf+bcf+bde
bdf = = ad+bc

bd + e
f = (ab + c

d) +
e
f .

• Commutativity of addition: a
b + c

d = ad+bc
bd = cb+da

db = c
d + a

b .

• additive identity: a
b + 0

1 = a·1+b·0
b·1 = a

b .

• additive inverse: a
b + −a

b = ab+(−ab)
b2 = 0

b2 = 0.
• Associativity and Commutativity of ·: follow directly from the Associativity
and Commutativity of · in R

• Unity element: a
a · 1

1 = a·1
a·1 = a

a .

• Distributivity: a
b · (cd + e

f) =
acf+ade

bdf = abcf+abde
b2df = ac

bd + ae
bf .

• 0 = 0
1 ̸= 1 = 1

1 , because 0 · 1 ̸= 1 · 1.
• Note that a

b = 0 = 0
1 is equivalent to a · 1 = b · 0, and therefore to a = 0

• Inverse: For any a
b ̸= 0, we have that a ̸= 0 and therefore a

b · b
a = ab

ba = 1
1 .

Thus b
a is the multiplicative inverse of a

b

□

Example. The rational field Q can be constructed as the quotient field of the
integers Z.

4. Polynomials

4.1. Polynomial rings. Polynomials are the main object of study in commutative
algebra. In this section we will discuss basic properties of polynomials related to
divisibility and roots. We start with the definition of polynomials and polynomial
rings. Throughout this section, let R denote a commutative ring with unity.

Definition. A polynomial f over R in a single variable x, is an expression of the
form

f = a0 + a1x+ a2x
2 + . . .+ anx

n,

such that a0, a1, . . . , an ∈ R and an ̸= 0. We also write f =
∑n

i=0 aix
i for short.

The elements a0, a1, . . . , an are called coefficients of f , and the symbol x the vari-
able. The number n is called the degree of the polynomial, or deg f for short. The
coefficient an is also called the leading coefficient. A polynomial is called monic, if
the leading coefficient is 1.

Except for the above, we also consider the zero-polynomial f = 0 as a polynomial,
and set deg(f) = −1.

We sometimes extend the coefficients of a polynomial f =
∑n

i=0 aix
i to an

infinite sequence by setting ai = 0 for all i > n. Using this convention we define
the following operations:

n∑
i=0

aix
i +

m∑
i=0

bix
i =

max(n,m)∑
i=0

(ai + bi)x
i, −

(
n∑

i=0

aix
i

)
=

n∑
i=0

(−ai)x
i

n∑
i=0

aix
i ·

m∑
i=0

bix
i =

m+n∑
i=0

 ∑
j+k=i

aj · bk

xi

The set of all polynomials over R in variable x, together with the above op-
erations, is usually denoted by R[x]. We are going to prove that this algebraic
structure is again a commutative ring, called a polynomial ring :

23

Theorem 4.1. Let R be a commutative ring with unity. Then

• R[x] is a commutative ring with unity.
• If R is an integral domain, then also R[x] is an integral domain, and
deg(fg) = deg(f) + deg(g), for all polynomials f, g ̸= 0.

Proof. To check that R[x] is a commutative ring, we simply need to check the
axioms: So let f =

∑n
i=0 aix

i, g =
∑m

i=0 bix
i, h =

∑p
i=0 cix

i be arbitrary polyno-
mials.

• The axioms for addition (associativity, commutativity, 0) follow directly
from the axioms for addition on R, and the coefficient-wise definition of
f + g.

• Since the multiplication inR is commutative, we get that the i-th coefficient
of the product polynomial f · g is equal to∑

j+k=i

aj · bk =
∑

j+k=i

bj · ak,

which is the i-th coefficient of g · f . This implies that f · g = g · f .
• The polynomial 1 is the unity element of R[x], since

f · 1 =

(
n∑

i=0

aix
i

)
· (1 + 0 · x1 + 0 · x2 + . . .) =

n∑
i=0

 ∑
j+k=i

ajdk

xi,

such that d0 = 1 and di = 0 else. Thus
∑

j+k=i ajdk = ai for every i, and
the resulting polynomial f · 1 is equal to f .

• Associativity of multiplication: The product f · (g · h) is equal to(
n∑

i=0

aix
i

)
·

((
m∑
i=0

bix
i

)
·

(
p∑

i=0

cix
i

))
=

(
n∑

i=0

aix
i

)
·

(
m+p∑
i=0

(∑
k+l=i

bkcl

)
xi

)

=

n+m+p∑
i=0

 ∑
j+k+l=i

ajbkcl

xi,

which can be shown to be equal to (f · g) · h.
• Checking the distributivity axiom is left as an exercise.

If R is additionally a integral domain, and f, g ̸= 0, this means that both their
leading coefficients an ̸= 0 and bm ̸= 0. Then, the coefficient of xn+m in f · g =∑m+n

i=0 (
∑

j+k=i aj · bk)xi is equal to an · bm, which is not 0, since R is an integral

domain. Thus deg(fg) = deg(f)+deg(g) holds, and R[x] is an integral domain. □

Note further that for arbitrary f, g ∈ R[x] it further holds that deg (f + g) ≤
max(deg f, deg g) (but in general we don’t get equality; for instance −1 = deg(0) =
deg (x+ (−x)) < max(deg x, deg−x) = 1).

Also, if R is not an integral domain, the formula deg(fg) = deg(f) + deg(g)
does not hold in general. For example in Z4[x] we have deg(2x + 1) = 1, but
(2x+ 1) · (2x+ 1) = 1, which has degree 0.

Inductively, we can define polynomials rings in multiple variables by setting
R[x1, x2, . . . , xm] = (R[x1, x2, . . . , xm−1])[xm]. If R is an integral domain, also
R[x1, x2, . . . , xm] is an integral domain, by repeatedly applying Theorem 4.1. Thanks

24

to the distributivity in rings, every polynomial f ∈ R[x1, x2, . . . , xm] can be rewrit-
ten to an expression

f =

n∑
k1,...,km=0

ak1,...,km
xk1
1 xk2

2 · · ·xkm
m .

(Alternatively we could have introduced R[x1, x2, . . . , xm] directly by introducing
polynomials in m variables like this, but then we would need to reprove a version
of Theorem 4.1 for multiple variables).

4.2. Polynomial maps.

Definition. Let R ≤ S be integral domains, and let f be a polynomial

f = a0 + a1x+ . . .+ anx
n ∈ R[x]

and u ∈ S. We define the value of the polynomial f at u by

f(u) = a0 + a1u+ . . .+ anx
n ∈ S,

such that operations (multiplication, addition) are computed in the ring S. The
map that is defined by

S → S, u 7→ f(u)

is called the polynomial map of the polynomial f .

For example, for R = Z and S = C, the polynomial f = x2 + x + 1 ∈ Z[x] and
u = i we get f(i) = i. The polynomial mapping defined by f maps u 7→ u2 + u+ 1
for all u ∈ C.

It is often necessary to distinguish between a polynomial f (as a ‘formal expres-
sion’), and the polynomial map it defines: different polynomials can represent the
same polynomial function! As an example, take the polynomial f = xp ∈ Zp[x]. By
Fermat’s little theorem (Corollary 2.5), f(u) = u for all values u ∈ Zp. Therefore
f = xp and g = x are two different polynomials, that define the same polynomial
map.

(In fact, over every finite ring R, there has to be a polynomial map that is
represented by infinitely many different polynomials R[x]. This holds since there
are infinitely many different polynomials, but only finitely many maps from R to
R.)

4.3. Division of polynomials with remainder. Let f, g ∈ R[x] be two polyno-
mials. Then we say that g divides f , and write g | f if there exists a h ∈ R[x] such
that f = gh. If R is an integral domain, and g | f ̸= 0, then deg(g) ≤ deg(f) by
Theorem 4.1 (2). If g does not divide f , it makes sense to ask for the remainder
after the division:

Proposition 4.2 (Polynomial division with remainder). Let R be an integral do-
main, Q its quotient field, and f, g ∈ R[x], g ̸= 0. Then there exists exactly one
pair of polynomials q, r ∈ Q[x] such that

f = g · q + r and deg r ≤ deg g.

Further, if g is monic, then q, r ∈ R[x].

Thanks to the uniqueness of qand r, we can define the quotient f div g = q
and the remainder f mod g = r. It is easy to see that g | f holds if and only if
f mod g = 0.

25

Proof. We first prove the existence of such q, r by describing an algorithm that
computes them (the polynomial long division you discussed in the exercise class).
For this algorithm we set q0 = 0, r0 = f and then define recursively

qi+1 = qi +
l(ri)

l(g)
· xdeg ri−deg g, ri+1 = ri −

l(ri)

l(g)
· xdeg ri−deg g · g,

where l(h) denotes the leading coefficient of a polynomial h. We end this recursion
in the step n, if deg rn is smaller than deg g. This will certainly happen, since
deg ri+1 < deg ri, for every i. We can easily verify by induction that f = gqi + ri
holds for every i. Therefore the polynomials q = qn, r = rn satisfy the conditions
of the theorem. Note further that, if g is monic, the denominator of every fraction
l(ri)
l(g) is 1, and therefore, all polynomials qi, ri are in R[x].

Next, we prove the uniqueness. For this, assume that there are polynomials
r, q, r′, q′ ∈ Q[x], such that f = gq + r = gq′ + r′ and deg r, deg r′ ≤ deg g. Then
g(q−q′) = r−r′, and therefore g | r−r′. Since deg(r−r′) < deg g, we get r′−r = 0.
So r′ = r. Since Q[x] is an integral domain, and g ̸= 0, it follows that q − q′ = 0,
and therefore q = q′. □

4.4. Roots and divisibilty.

Definition. Let R ≤ S be commutative rings, f ∈ R[x] and a ∈ S. We then say
that a is a root of the polynomial f , if f(a) = 0.

For example i ∈ C is a root of x2 + 1 ∈ Z[x] in C ≥ Z. We show that the
existence of roots is related to the divisors of a given polynomial.

Proposition 4.3. Let R be an integral domain, f ∈ R[x] and a ∈ R. Then a is a
root of the polynomial f if and only if x− a | f .

Proof. (⇐) Assume that x− a | f . Then f = (x− a) · g for a polynomial g ∈ R[x],
and so

f(a) = (a− a) · g(a) = 0 · g(a) = 0,

which shows that a is a root of f .
(⇒) Let q, r ∈ R[x] be the result of the polynomial division of f by x − a. So
f = (x − a) · q + r with deg r < deg(x − a) = 1. Since deg r < 1, r needs to be a
constant polynomial. Note also that, since x− a is monic, we get that q, r ∈ R[x].
By looking at the value of f at a we get

0 = f(a) = (a− a)q(a) + r(a) = 0 · q(a) + r = r,

thus r = 0 and x− a | f . □

In the above proof we showed a fact that can be useful in general, namely that
for every f ∈ R[x] and a ∈ R:

f mod (x− a) = f(a).

We are going to use this fact in discussing interpolation in Section 8.1.
Next we prove that the degree of a polynomial gives us a bound on the number

of roots:

Theorem 4.4 (Number of roots of a polynomial). Let R be an integral domain,
and let 0 ̸= f ∈ R[x] be a polynomial with deg f = n. Then f has at most n roots
in R.

26

Proof. We prove this by induction on the degree n. If deg f = 0, then f is constant
(and f ̸= 0), so f has no roots. For an induction step n → n+1, let deg(f) = n+1.
If f has no roots, then clearly the statement holds. So let us assume that there is
a a ∈ R with f(a) = 0. Then, by Proposition 4.3, there is a polynomial g with f =
(x−a) ·g and deg(g) = n. If b ̸= a is another root of f , then f(b) = (b−a) ·g(b) = 0.
Since R is an integral domain, it follows that g(b) = 0. Therefore every root of f
is either a, or a root of g. By the induction hypothesis, g has at most n roots, so
f has at most n+ 1 roots. □

Note that the number of roots of f can also be less than deg(f). For example
x2 + 1 has no roots, when seen as a polynomial over Z. It has exactly one root,
when seen as polynomial over Z2.

Theorem 4.4 only holds for integral domains R, but not commutative rings in
general (the proof fails, since then f(b) = (b − a) · g(b) = 0 does not imply that
b − a = 0 or g(b) = 0). For example, the polynomial 2x ∈ Z4[x] has two roots
0, 2 ∈ Z4, and the polynomial x2 + x ∈ Z6[x] has four roots 0, 2, 3, 5 ∈ Z6.

5. Basic notions of divisibility

In this section, we introduce basic concepts such as divisibility, associated ele-
ments, the greatest common divisor and irreducible decompositions for polynomials.
We define these concepts for the general integral domains R and we will illustrate
them in the specific cases: for fields, for the integers Z, for quadratic extensions
Z[
√
s], and in particular for polynomial rings.

5.1. Divisors and associates.

Definition. We say that a divides b in the ring R, and write a | b, if there exists
an element c ∈ R, such that b = ac.

Caution: When talking about divisibility, the ring R always should be mentioned
or be clear from the context. since the relations | depends on the ring.For example

• 3x+ 6 | x+ 2 in Q[x], because x+ 2 = 1
2 · (3x+ 6), but

• 3x+ 6 ∤ x+ 2 in Z[x], because there exists no f ∈ Z[x], such that x+ 2 =
f · (3x+ 6).

Definition. We say that a and b are associates or associated elements, and write
a ∥ b, if a | b and b | a. An element a is called invertible if and only if a ∥ 1. We
then write a−1 for the inverse of a, that is, the element b such that ab = 1.

The divisibility relation | is reflexive and transitive (so a | b and b | c implies
a | c). Note that ∥ is additionally symmetric, and therefore an equivalence relation.

Proposition 5.1. Let R be an integral domain and a, b ∈ R. Then a ∥ b if and
only if there is an invertible element q ∈ R such that a = bq.

Proof. (⇐) Since a = bq clearly b | a. On the other hand b = aq−1, implies a | b.
(⇒) If a = 0, then a ∥ b implies b = 0 (and thus a = b · 1). So let us assume that
a ̸= 0. Since a ∥ b there are elements u, v such that a = bu and b = av. Therefore
a = bu = avu. By cancelling a we get 1 = vu, and therefore u, v are invertible
elements. □

Example.

27

• In a field, every nonzero element has an inverse. Therefore a ∥ b for all
a, b ̸= 0.

• In the ring of integers Z, the invertible elements are ±1. Thus a ∥ b is
equivalent to a = ±b.

• In every polynomial ring R[x], the invertible elements are exactly the poly-
nomials f = a0 of degree 0, whose coefficient a0 is an invertible element of
R. So, if R is a field, all constant non-zero polynomials are invertible.
For example in Z[x] we have f ∥ g if f = ±g. In Q[x] we have f ∥ g if and
only if f = c · g, for some 0 ̸= c ∈ Q.

In integral domains it is in general not possible to define a division with remain-
der, because we have no way of expressing that the remainder should be ‘smaller’
than a divisor. Still, it makes sense to define the congruence

a ≡ b (mod m) ⇔ m | a− b.

As for the integers (see Proposition 2.1), it is easy to show that for a fixed m ∈ R
this is an equivalence relation, which is invariant under +,−, ·. Later, in Section
7.2, we will see that a result similar to Proposition 2.2 holds if R is a so-called
Euclidean domain.

5.2. Greatest common divisor.

Definition. Let R be a ring and a, b, c ∈ R. We say that c is the greatest common
divisor of a, b, and write c = gcd(a, b) if

• c | a, c | b (so c is a common divisor of a and b)
• whenever d | a, d | b, then also d | c (so c is the ‘greatest’ such).

We call a, b coprime if gcd(a, b) = 1. The least common multiple lcm(a, b) is defined
analogously.

Caution: The greatest common divisor, according to the above definition, must be
handled with some care. For example in the ring of integers Z both 2 = gcd(4, 6)
and −2 = gcd(4, 6) satisfy the above condition, so there is not a unique greatest
common divisor.

But, fortunately, the situation is not too bad: gcd(a, b) is unique up to associ-
ated elements. On one hand, if c1 = gcd(a, b) and c2 = gcd(a, b) then c1 and c2 are
common divisors of a and b; by the second condition then c1 | c2 and c2 | c1, so
they must be associated. On on the other hand, if c1 = gcd(a, b) and c2 ∥ c1, then
c2 = qc1 for an invertible element q, and therefore also satisfies Definition 5.2.

However there is another problem: In certain integral domains, it might happen
that there is no element c that meets the criteria in Definition 5.2. For example,
in the ring Z[

√
5], no greatest common divisor exists for

a = 4, b = 2 + 2
√
5.

First note that r = 2 and s = 1 +
√
5 are common divisors of a and b, since

a = 2 · 2 = (−1−
√
5)(1−

√
5), and b = 2 · (1+

√
5). But neither of them is ‘bigger’

(r ∤ s and s ∤ r), and it can be shown that no z exists, such that r, s | z and z | a, b.

28

5.3. Irreducible polynomials and decompositions. LetR be a ring. For every
a ∈ R it then holds that a | a and 1 | a. A divisor of a is called a trivial divisor if
it is an associated element of either 1 or a. All other divisors are called non-trivial.

Definition. An element a ∈ R is called irreducible if a ̸= 0, a ∦ 1 and it only has
trivial divisors. In this case a = bc implies that b ∥ 1 or c ∥ 1.

Example.

• There are no irreducible elements in a field (all non-0 elements are invert-
ible!)

• In the ring Z the irreducible elements are exactly the numbers ±p, where
p is a prime.

• In a polynomial ring R[x] it is generally not easy to determine which poly-
nomials are irreducible. But it always holds that:

– a polynomial of degree 0 is irreducible if and only if it is an irreducible
element of R

– a polynomial of degree 1 is irreducible if and only if it is not divisible by
a non-invertible element of R (e.g. the polynomial 2x+2 is irreducible
in Q[x], but not in Z[x], since 2x+ 2 = 2 · (x+ 1)).

If f ∈ R[x] is a polynomial of degree ≥ 2, which has root a, then it cannot
be irreducible because it has the non-trivial divisor x − a (see Proposition 4.3).
But caution: the opposite implication does not hold. For instance the polynomial
x4 + 2x2 + 1 ∈ Z[x] has no root, but is not irreducible since x4 + 2x2 + 1 =
(x2 + 1) · (x2 + 1). There is no general rule for polynomials of higher degrees, the
situation depends on R:

Example.

• In C[x] the irreducible polynomials are exactly the polynomials of degree 1
(by the Fundamental Theorem of Algebra)

• In R[x] the irreducible polynomials are the polynomials of degree 1 and the
polynomials of degree 2, which don’t have a root (left as exercise).

• In Q[x] there are polynomials of higher degree that are irreducible. For
example xn − 2 is irreducible for every n ≥ 2 (see Eisenstein’s criterion in
Theorem 6.10). In general, it is not easy to determine if a polynomial over
Q[x] is irreducible.

Example. Some primes (in Z) are not irreducible in the Gaussian integers Z[i].
For example 5 = (1 + 2i)(1 − 2i). It can be shown that the irreducible Gaussian
integers are of the form:

• ±a and ±ia, if a is a prime number and a ≡ 3 (mod 4), or
• a+ ib, such that b ̸= 0 and a2 + b2 is a prime number.

Definition. Let R be a ring, and a ∈ R. A decomposition of a into irreducible
elements is a product pk1

1 · pk2
2 · . . . · pkn

n such that

a ∥ pk1
1 · pk2

2 · . . . · pkn
n ,

p1, . . . , pn ∈ R are irreducible, pi ∦ pj for all i ̸= j, and k1, . . . , kn ∈ N. We say
that a has a unique decomposition into irreducible elements, if

a ∥ pk1
1 · pk2

2 · . . . · pkn
n ∥ ql11 · ql22 · . . . · qlmm

29

implies that m = n, and there is a permutation π of the indices, such that pi ∥ qπ(i)
and ki = lπ(i), for all i.

The seemingly complicated definition can be motivated by the following example
in Z: 12 = 22 ·3 = 31 ·(−2)2 ∥ (−2)2 ·(−3). These are, formally speaking, 3 different
decompositions of 12, but it still makes sense to consider them to be the same, since
they only differ by the order and the sign ± of the individual irreducible factors.

When talking about decompositions into irreducible factors again the ring R
matters (and thus must be explicitly mentioned, or be clear from the context).
For example the polynomial 2x2 + 2 is irreducible in Q[x] but decomposes into the
irreducibles 2 · (x+ 1) in Z[x].

Example. The following table shows the decompositions of some polynomials into
irreducible factors (in 5 different polynomial rings):

x2 + 1 2x2 + 2 x2 − 2 x4 + 2x2 + 1
Z[x] irreducible 2 · (x2 + 1) irreducible (x2 + 1)2

Q[x] irreducible irreducible irreducible (x2 + 1)2

R[x] irreducible irreducible (x−
√
2)(x+

√
2) (x2 + 1)2

C[x] (x− i)(x+ i) (2x− 2i)(x+ i) (x−
√
2)(x+

√
2) (x− i)2(x+ i)2

Z5[x] (x+ 2)(x+ 3) (x+ 2)(2x+ 1) irreducible (x+ 2)2(x+ 3)2

In general integral domains, decompositions don’t need to exist and don’t need
to be unique, as can be seen from the following two examples:

Example (Ring without decompositions). Let R be the subring of Q[x] consisting
of all the polynomial, whose coefficient a0 is an integer. In this ring, the element
f = x does not have a decomposition into irreducible factors: To see this let us
assume for contradiction, that g is an irreducible factor of f . Since g | f , either
g is a constant or of the form g = 1

ax for some a ∈ Z \ {0} (since f = a · (1ax)).
However, g = 1

ax is not irreducible, since it can always be further decomposed into
1
ax = 2 · 1

2ax. Thus all irreducible factors of x must be constant, which is also not
possible - contradiction!

Example (Ring with no unique decompositions). In the ring Z[
√
5], the element

4 has two decompositions

4 = 22 = (1 +
√
5)(−1 +

√
5).

It can be shown that 2, (1+
√
5) and (−1+

√
5) are all irreducible and not associated

to each other.

It therefore makes sense to define integral domains, in which every element has
a unique decomposition into irreducible elements:

Definition. An integral domain is called a unique factorization domain (UFD) if
every element that is not equal to 0, nor invertible has a unique decomposition into
irreducible factors.

Example.

• Every field is a UFD (since element is either invertible or equal to 0)
• The integers Z are a UFD (by Theorem 1.2).

30

• If R is a field, then the polynomial ring R[x] is a UFD. The proof is similar
to the proof for Z, we are going to discuss it later (Theorem 6.4). By
Gauss’s theorem (Theorem 6.8) also the polynomial rings over a field in
more than one variable are a UFDs, and Z[x] is a a UFD.

• Some rings Z[
√
s] are UFDs (e.g. for s = −1,±2, 3), while some other are

not (e.g. s = −3, 5). We will not discuss them further here.

5.4. Divisibility in unique factorization domains. The existence and unique-
ness of a decomposition into irreducible element is a very powerful property. In
this section we discuss some consequences for UFDs, that are mainly based on the
following result:

Proposition 5.2. Let R be a UFD, and a, b ∈ R, such that a has the following
decomposition into irreducible elements:

a ∥ pk1
1 · . . . · pkn

n .

Then b | a if and only if

b ∥ pl11 · . . . · plnn ,

for some 0 ≤ li ≤ ki.

Proof. (⇐) By assumption, there are invertible elements q, r ∈ R, such that a =

qpk1
1 · . . . · pkn

n and b = rpl11 · . . . · plnn . If we define c = qr−1pk1−l1
1 · . . . · pkn−ln

n , then
we can see that a = bc, and thus b | a.
(⇒) Let c ∈ R be an element such that a = b · c, and let

b ∥ qs11 · . . . · qsuu , c ∥ rt11 · . . . · rtvv
be the decompositions of b and c into irreducible elements. Then

a ∥ pk1
1 · . . . · pkn

n ∥ qs11 · . . . · qsuu · rt11 · . . . · rtvv .

Note that the product on the right side is not necessarily a decomposition of a into
irreducible elements, since some of the qi and rj might be equal (up to associa-
tion). But, by combining these duplicates, we obtain another decomposition into
irreducibles

a ∥ pk1
1 · . . . · pkn

n ∥ q
s′1
1 · . . . · qs

′
u

u · rti1i1
· . . . · rtiwiw

.

By the uniqueness of the factorization, for every i ∈ {1, 2, . . . , u} there exists a
j ∈ {1, 2, . . . , n}, such that qi ∥ pj , and si ≤ s′i = kj . From this, it follows that

b ∥ pl11 · . . . · plnn , for li = si ≤ ki. □

A direct consequence of Proposition 5.2 is that in UFDs the greatest common
divisor of two elements always exists: It is enough to take a decomposition of both
elements into irreducibles, and take the product of all irreducible factors that both
decompositions have in common (up to associates). We have already seen this for
the integers and their prime factorization:

gcd(540, 336) = gcd((−2)2 · 33 · 5, 24 · (−3) · 7)
= gcd(22 · 33 · 51 · 70, 24 · 31 · 50 · 71) = 22 · 31 · 50 · 70 = 12

In UFDs also an analogue to Lemma 1.5 holds: whenever an irreducible element
p divides a product ab, then it already has to divide one of the factors. We prove
these properties for general UFDs in the following Corollary of Proposition 5.2:

Corollary 5.3. Let R be an UFD. Then

31

(1) For all a, b ∈ R, there exist the greatest common divisor gcd(a, b).
(2) If p ∈ R is irreducible, and p | ab then p | a or p | b.
(3) There is no infinite sequence a1, a2, a3, . . . ∈ R such that ai+1 | ai and

ai+1 ∦ ai.

Proof. (1) Let us take irreducible elements p1, . . . , pn such that pi ∦ pj for i ̸= j
and ki, li ≥ 0 such that

a ∥ pk1
1 · . . . · pkn

n , b ∥ pl11 · . . . · plnn .

(arbitrary decompositions of a, b into irreducible elements can be rewritten in such
a way, by adding the 0-th powers of some pi as a factor, if necessary). By Propo-
sition 5.2, whenever c | a, c | b, then c ∥ pm1

1 · . . . · pmn
n for exponents mi that

satisfy 0 ≤ mi ≤ ki and 0 ≤ mi ≤ li for all i = 1, . . . , n. In other words,
0 ≤ mi ≤ min(ki, li), for every i ∈ {1, . . . , n}. So the greatest common divisor
c is given by the exponents mi = min(ki, li).
(2) As in (1), we can find irreducible elements pi, and ki, li ≥ 0 such that a ∥
pk1
1 · . . . ·pkn

n , and b ∥ pl11 · . . . ·plnn . Therefore ab ∥ pk1+l1
1 · . . . ·pkn+ln

n . Since p | ab, by
Proposition 5.2, also p must decompose into a product of powers of the irreducible
elements p1, . . . , pn. But since p is irreducible itself, there must be a i such that
p ∥ pi. As a consequence either p | a holds (if ki > 0), or p | b (if li > 0).
(3) Each non-zero, non-invertible element a has a unique decomposition into ir-

reducibles a ∥ pk1
1 · . . . · pkn

n . Therefore, we can assign to it the number ν(a) =
k1 + k2 + . . . + kn. We further set ν(a) = 0 if a is invertible. It follows from the
uniqueness of the decomposition, that ν(a) is well-defined. From Proposition 5.2 it
follows that a | b implies ν(a) ≤ ν(b), and a ∥ b implies ν(a) = ν(b).

For a contradiction assume now that there is a sequence a1, a2, a3, . . . ∈ R such
that ai+1 | ai and ai+1 ∦ ai. This means that ν(a1) > ν(a2) > ν(a3) > · · · ,
which is not possible (there is no infinite descending sequence of natural numbers)
- contradiction! □

It is not hard to see that the results of this section do not hold in integral domains
that are not UFDs:

Example. In Z[
√
5], the element 2 is irreducible, and 2 | (

√
5 − 1)(

√
5 + 1) = 4.

However 2 ∤ (
√
5− 1), 2 ∤ (

√
5 + 1).

The fact that there are examples of rings, in which both gcd does not exists, and
decomposition into irreducible are not unique is, in fact, not a coincidence. We are
going to discuss this further in Section 7.1.

6. Divisibility in polynomial rings

6.1. Polynomials in one variable over a field. In this next section, we show
(analogous to Section 1) that polynomials in one variable over a field F always
have a unique decomposition into irreducible elements. In other words, F[x] is a
UFD. The proofs are mostly analogous to the proofs for the integers Z in Section
1. Therefore we leave them an exercise.

Exercise 6.1. Recall the description of the Euclidean algorithm in Section 1, and
convince yourself that it also works for the polynomial ring F[x], when F is a field
(using the polynomial division from Proposition 4.2).

32

Why doesn’t it work for the polynomials over a general integral domain? Why
doesn’t it work for polynomials in more than one variable?

Based on Euclid’s algorithm, you can prove the following statement:

Proposition 6.2 (Bézout coefficients). Let F be a field. Then, for any two polyno-
mials f, g ∈ F [x], there exists a greatest common divisor gcd(f, g), and there exists
polynomials r, s ∈ F [x] (Bézout coefficients) such that

gcd(f, g) = r · f + s · g.
Example. The two polynomials f = 1

3x
2 + x = 1

3x(x+ 3) and g = x2 + 2x− 3 =
(x− 1)(x+3) in Q[x] have the greatest common divisor gcd(f, g) = x+3, which is
equal to 3f − g.

Unfortunately we cannot relax the condition in Proposition 6.2 to general integral
domains, or to polynomials of more than one variable:

Example. For polynomials f, g ∈ Z[x], in general, there are no Bézout coefficients.
For example gcd(x + 1, x − 1) = 1, however there are no polynomials r, s ∈ Z[x]
such that r · (x+ 1) + s · (x− 1) = 1, since 2r(1) = 1, which can never happen for
an integer polynomial r.

Example. For polynomials f, g ∈ Q[x, y], in general, there are no Bézout coeffi-
cients. For example gcd(x, y) = 1, however there are no polynomials r, s ∈ Q[x, y]
such that r · x+ s · y = 1, since r · x+ s · y evaluated at (0, 0) is always 0.

The good news is, that even in these polynomial rings, there always exists a
greatest common divisor gcd(f, g) of two polynomials f, g, however this is not easy
to prove. We will show it in the next subsections.

We continue with the prove for F[x]:

Exercise 6.3. Recall the proof of the fundamental theorem of arithmetic from Sec-
tion 1, and think about how to modify it, so that it also works for F[x]. We proved
both the existence, and the uniqueness of the prime factorization by induction on
the size of n ∈ N. On what parameter should be base our induction for F[x]?
Why does the proof fail for Z[x] and Q[x, y] - and which are the properties we need
for it to work?

With the above exercise, you can prove the following analogy to the fundamental
theorem of arithmetic:

Theorem 6.4. Let F be a field. Then F[x] is a unique factorization domain.

6.2. Polynomials over a ring vs. polynomials over a quotient field. We
next are going to prove Gauss’s theorem, which states that R[x] is even UFD if R
is a UFD. The proof is based on the studying the divisibility in the extension Q[x],
where Q is the quotient field of R.

Definition. Let us call a polynomial f =
∑n

i=0 aix
i ∈ R[x] primitive, if gcd(a1, . . . , an) =

1 (i.e. whenever an element c divides all coefficients, then c ∥ 1).

For example 2x5 + 6x− 3 is a primitive polynomial in Z[x].
The polynomial x2y+ x is not primitive when seen as an element from (Z[x])[y]

(since gcd(x2, x) = x), but it is primitive an element from (Z[y])[x] (since gcd(y, 1) =
1). An important ingredient for our proof is then the following lemma about prim-
itive polynomials:

33

Lemma 6.5 (Gauss’ lemma). Let R be a UFD and f, g ∈ R[x] be primitive poly-
nomials. Then fg is also a primitive polynomial.

Proof. Let f =
∑n

i=0 aix
i and g =

∑m
i=0 bix

i be primitive. We then want to show
that also fg is a primitive polynomial. For contradiction, assume that this is not
true. Then (since R is a UFD) there is an irreducible element p ∈ R, which divides
all the coefficients of fg. Let us choose the smallest j, such that p ∤ aj and the
smallest k such that p ∤ bk (there must be such indices, since both f and g are
primitive). The (j + k)-th coefficient of fg is then equal to

cj+k = a0bj+k + · · · aj−1bk+1 + ajbk + aj+1bk−1 + · · ·+ aj+kb0.

Because p | ai for all i < j we get

p | a0bj+k + · · ·+ aj−1bk+1.

But since p | bi for all i < k we get

p | aj+1bk−1 + · · ·+ aj+kb0.

So in the sum defining cj+k, all summands to the left and to the right of ajbk
are multiples of p. However ajbk is not divisible by p (by Corollary 5.3 (2)), and
therefore also p ∤ cj+k, which contradicts to our assumption that p divides all
coefficients of fg. □

Gauss’s lemma allows us to compare the divisibilty in R[x] and Q[x], which will
be essential for the remaining proof.

Lemma 6.6. Let R be a UFD, Q be its quotient field and f, g ∈ R[x] be primitive
polynomials. Then

f | g in Q[x] ⇔ f | g in R[x]

Proof. Clearly the implication (⇐) holds, as R[x] is a subring of Q[x].
For the other direction (⇒), since f | g in Q[x], there is a polynomial h ∈ Q[x],
such that g = fh. Let h be such a polynomial and choose q ∈ Q such that
qh is a primitive polynomial (it is enough to take q = a

b where a is the gcd of the
denominators and b is the gcd of the numerators of all coefficients of the polynomial
h). Thus g = fh implies qg = f · qh, where on the right side we have the product
of two primitive polynomials over R. By Gauss’s lemma also qg must be primitive,
therefore q ∥ 1. It follows, that h is already a polynomial from R[x]. □

The next theorem follows straight from the above lemma, we omit the proof:

Theorem 6.7 (gcd and irreducible elements in UFDs). Let R be a unique factor-
ization domain, Q its quotient field, let f, g ∈ R[x] and let cf (respectively cg) be
the greatest common divisor of the coefficients of f (respectively g). Then

(1) gcdR[x](f, g) exists and is equal to the product c ·h, where c = gcdR(cf , cg),

and h is the primitive polynomial in R[x] satisfying h = gcdQ[x](f/cf , g/cg).

(2) f is irreducible in R[x] if and only if
• deg f = 0 and f is irreducible in R, or
• deg f > 0 and f is primitive and irreducible in Q[x].

Example. Consider the integer polynomials

f = 4x2 + 8x+ 4 = 4(x2 + 2x+ 1), g = −6x2 + 6 = −6(x2 − 1).

Then gcdZ(4,−6) = 2, gcdQ[x](x
2+2x+1, x2−1) = x+1, and therefore gcdZ[x](f, g) =

2 · (x+ 1).

34

We can use point (2) of Theorem 6.7 to show the existence of irreducible decom-
positions in R[x]. It is though a bit complicated because we don’t have Bézout’s
identity. In Section 7.1 we will show how to work around it and get (as an immediate
consequence of Theorem 6.7 and Theorem 7.1) the following theorem:

Theorem 6.8 (Gauss’s theorem). If R is a UFD, then also R[x] is a UFD.

By multiple application of Gauss’s theorem, it immediately follows that polyno-
mials in arbitrarily many variables over a UFD (for example, the fields Z[x, y, . . .],
or F[x, y, . . .] for any field F) are also a UFD.

6.3. Rational roots and Eisenstein’s criterion for irreducibility. You maybe
know the following trick to find the rational roots of a polynomial from school,
but you probably didn’t realize that, to prove it, you need to work in unique
factorization domains:

Proposition 6.9. Let R be a UFD, and let Q be its quotient field. Let f =∑n
i=0 aix

i ∈ R[x] and r
s ∈ Q be a root (such that r, s ∈ R are coprime). Then r | a0

and s | an.
Proof. If we look at the value of f at the root r

s , we get
∑n

i=0 ai(
r
s)

i = 0. Multi-
plying with sn then gives us the equation

a0s
n + a1rs

n−1 + . . . an−1r
n−1s+ anr

n = 0.

Because r divides all elements a1rs
n−1, a2r

2sn−2, . . . , anr
n, it also must divide

a0s
n = −(a1rs

n−1+. . . an−1r
n−1s). But since r and s are coprime, it must divide a0

(here we use thatR is a UFD). Analogously s divides a0s
n, a1rs

n−1, . . . , an−1r
n−1s,

and therefore s | anrn. Since r and s are coprime, s | an. □

Example. We find all the rational roots r
s of the polynomial f = 2x5−3x4+2x−3.

By Proposition 6.9 r | 3, s | 2,so we get as candidates ±1, ±3, ± 1
2 , ±

3
2 . Computing

the values of f at these numbers we see that − 3
2 is the only rational root of f .

Example. By Proposition 6.9, any rational root of the polynomial xn − p, for a
prime p, must be of the form ±1 or ±p. But it is easy to check that none of these
numbers are actually roots (if n ≥ 2). Therefore, the root n

√
p must be irrational

(for every prime p, n ≥ 2).

A similar trick gives us Eisenstein’s criterion for irreducibility:

Theorem 6.10 (Eisenstein’s criterion). Let R be a UFD, and let f =
∑n

i=0 aix
i

be a primitive polynomial in R[x].If there exists an irreducible element p ∈ R, such
that p | a0, p | a1, . . . , p | an−1, and p2 ∤ a0, then f is irreducible in R[x].

Proof. For contradiction, assume that f = gh for two polynomials g =
∑k

i=0 bix
i,

h =
∑l

i=0 cix
i of degree at least 1. Since p divides a0 = b0c0, either p | b0 or p | c0

(by Corollary 5.3 (2)). However, by assumption p2 ∤ a0, therefore it is not possible
that both b0 and c0 are divisible by p. Without loss of generality, let us assume
that p | b0, but p ∤ c0. Then, since p | a1 = b0c1 + b1c0, and p ∤ c0, we get p | b1.
Since p | a2 = b0c2 + b1c1 + b2c0, and p | b0, b1, p ∤ c0, we get p | b2. By induction
we get that all coefficients bi of g are divisible by p. Therefore p | g | f , and thus f
is not a primitive polynomial - contradiction! □

Example. By Eisenstein’s criterion, the polynomial xn − p, for a prime p, is irre-
ducible in Z[x] (and thus also in Q[x]).

35

7. Abstract divisibility theory

7.1. Generalization of the fundamental theorem of arithmetic. In this sec-
tion we finish the discussion about divisibility, and show some results for integral
domains in general. We are first going to characterize UFDs by two properties of
their divisibility relation |, which will then allow us to finish the proof of Gauss’s
theorem.

Theorem 7.1. Let R be an integral domain. Then R is a unique factorization
domain if and only if

(1) gcd(a, b) exists for every pair of elements a, b ∈ R, and
(2) there is no infinite sequence a1, a2, a3, . . . ∈ R, such that ai+1 | ai and

ai+1 ∦ ai for every i.

Theorem 7.1 is interesting, since it gives a different characterization of UFDs
that does not talk about decompositions. This can be very useful, since in practise
(1) and (2) are often easier to check, than showing that every element has a unique
factorization into irreducibles.

We already showed in Corollary 5.3 that every UFD has the properties (1) and
(2). So in order to prove Theorem 7.1, we only need to prove that every integral
domain that satisfies (1) and (2) is a UFD, i.e. every element has a unique factor-
ization into irreducible elements. The proof will follow the same lines as Section 1.
Showing the existence part is not hard. However, to prove the uniqueness will a bit
more complicated, since we cannot use Bézout’s identity (as we did for Z or F[x]).

Proof of the existence of factorizations. Let R be an integral domain and let us
assume that there is an element a ∈ R with a ̸= 0, a ∦ 1 that does not have a
decomposition into irreducibles. We are then going to prove that (2) cannot hold.
For this we recursively define a sequence a1, a2, a3, . . . ∈ R, such that for every
i ∈ N, ai has no decomposition, and ai+1 | ai and ai+1 ∦ ai.

• We set a1 = a.
• For a general i ∈ N, assume that we already constructed an element ai that
does not have a decomposition into irreducibles. In particular, ai cannot be
irreducible itself. Thus, there are two elements b, c, such that b, c ∦ 1 and
ai = b · c. Either b or c has no decomposition into irreducibles (otherwise,
ai = b · c would also have a decomposition). We set ai+1 to be equal to
the element that does not have a decomposition. Clearly ai+1 | ai, and
ai+1 ∦ ai.

The existence of the sequence a1, a2, a3, . . . ∈ R clearly contradicts to (2). Thus (2)
implies that every element of R has a decomposition into irreducible elements. □

To prove the uniqueness of decompositions, we need to prove a statement similar
to Lemma 1.5 In order to prove it, we use the following auxiliary lemma:

Lemma 7.2. Let R be an integral domain, and let a, b, c ∈ R be such that gcd(a, b)
and gcd(ac, bc) exist. Then

gcd(ac, bc) = c · gcd(a, b).

The proof of Lemma 7.2 is a bit technical; so we don’t discuss it in the lecture
and only include it here for completeness’ sake:

36

Proof of Lemma 7.2. Recall that the greatest common divisor is only determined
up to the relation ∥. So, it is enough to show that gcd(ac, bc) | c · gcd(a, b), and
c · gcd(a, b) | gcd(ac, bc).

If c = 0, then gcd(ac, bc) = c · gcd(a, b) = 0, so the equation clearly holds.
So let us assume that c ̸= 0. For short, let us write u = gcd(ac, bc). We first

show that u | c · gcd(a, b). Since u | ac, there is an element x such that ac = ux.
Since u | bc, there is an y such that bc = uy. Since c is a common divisor of ac and
bc, also c | u, and thus there is a z such that u = cz. This implies ac = czx and
bc = czy. By cancelling c (here we use c ̸= 0) on both sides of these equations we
get a = zx and b = zy. So z is a common divisor of both a and b, and therefore
z | gcd(a, b). This gives us u = cz | c · gcd(a, b), which is what we wanted to prove.

For the opposite direction, simply note that c · gcd(a, b) divides both ca and cb,
and therefore also u = gcd(ac, bc). □

We are now able to prove the following analogue of Lemma 1.5:

Lemma 7.3. Let R be an integral domain such that gcd exists for every pair of
elements. Let p be an irreducible element of R. Then p | ab implies that either p | a
or p | b.

Proof. Let p be irreducible and a, b ∈ R such that p | ab. Let us assume that p ∤ a.
Since p is irreducible, this means gcd(a, p) = 1. By Lemma 7.2 we obtain

gcd(ab, pb) = b · gcd(a, p) = b.

Since p divides both ab and pb, it must also divide gcd(ab, pb) = b, which is what
we wanted to prove. □

This allows us to finish the proof of Theorem 7.1.

Proof of uniqueness of decompositions. Let R be an integral domain satisfying (1)
and (2), and let us assume that there is an element a ∈ R that does not have a

unique decomposition into irreducible elements, so a ∥ pk1
1 ·. . .·pkn

n and a ∥ ql11 ·. . .·qlmm
are two distinct decompositions into irreducible elements. Also, without loss of
generality, we can pick an a is such that the first decomposition is of minimal ‘length’
k1 + k2 + . . .+ kn. By Lemma 7.3 there must be a factor qi in the second product,
such that p1 | qi. In fact, since, both p1 and qi are irreducible, it holds that p1 ∥ qi.

Cancelling with this element gives us two distinct decompositions pk1−1
1 · . . . · pkn

n ∥
ql11 · . . . · qli−1

i · . . . · qlmm , such that the first one has length k1 + k2 + . . . + kn − 1.
This is a contradiction to the minimality of a! Therefore R is a UFD. □

With Theorem 7.1 we are now ready to finish the prove of Gauss’s theorem:

Proof of Theorem 6.8. Let R be a UFD. In order to show that R[x] is also a UFD,
it is enough to check conditions (1) and (2) of Theorem 7.1. By Theorem 6.7, every
pair of polynomials f, g ∈ R[x] has a greatest common divisor, so (1) holds. To show
(2) let us assume for contradiction that there is a sequence f1, f2, f3, . . . ∈ R[x] such
that fi+1 | fi and fi+1 ∦ fi for every i. This implies deg(f1) ≥ deg(f2) ≥ · · · ≥ 0.
Since this is an infinite sequence, there is an n, such that deg fn = deg fn+1 =
deg fn+2 = · · · . For every j ≥ n, let uj be the leading coefficient of fj . Then, the
sequence un, un+1, un+2, . . . in R satisfies that uj+1 | uj and uj+1 ∦ uj for every
j ≥ n. But this is impossible, since R is a UFD!

37

So R[x] satisfies conditions (1) and (2) of Theorem 7.1 and is therefore a UFD.
□

7.2. Euclid’s algorithm and Bézout coefficients. In this section, we are going
to discuss, in which integral domains Euclid’s algorithm works (as a way to deter-
mine gcd(a, b) and its Bézout coefficients). We already saw that versions of Euclid’s
algorithm work in Z and F[x] for fields F. However, we also saw that in some rings,
even UFDs (like Z[x], or Q[x, y]), Bézout coefficients do not always exists.

The basic ingredient for Euclid’s algorithm in Z and F[x] was to have a division
with remainder, together with a ‘measure’ on how ‘big’ the remainder is. We give
a formal definition of the integral domains that have this property:

Definition. An integral domain R is called Euclidean if there is a Euclidean norm
ν, that is, a function

ν : R → N ∪ {0},
which satisfies

(1) ν(0) = 0
(2) If a | b, b ̸= 0, then ν(a) ≤ ν(b);
(3) for all a, b ∈ R, b ̸= 0, there exists q, r ∈ R such that

a = bq + r and ν(r) < ν(b).

Condition (3) says that for each pair a, b there exists a quotient q and a remainder
r (with no claim of uniqueness!), such that the remainder is ‘smaller’ than the
element b we divide through. Note that ν(b) = 0 if and only if b = 0: this holds
since the remainder r after dividing any other element a by b ̸= 0 must have a lower
Euclidean norm that ν(b), so ν(b) > ν(r) ≥ 0.

Example. The following UFD’s are Euclidean domains:

• Every field is a Euclidean domain, with the Euclidean norm ν(0) = 0 and
ν(a) = 1 if a ̸= 0.

• The integers Z are Euclidean, with ν(a) = |a|.
• If F is a field, then the polynomial ring F[x] is a Euclidean field, with the
norm

ν(f) = 1 + deg(f).

We already discussed this in Proposition 4.2. Note that we need to add 1
so the degree of f , such that ν(0) = 0.

• Some quadratic extensions Z[
√
s] are Euclidean (e.g. for s = −1,±2, 3),

while other are not (e.g. s = −3, 5). In the previous case, a norm is given
by

ν(a+ b
√
s) = |a2 − sb2|.

It can be showed that ν satisfies both property (1) and (2) for all values of
s ∈ Z (exercises). However to show property (3) is non-trivial and depends
on s.
For Gaussian integers a, b ∈ Z[i], b ̸= 0, we can find a quotient q by first
computing a · b−1 in C, and setting q to be the Gaussian integer closest
to it. The remainder is then defined as r = a − qb (see Figure 3 for an
example). We leave it as an exercise that this ‘division with remainder’
indeed satisfies (3).

38

Figure 3. Division with remainder in Z[i].

There are UFDs that are not Euclidean (such as Z[x], or Q[x, y]). For the
example of integer polynomials Z[x], the map ν(f) = 1 + deg f is not a Euclidean
norm, since (3) does not hold: For example for the polynomials 3x and 2x there
are no q, r ∈ Z[x] such that 3x = q · 2x+ r and deg(r) = 0. But also deg(r) = −1
is not possible, since then r = 0 and 3x = 2qx, but such a polynomial q does not
exist in Z[x]. Note that this example just shows that this particular function ν is
not a Euclidean norm, but we did not disprove that Z[x] is Euclidean. For this,
we would need to exclude the possibility of any Euclidean norm Z[x] → N ∪ {0},
which is more complicated. However, we are next going to show that in Euclidean
domains Euclid’s algorithm works, and Bézout coefficients always exists. Since we
also saw that this is not true for 1 = gcd(3x, 2x) in Z[x], we know that Z[x] is not
Euclidean.

We start by describing (the generalized version of) Euclid’s algorithm

39

Euclid’s algorithm (over a Euclidean domain R).

• Input: a, b ∈ R, with ν(a) ≥ ν(b)
• Output: gcd(a, b) and coefficients u, v ∈ R such that gcd(a, b) = u · a+ v · b

– a0 = a, u0 = 1, v0 = 0
a1 = b, u0 = 0, v0 = 1

– for every i = 1, 2, . . . do the following:
let q, r be such that ai−1 = qai + r and ν(r) < ν(ai). Then set

ai+1 = r, ui+1 = ui−1 − qui, vi+1 = vi−1 − qvi.

If ai+1 = 0, output ai, ui, vi.

Theorem 7.4 (Correctness of Euclid’s algorithm). Let R be an Euclidean domain.
Then, on input a, b ∈ R, Euclid’s algorithm indeed outputs gcd(a, b) and Bézout
coefficients u, v ∈ R such that

gcd(a, b) = u · a+ v · b.

Proof. Since ν(a0) > ν(a1) > ν(a2) > · · · ≥ 0, the algorithm must stop after finitely
many steps. Let i = n be the step in which this happens. To prove the correctness
of the algorithm, we are going to show that

(1) gcd(ai−1, ai) = gcd(ai, ai+1) for all i = 1, . . . , n (if one of them exists).
(2) for all i = 0, . . . , n it holds that ai = ui · a+ vi · b.

If both hold, then the algorithm is correct, since then

gcd(a, b) = gcd(a0, a− 1) = gcd(a1, a2) = · · · = gcd(an−1, an) = gcd(an, 0) = an.

To show (1) and (2),note that the equation ai−1 = aiq + ai+1 holds for all i =
1, . . . , n. By this equation, every common divisor of ai−1, ai is also a common divisor
of ai, ai+1, and vice versa (compare with Lemma 1.3). Therefore gcd(ai−1, ai) =
gcd(ai, ai+1) for all i = 1, . . . , n. Point (2) can be showed by induction on i. Clearly
(2) is true for i = 0, 1. For an induction step from i − 1, i to i + 1,let us assume
that ai−1 = ui−1a+ vi−1b and ai = uia+ vib. Then

ai+1 = ai−1 − aiq = ui−1a+ vi−1b− (uia+ vib)q

= (ui−1 − uiq) · a+ (vi−1 − viq) · b = ui+1a+ vi+1b,

thus (2) holds. □

With Theorem 7.4 it is relatively straightforward to prove that every Euclidean
domain is a UFD, we just need to prove the following lemma first:

Lemma 7.5. Let R be a Euclidean domain and a, b ∈ R with a, b ̸= 0. If a | b and
a ∦ b, then ν(a) < ν(b).

Proof. By our assumptions

• b = au for some u ∈ R,
• a = bq + r for some q, r ∈ R and ν(r) < ν(b).

Since b ∤ a the remainder r cannot be 0. We get 0 ̸= r = a−bq = a−auq = a(1−uq),
and therefore a divides r. It follows that ν(a) ≤ ν(r) < ν(b). □

Theorem 7.6. Every Euclidean domain R is a unique factorization domain.

40

Proof. It is enough to check if the criterion from Theorem 7.1 holds for R. The ex-
istence of greatest common divisors gcd(a, b) for every pair a, b ∈ R follows directly
from Theorem 7.4. Further, by Lemma 7.5, any infinite chain a1, a2, a3, . . . ∈ R of
proper divisors ai+1 | ai, ai+1 ∦ ai would need to satisfy ν(a1) > ν(a2) > ν(a3) >
· · · ≥ 0 - therefore no such chain exists. □

8. Computations modulo polynomials

8.1. The Chinese remainder theorem and interpolation. The Chinese re-
mainder theorem (Theorem 2.9) told us that certain systems of integer equations
modulo congruences have a solution. As it turns out, analogue statements hold for
more general classes of rings. In this section we are going to discuss it for the poly-
nomial ring F[x], where F is a field. An important application is then polynomial
interpolation.

Theorem 8.1 (Chinese remainder theorem for polynomials). Let F be field, let
m1, . . . ,mn ∈ F[x] be pairwise coprime polynomials, let d =

∑n
i=1 degmi, and let

u1, . . . , un ∈ F[x] be arbitrary polynomials. Then there exists exactly one polynomial
f ∈ F[x] of degree deg f < d that satisfies the system of equations:

f ≡ u1 (mod m1)

f ≡ u2 (mod m2)

...

f ≡ un (mod mn).

Proof. We first prove that, if there is a solution, it must be unique. So let us
assume that there are two polynomials f, g ∈ F[x] of degree deg f, deg g < d such
that f ≡ g ≡ ui (mod mi) for all i = 1, . . . ,m. Note that this implies mi | f − g,
for every i. Since the polynomials mi are coprime, and F[x] is a UFD, this implies
that

m1 ·m2 · . . . ·mn | f − g.

The product on the left side has degree d, while deg(f − g) < d by assumption.
But this is only possible, if f − g = 0, hence f = g.

Next we prove that there is indeed a solution. For this, let

Pd = {f ∈ F[x] : deg f < d}.

Note that Pd can be regarded as a d-dimensional vector spaces over F (with basis
1, x, x2, . . . , xd−1, the usual polynomial addition +, and scalar multiplication c · f
for c ∈ F). Let di = degmi for every i = 1, . . . ,m. Then we define the map

ϕ : Pd → Pd1
× Pd2

× · · · × Pdn

f 7→ (f mod m1, f mod m2, . . . , f mod mn).

It is not hard to check that (af + g) mod m = a · (f mod m) + (g mod m) for all
f, g,m ∈ F[x] and a ∈ F. As a consequence also ϕ(af + g) = aϕ(f) + ϕ(g), so also
ϕ is a vector space homomorphism. At the same time Pd and Pd1

×Pd2
× · · ·×Pdn

have the same dimension d. By the previous paragraph ϕ is an injective map. By
a result from linear algebra, ϕ(Pd) must also have dimension d. Therefore ϕ is a
vector space isomorphism and hence a bijection (in some sense this is analogous to
Lemma 2.6). So for every element (u1, u2, . . . , un) ∈ Pd1

× Pd2
× · · · × Pdn

, there

41

exists a unique f ∈ Pd such that ϕ(f) = (u1, u2, . . . , un). This f is the solution we
were looking for. □

As for the integers, this proof was not constructive, i.e. it does not give us
an algorithm to compute the actual solution to the system of equations f ≡ u1

(mod m1), f ≡ u2 (mod m2), . . . , f ≡ un (mod mn). However, it is not hard to
generalize the algorithm we already know from the integers:

Exercise. Find a polynomial f ∈ Q[x] of degree < 5 such that

f ≡ 1 (mod x3 + 1) and f ≡ x+ 1 (mod x2 + 1).

Solution. Let f be a solution to the above equations. By the second congruence,
there is a polynomial g ∈ Q[x], such that f = g · (x2 +1)+ x+1. Substituting this
expression for f in the first congruence and simplifying gives us

g · (x2 + 1) ≡ −x (mod x3 + 1).(2)

(3)

In order to proceed now (and calculate g) we need to multiply (2) with an element
that is inverse to (x2 + 1) modulo x3 + 1. We can compute such an inverse, by
finding the Bézout coefficients u, v of 1 = gcd(x3+1, x2+1) = u(x3+1)+v(x2+1).
Euclid’s algorithm (see Section 7.2) gives us u = 1

2 (x+1) and v = 1
2 (−x2 − x+1).

So v · (x2 + 1) ≡ 1 (mod x3 + 1), and so multiplying (2) with v gives us

g ≡ 1

2
(x3 + x2 − x) ≡ 1

2
(x2 − x− 1) (mod x3 + 1).

As a consequence, g = 1
2 (x

2−x−1)+h ·(x3+1) for some h ∈ Q[x]. Re-substituting
in f and simplifying gives us

f =
1

2
(x4 − x3 + x+ 1) + h(x3 + 1) · (x2 + 1) for h ∈ Q[x].

By setting h = 0 we get the only solution of degree < 5, which is f = 1
2 (x

4 − x3 +
x+ 1). □

An important application of the Chinese remainder theorem is interpolation. For
this let us recall that for every polynomial f ∈ F [x] and a, u ∈ F we have

f(a) = u ⇔ f ≡ u (mod x− a).

This follows from Proposition 4.3: x − a divides the polynomial f − u if and only
if a is a root of the polynomial f − u i.e. f(a)− u = 0 .

If we apply the Chinese remainder theorem to equations of the form f ≡ u
(mod x − a) we get the interpolation theorem, which says that if fix n function
values, then there is exactly one polynomial of degree < n, which interpolates these
values:

Corollary 8.2 (interpolation theorem). Let F be a field, let a1, . . . , an ∈ F be
pairwise different elements, and let u1, . . . , un ∈ F be arbitrary. Then there exists
a unique polynomial f ∈ F[x] of degree < n such that f(ai) = ui for all i = 1, . . . , n.

Proof. The polynomial f ∈ F[x] is the unique solution to the equations f ≡ ui

(mod x− ai) for all i = 1, . . . , n. □

42

Unlike for the general case of the Chinese remainder theorem, in the special case
of Corollary 8.2, we can compute the solution f directly via a formula:

f =

n∑
i=1

ui ·
∏
j ̸=i

x− aj
ai − aj

 .

This polynomial is also called the Lagrange polynomial (for the pairs (ai, ui)). It is
easy to see that the polynomial function given by f indeed runs through all pairs
(ai, ui), since

f(ak) = 0 + . . .+ 0 + uk ·
∏
j ̸=k

ak − aj
ak − aj

+ 0 + . . .+ 0 = uk · 1 = uk.

It follows immediately from the Interpolation theorem that the Lagra.nge polyno-
mial is the unique such polynomial of degree < n.

A nice consequence of the interpolation theorem is the following fact about finite
fields:

Corollary 8.3 (Representation of functions over finite fields). Let F be a finite
field, and ϕ : F → F an arbitrary function. Then there exists exactly one polynomial
f ∈ F [x] with deg f < |F |, such that ϕ(a) = f(a) for all a ∈ F .

Proof. We obtain the polynomial f by applying the Interpolation theorem to all
pairs (a, ϕ(a)) with a ∈ F . □

So Corollary 8.3 allows us represent all functions on F by polynomials. This can
be very useful in computational settings, since it allows for more efficient represen-
tation and computations with functions (see also Section 9).

Side note: Corollary 8.3 does not hold for infinite fields like R. Nevertheless,
polynomials play an important role in real valued analysis: as you might already
know, there are different ways to approximate continuous real valued functions
by polynomials: Taylor polynomials allow us to approximate a function locally,
around a given point. The Weierstrass theorem tells us further, that every function
ϕ : [u, v] → R can be uniformly approximated by polynomials f ∈ R[x] (this means
that for every ϵ > 0 there is a polynomial f ∈ R[x] such that |ϕ(a)− f(a)| < ϵ for
all a ∈ [u, v]).

Exercise 8.4. Try to come up with an analogue of the Lagrange interpolation
polynomials for higher dimensions, and think about how to modify the statement
of Corollary 8.3, such that it hold for n-ary functions ϕ : Fn → F , for arbitrary
n ∈ N.

8.2. Quotient rings modulo polynomials. In this section we describe how we
can construct new rings from F[x], by forming the quotient rings modulo a given
polynomial m (also called factor rings). This construction can be compared with
the construction of Zm from Z, and (as we will see) can be used to construct all
finite fields.

Definition. Let F be a field, and m ∈ F [α] a polynomial of degree n ≥ 1. The
quotient ring F[α]/(m) then consists of the polynomials of degree < n, together
with operations that all computed modulo m. So

F[α]/(m) = ({f ∈ F[α] : deg f < n}+,−,⊙, 0, 1),

43

where +,−, 0, 1 are defined as in F[α], and f ⊙ g = f · g mod m.

First of all, let us check that F[α]/(m) is also a commutative ring. All the
axioms that only involve +, − and 0 clearly hold, since these operations have the
same definition on F[α]/(m) as on F[α]. For the associativity of ⊙, recall first that
f ≡ g (mod m) if and only if f mod m = g mod m, and f mod m ≡ f (mod m).
We want to show f, g, h ∈ F[α]/(m):

f ⊙ (g ⊙ h) = (f ⊙ g)⊙ h.

By definition, this is equivalent to

f · (g · h mod m) mod m = (f · g mod m) · h mod m,

which in turn, by the above rules, is equivalent to the congruence

f · (g · h) ≡ (f · g) · h (mod m).

This congruence identity holds however for all polynomials f, g, h, since · is asso-
ciative in F[α]. In a similar way we can prove the commutativity and distributivity
of ⊙, we leave it to the reader.

Example. Let us consider the quotient ring R[α]/(α2 +1). Its elements are of the
form a + bα, for a, b ∈ R. The addition on R[α]/(α2 + 1) is (a + bα) + (c + dα) =
(a+ c) + (b+ d)α, while the product of two elements is equal to

(a+ bα)⊙ (c+ dα) = ac+ (ad+ bc)α+ bdα2 mod (α2 + 1)

= (ac− bd) + (ad+ bc)α.

Note that this corresponds to the addition and multiplication over the complex
numbers. This is not a coincidence: If we identify the symbol i with α, then
R[α]/(α2+1) = C (formally speaking, the map a+b ·α 7→ a+b ·i is an isomorphism
from R[α]/(α2 + 1) to C). The explanation for this phenomenon is rather easy:
modulo (α2+1), the value of α2 is −1, i.e. α2 ≡ −1 (mod α2+1). In other words,
α has exactly the property that defines the imaginary unit i.

Similarly, it can be seen that the quotient ring Q[α]/(α2 + 1) is equal to the
rational Gaussian numbers Q(i) (again, formally speaking they are just isomorphic,
i.e. equal up to renaming the elements).

Example. For a finite field Zp, the properties of Zp[α]/(α
2 + 1) depend on the

prime p:

• The quotient ring Z2[α]/(α
2+1) has 4 elements, but is not a field, and not

even an integral domain, since

(α+ 1)⊙ (α+ 1) = α2 + 1 mod (α2 + 1) = 0.

• The quotient ring Z3[α]/(α
2+1) has 9 elements. It is a field, although this

is not immediately clear.

The following proposition gives a characterization of the cases, in which a quo-
tient ring is a field:

Proposition 8.5 (Quotient of irreducible polynomials). Let F be a field, and m ∈
F [α] a polynomial of degree ≥ 1. Then the following are equivalent:

(1) F[α]/(m) is a field,
(2) F[α]/(m) is an integral domain,
(3) m is an irreducible polynomial in F[α].

44

Proof. (1) ⇒ (2) follows from Proposition 3.3.
(2) ⇒ (3): If m is not an irreducible polynomial in F[α], then we can write it

as m = f · g, for two polynomials with deg f, deg g < degm. It then holds that
f ⊙ g = m mod m = 0 in F[α]/(m), thus F[α]/(m) is not an integral domain.

(3) ⇒ (1): Let us assume that m is irreducible and f ∈ F[α]/(m) with f ̸= 0.
Our goal is to construct the inverse of f . Since m is irreducible, it holds that 1 =
gcd(f,m) in F[α]. By Bézouts identity, there are u, v ∈ F[α] such that 1 = uf+vm.
Let us define ũ = u mod m. Then ũ⊙ f = ũf mod m ≡ uf ≡ 1 (mod m). Thus ũ
is the inverse of f . □

In the following, we are often going to use the standard multiplication symbol ·
instead of ⊙; the meaning however should always be clear from the context (simi-
larly to how we used the same symbols of addition/multiplication over Z and Zm).
The construction just described in Proposition 8.5 will be important in the next
section, where we discuss finite fields.

We continue now by giving another important application of Proposition 8.5:
Every field can be extended to a field, in which a given polynomial has a root.
(For Q this might seem trivial, since you probably already know that every rational
polynomial has a root in C, by the Fundamental Theorem of Algebra. However,
the proof of the Fundamental Theorem of Algebra is not easy, and the following
propositions are actually an important step in it).

Proposition 8.6. Let F be a field and f ∈ F [x] be a polynomial of degree ≥ 1.
Then there exists a field S ≥ F, such that f has a root in S.

Proof. Let m be an irreducible factor of f , and let m =
∑n

i=0 aix
i. It is enough to

find a field S ≥ F, in which m has root, since then also f , as a multiple of m, has
a root. We define S = F[α]/(m). By Proposition 8.5, S is a field. Furthermore in
S the polynomial m has the root α ∈ S, since

m(α) =

(
n∑

i=0

ai(α
i)

)
mod m(α) = m(α) mod m(α) = 0.

□

Example. • The rational polynomial f = x3 − 2 ∈ Q[x] induces the field

Q[α]/(α3 − 2), in which α is a root of f . If we identify α with 3
√
2, it can

be seen that this field is isomorphic to Q(3
√
2).

• The polynomial f = x3 − 2 ∈ Z7[x] induces the field Z7[α]/(α
3 − 2), which

has 73 many elements and which you probably have not encountered yet.

By induction we can refine Proposition 8.6, and find an extension S ≥ F, in
which f even decomposed into linear factors:

Corollary 8.7 (Splitting field). Let F be a field and f ∈ F [x] be a polynomial of
degree ≥ 1. Then there exists a field S ≥ F, such that f can be written as the
product of polynomials of degree 1.

Proof. We prove this by induction on the degree of f . If the degree of f is 1, then
f = ax + b, and we are already done. Otherwise, deg f > 1. By Proposition 8.6,
there is an extension U ≥ F, such that f has a root u in U . Then f decomposes
into f = (x − u) · g, for some g ∈ U[x]. Since deg g < deg f , we can apply the
induction hypothesis to g, to obtain a field S ≥ U, in which g decomposes into
factors of degree 1. Since S is also a field containing F, this finishes the proof. □

45

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

· 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

Figure 4. The operation tables of the 4-element field Z2[α]/(α
2+

α+ 1) with β = α+ 1

9. Finite fields and some applications

9.1. Finite fields and data representation. An important application of quo-
tient rings is the construction of finite fields. Let p be a prime number, and
m ∈ Zp[α] be an irreducible polynomial of degree k. Then, by Proposition 8.5,
the quotient ring Zp[α]/(m) is a field. Its carrier set consists of all the polynomials
over Zp of degree < k, so it has size pk. In this way we can for example construct
the 4-element field Z2[α]/(α

2 +α+1), whose operation table you can see in Figure
4. Note that this field is different from the ring Z4. (And in general, for any k > 1,
every pk-element field is different form the ring Zpk !)

In the same way we can construct the fields

• Z2[α]/(α
3 + α+ 1) or Z2[α]/(α

3 + α2 + 1), with 8 elements
• Z3[α]/(α

2 + 1) or Z2[α]/(α
2 ± α+ 2), with 9 elements

A priori, it is not clear if there are fields of all prime power sizes pk (and how
many). But, by the following theorem there is exactly one field of size pk (up to
isomorphism). So in the example above Z2[α]/(α

3 + α+ 1) or Z2[α]/(α
3 + α2 + 1)

are both equal (up to renaming their elements), and describe the unique 8-element
field.

Theorem 9.1. Let p be a prime number, and k ∈ N. Then

(1) There is an irreducible polynomial of degree k over Zp, and therefore there
exists a field of size pk,

(2) every field of size pk can be constructed as quotient ring Zp[α]/(m), for
some irreducible polynomial of degree k,

(3) when m1,m2 ∈ Zp[α] are two irreducible polynomials of degree k, then
Zp[α]/(m1) and Zp[α]/(m2) are isomorphic (in other words, the choice of
m does not matter).

The proof of this theorem is harder than it might appear. Even to show the
existence of a field of size pk is not trivial; we can obtain it as a splitting field of Zp

with respect to the polynomial f = xpk −x (the construction in Corollary 8.7). The
proof of the rest of Theorem 9.1 requires however some more advance techniques,
which we are not going to discuss here.

We are going to denote the field of size pk by Fpk (you might also encounter the

notation GF(pk), since finite fields are also known as Galois fields).
Finite fields, in particular those of size 2k, have many applications in computer

science. They can be used to optimise both the representation of data and the per-
formance of computations. We start in this section by discussing the representation
of data.

46

Figure 5. A k-bitvector as an element of F2k = Z2[α]/(m)

The basic data objects used by computers are bit vectors, i.e. k-tuples, such that
every entry is either 0 or 1 (a bit). Let m ∈ Z2[α] be an irreducible polynomial of
degree k. Then we can identify a bit vectors of (a0, a1, . . . , ak−1) with the element
a0 + a1α+ a2α

2 + · · · ak−1α
k−1 ∈ Z2[α]/(m) = F2k . In other words, the bit vectors

of a fixed length k can be represented by the elements of the finite field F2k .
Some standard operations on bit vectors can be also nicely described in the

field F2k . For example, moving to bit to the left (or right) of a given entry of a
bitvector corresponds to multiplying (or dividing) with α. Flipping the i-th bit of
(a0, a1, . . . , ak−1) corresponds to adding (0, . . . , 0, 1, 0, . . . , 0) (where 1 is on the i-th
coordinate). The bitwise XOR-operation is the field addition. The bitwise AND
corresponds to the coefficient-wise multiplication of the corresponding polynomials
(attention, this is not the field multiplication of F2k).

Besides this, fields give us two very useful operations: the field multiplication ·
and inversion −1. One application of them is in creating cyphers. The idea behind
this is, roughly speaking, that small local changes in the input, quickly propagate
to global changes in the input under operations that involve the (non-linear) field
operations. We give an example:

Example. A symmetric cypher is a cypher for which the same key is used for
the encryption and decryption. One of the most common symmetric cyphers is
the Advanced Encryption Standard (AES, also known as Rijndael after one of its
inventors). AES works with bit vectors of length 8, which corresponds to elements
of the field

F256 = Z2[α]/(α
8 + α4 + α3 + α+ 1).

The data that is to be encoded is split up into blocks of 128 bits each; every such
block can be represented by a 4× 4-matrix over the field F256 (since 25616 = 2128).
To create a cypher, AES repeats the following 4 steps for every block several times
(plus an extra steps at the beginning and end, which we will ignore here). In the
first step we substitute every entry u of the matrix as follows

u 7→ u−1 · (1 + α+ α2 + α3 + α4) + (1 + α+ α5 + α8) mod α8 + 1,

where the inverse u−1 is computed in F256, but the rest of the operations is done
in the polynomial ring Z2[α]. In the second phase, the i-th row of the matrix is
cyclically shifted (i− 1)-many times. The third step mixes up every column on the
matrix in the following way: we regard the column (a0, a1, a2, a3) ∈ F4

256 as the
coefficients of the polynomial f = a0 + a1x+ a2x

2 + a3x
3 ∈ F256[x], and substitute

the column according to the operation

f 7→ f · (α+ x+ x2 + (α+ 1)x3) mod (x4 + 1).

In the forth step a selected part of the key is (bitwise) added to the matrix.

47

The first 3 transformations are bijective, but also have the property that local
changes in the input very quickly propagate to global changes in the output. There-
fore adding (part of) the codeword in step 4 and iterating the procedure will result
in a cypher that has very good cryptographic properties. However, knowing the
codeword, it is not too hard to decode this cypher, since all 4 steps can be reversed
in an efficient way: Step 4 can be reversed by just subtracting the correct part of
the codeword again, and Step 2 by cyclically shifting the rows back. Step 1 and 3
can be reversed using the algebraic structure of the appearing rings (hint: Bézout
identities).

Corollary 8.3 and its generalization to functions of higher arities (Exercise 8.4)
are also of big importance for computing in finite fields: they show that inf fact
every operation over a finite field can be represented by polynomials (of bounded
degree). This fact is also used (among others) in cryptanalysis. We are going to
see more applications with Secret Sharing (Section 9.2) and with error-correcting
codes (Section 9.3).

9.2. Secret sharing. Imaging the following scenario: the army has a secret code
that allows it to fire nuclear missiles. Apparently it’s not good for one person to
have the code and to launch missiles at his own will. Not even two lunatics should
be able to fire missiles. The president therefore orders that the launch of the missiles
requires the consent of at least three members of the five-member staff. How can
this be arranged?

In general, we are talking about a (k, n)-secret sharing scheme if n participants
share a secret, the disclosure of which requires the presence of at least k of them.
Throughout this section we will assume that the secret t is an element of some
field F (in practice usually a bitvector of length m is shared, interprete either as m
secrets from the field Z2, or as one secret from the field F2m).

For the case k = n a very simple scheme can be used. In this case, the owner of
the secret issues random values ai ∈ F to all of the participants and publishes the
value c = t+

∑n
i=1 ai. In order to disclose the secret, each of the participants has

to disclose their share ai of the secret; then t can be retrieved as t = c−
∑n

i=1 ai.
If not all participants are present, for instance if there are only n − 1, nothing

definitive can be said about the value of t: the missing element can change the value
of the sum to any another value. Guessing a codeword at random will only lead to
success with probability 1

|T | . In practice, when bitvectors are used, this means that

the probability of guessing one bit correctly is 1
2 , and for m-bits it is

(
1
2

)m
. Thus,

picking m large enough gives high security.
But what to do when k < n, as in our nuclear missile scenario? A classic solution

for the general (k, n)-secret sharing scheme is the so-called Shamir protocol. Here,
the owner of the secret randomly chooses a polynomial f ∈ F[x] of degree < k such
that f(0) = t (i.e. the secret is the 0-th coefficient of f) and keeps it secret. She
then selects n different elements 0 ̸= a1, a2, . . . , an ∈ F (these can be public) and
gives the values of the polynomial f(a1), f(a2), . . . , f(an) to the participants.

If k participants decide to disclose their share of the secret, they can take their
values and compute a polynomial of degree < k that interpolates all the given
points. By the Interpolation Theorem (Corollary 8.2), this polynomial must be
equal to f . So evaluating it at 0 then results in the codeword f(0) = t.

48

On the other hand, if there are only k − 1 participants present, they do not
find anything about the absolute term f , since there are |F| polynomials of degree
< k that run through their k − 1 points, each of which has a different value at 0
(again by the Interpolation Theorem). In practise this means that, if the field with
2m elements (with 2m > n), is used for the m-bit key, then the probability that a
random guess leads to the codeword is 1

2m .
The scheme can be easily modified for more specific tasks. For example, what

if the president has decided that three of the five mad generals can fire missiles, or
she herself? Then she can use a (3, 8) scheme, in which each of the generals get one
part, and she keeps three.

Besides storing information that is highly sensitive and highly important (mis-
sile launch codes, numbered bank accounts, and other stuff from Bond movies),
secret sharing schemes have also day-to-day applications. They are important in
cloud computing environments: a key can then be distributed over many servers
by a threshold secret sharing mechanism. The key is then reconstructed when
needed. Another real world application is in creating digital signatures for official
documents.

Exercise 9.2. A two-storey office in Kocourkov houses 10 officials on each floor,
plus a director. The office may issue a decision with a round stamp, if at least
5 officials from the 1st floor are present and 3 from the 2nd floor, or at least 2
from the 1st floor, 8 from the 2nd floor, and the director. Design a key-sharing
scheme for creating a safe stamp. (Similarities to the city of Prague are purely
coincidental.)

9.3. Error-correcting codes. The problem we study in this section is: How to
detect and eliminate random errors in a data stream? A typical situation is the
transmission of information over an unreliable channel (noise, data loss, etc.), but
the same question also applies to the distortion that happens under long-term
storage of data.

The mathematical model of the situation is as follows: the transmitter sends a
word of length k in an alphabet A (in the setting with bit vectors A = Z2). The
channel randomly changes some letters, and the receiver has to detect if there was
an error, and to reconstruct the original message. In our simple setting (which is
not realistic, but a good starting point) we assume that that at most e errors occur
in each word of length k, and that errors consist in flipping the value of a bit (no
bits are added or deleted).

One of the easiest ways of detecting an error is to do a parity test: for this, we
attach to the original message (of length k) an extra bit, such that the sum of all
bits is equal to 0 (modulo 2). If exactly one error occurs during the transmission,
the checksum for the received message will return 1 and we know that there was a
mistake. This system is time and space efficient, but does not allow to fix an error,
since we don’t know it happened. Furthermore, if 2 (or an even number) of errors
happened, no mistake will be detected.

A second naive approach is to repeat the letters: we simply repeat each letter n-
many times and assume that in each consecutive n-tuple there will be less than n/2
errors. We can then reconstruct the original message by “voting”: the character
which appears more often in an n-consecutive tuple was a character in the original
message. This scheme works with a fairly weak channel reliability, but is very space

49

consuming: the length of the message is multiplied by a factor n. Is there a better
procedure?

First, let’s summarize what we’re looking for. We want to replace every word of
length k with a code word of some length n ≥ k. These code words should further
have the property that, after replacing a bounded number of characters, it is still
possible to unambiguously reconstruct the original word.

Let us first define the so-called Hamming distance: for the words u, v ∈ An the
distance δ(u, v) is equal to the number of positions at which these words differ. A
self-correcting code of type (k, n; d) is then any function ϕ : Ak → An such that for
all u, v ∈ ϕ(Ak) in the image u ̸= v it holds that δ(u, v) ≥ d. For example, adding
a parity bit is a (k, k + 1; 2)-code, while character repetition is a (1, n;n)-code.

Let us call C = ϕ(Ak) the set of code words. For practical use it is also important
that

• both ϕ : Ak → C and ϕ−1 : C → Ak can be computed efficiently.
• for each u ∈ An it is possible to efficiently compute a codeword v ∈ C such
that δ(u, v) is minimal.

Because of this, often so called linear codes are used: then the alphabet A is equal
to a field, and the representation function ϕ is linear. Thus the set of codewords C
is a linear subspace of the vectorspace An.

Observe, that a code of type (k, n; d) is able to correct e = ⌊d−1
2 ⌋ many errors:

when≤ e letters of a code word u are changed, the result is a word v with δ(u, v) ≤ e.
Because all codewords have a distance of at least 2e + 1 from each other, u is the
only codeword at distance ≤ e from v (if there was an other codeword u′ with
δ(u′, v) ≤ e we would get 2e+1 ≤ δ(u, u′) ≤ δ(u, v)+ δ(v, u′) ≤ 2e - contradiction).

The first interesting error-correcting code were developed by Richard Hamming
in the 1950ies, when designing some of the first computers at Bell laboratories. The
so-called Hamming (4, 7)-code is able to correct one error in each seven, transmitted
bits, at the cost of extending the length of the original message by a factor 7

4 . The

basic idea is to use the linear map ϕ : Z4
2 → Z7

2, which is given as ϕ(u) = uM , where
M is the following matrix:

M =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

In other words, the codewords are computed by adding to the original codeword of
length 4 a control sequence of length 3, each of which letter is a linear combination
of the characters of the original message. Note that the images of the base vectors
(i.e. the rows of the matrix) have each a Hamming distance of at least 3 from each
other; it is not difficult to prove that this also holds for all codeword pairs. The
Hamming-code is therefore a code of type (4, 7; 3) that is able to correct 1 error.
Verifying that a 7-letter word u is a codeword is also easy: for this we take the first
four letters of u, compute their image under ϕ and check the result is equal to u.

If we detect an error, and if we assume that exactly one error occurred, we have
exactly 7 positions where it could have occured. So we can correct it rather quickly
by simply checking all 7 possibilities. Using linear algebra, even more efficient pro-
cedure can be found to correct a singe mistake, but this is beyond the scope of our

50

text.

In the 1960ies, the so-called Reed-Salomon codes, based on polynomial interpo-
lation were developed. They have, in a certain sense, an optimal ratio of errors
to length, and are the most widely used codes today. The alphabet then is again
a finite field F. The original word (a0, . . . , ak−1) is identified with the polynomial∑k−1

i=0 aix
iF[x], and the codeword is computed by evaluating this polynomial at

n-many pairwise different values u1, . . . , un ∈ F. So formally the Reed-Salomon
(k, n)-code is defined as

ϕ : F k → Fn, f =

k−1∑
i=0

aix
i 7→ (f(u1), f(u2), . . . , f(un)).

The inverse of ϕ can be efficiently computed by just taking the interpolation
polynomials for the given function values.

If two polynomials of degree < k coincide in at least k values, they must be iden-
tical (uniqueness part in Corollary 8.2). In other words, two different polynomials
f ̸= g of degree < k must have strictly less than k values in common. Thus ϕ(f)
and ϕ(g) differ in > n− k coordinates, so Reed-Salomon codes are of type (k, n; d)
for some d ≥ n − k + 1. As a consequence they are able to correct ⌊n−k

2 ⌋ many
mistakes.

In practice, often F = F256 and n = 255 are chosen together with a value of k
that is suitable for the application (the smaller k, the more errors the code corrects,
but the worse the ratio between the length of the original word and code words).
For example, for k = 253, the code corrects one error for the price of word extension
by about 1% , for k = 127 the code corrects 64 errors for the price of doubling the
word length.

Furthermore, a special selection of points is often used in practice (ui = αi−1,
where α is a generator of the cyclic group F∗, see Section 13), which simplifies
the encoding and decoding using a fast Fourier transform. This significantly can
increase the speed of the algorithm (standard substitution and interpolation algo-
rithms run in quadratic time, which can be too slow for big amounts of data).

To successfully put it into practice, it remains to describe the algorithm for
finding the nearest one codeword. For short codes correcting one error, this can
be achieved by simply going though all options (as with Hamming codes), but in
general this is not an easy task and we refer readers to specialized literature.

9.4. Mutually orthogonal latin squares and experimental design. A latin
square on a set X is a square matrix (ai,j)i,j∈I indexed set I with entries ai,j ∈ X
satisfying the following condition: Each element of X appears in each row and each
column exactly once. Note that it immediately follows that |I| = |X|. So if I = X,
we can regard a latin square (ai,j)i,j∈I as the operation table of a binary operation
∗ with u ∗ v = au,v.

Example.

(1) Every (completed) sudoku is a latin square over the set X = {1, . . . , 9}
(2) The following 3 examples are latin squares on the set X = {0, 1, 2}:

0 1 2
1 2 0
2 0 1

0 2 1
2 1 0
1 0 2

0 2 1
1 0 2
2 1 0

51

The corresponding operations from left to right are u ∗ v = u + v mod 3,
respectively −u− v mod 3 and u− v mod 3.

(3) If R is a ring, then the operation + defines a latin square over the set R
with entries (a + b)a,b∈R. If F is a field, then also the multiplication · is
a latin square over F ∗ = F \ {0} with entries (a · b)a,b∈F∗ . We will see in
Section 10, that every operation table of a group multiplication is a latin
square.

Two latin squares (ai,j)i,j∈I and (bi,j)i,j∈I over sets X and Y are called mutually
orthogonal, if each pair fromX×Y appears just once in the list ((ai,j , bi,j) : i, j ∈ I).

Example. There are only two latin squares over the set X = {0, 1}, namely

0 1
1 0

1 0
0 1

Because of this it is not hard to see that there are no mutually orthogonal latin
squares of order 2 (either the pairs (0, 1) and (1, 0) would appear twice, or the pairs
(0, 0) and (1, 1)). There exist mutually orthogonal latin squares of order 3: The first
and third square in the above example (2) can be seen to be mutually orthogonal.
However, the first and second squares in (2) are not mutually orthogonal, since,
when pairing them up, e.g. (0, 0) appears twice.

Exercise. From a standard deck of cards draw all the cards with the four figures
(J,Q,K,A) from all four suits (♢,♡,♣,♠). Arrange the cards in a 4 × 4 square,
such that in each row and in each column every figure and every suit appears exactly
once.

Solution. The problem here actually consists to find two mutually orthogonal latin
squares on four elements. The first set is the set of figures X = {J,Q,K,A} in the
second in the case of the set of suits Y = {♢,♡,♣,♠}.

The squares must be Latin, because every row and column should contain all
4 elements of X respectively Y . Further the squares must be orthogonal to each
other, since every card (that is, every element from X × Y) can only be used one
time. At first it is not clear if there is a solution and how to find it, but it is not
difficult to verify that the following configuration works:

A♢ K♡ Q♣ J♠
K♣ A♠ J♢ Q♡
Q♠ J♣ A♡ K♢
J♡ Q♢ K♠ A♣

We are going to show how to construct such a solution in Proposition 9.3. □

Exercise. A military parade is to be attended by 36 soldiers from 6 regiments,
each consisting of 6 soldiers of 6 different ranks. Arrange the soldiers into a 6 × 6
square so that in each row and column there is one representative of each regiment
and each rank.

It is not hard to see that the task in this exercise is again to find two orthogonal
squares, this time on 6 elements. However, Gaston Tarry showed in 1901 that
such squares do not exist. So a natural question is: for which numbers n ∈ N do
mutually orthogonal squares of order n exist? This question was answered in 1959,
showing that mutually orthogonal squares exists for all n ̸= 2, 6.

52

In 1782, Euler discovered a partial solution for prime powers n, which we can
easily construct using finite fields (Euler described them differently, the concept of
finite fields was unknown at the time).

Proposition 9.3. Let n be a power of a prime number and n ̸= 2. Then there
exist n− 1 latin squares of order n that are all mutually orthogonal to each other.

Proof. Let Fn be the field with n elements. Then, for each 0 ̸= a ∈ Fn, let us
define the square matrix (au+ v)u,v∈Fn

. First note that for a fixed a this is a latin
square: If there are two entries in row u in position v1, v2 with the same value, then
au+ v1 = au+ v2 ⇒ v1 = v2. Similarly if there are two entries in the same column
v with such that au1 + v = au2 + v, then this implies au1 = au2, and therefore
u1 = u2. Because Fn is finite, each element of Fn appears exactly once in every
row/column.

In order to prove that two squares (au+v)u,v∈Fn
and (bu+v)u,v∈Fn

are mutually
orthogonal, let us assume that there are pairs (u1, v1) and (u2, v2) such that both
squares have the same values at these positions, in other words:

au1 + v1 = au2 + v2 and bu1 + v1 = bu2 + v2.

This implies a(u1 − u2) = v2 − v1 = b(u1 − u2). Since a ̸= b, this equation only
holds if u1 = u2 and thus v1 = v2. □

Proposition 9.4. If there are mutually orthogonal latin squares of order m and n,
then there are also such squares of order m · n.

Proof. Let (ai,j)i,j∈I and (bi,j)i,j∈Ibe two mutually orthogonal latin squares over
X1, X2 of size m, and let (uk,l)k,l∈J and (vk,l)k,l∈Jbe two mutually orthogonal latin
squares over sets Y1, Y2 of size n. Then we define the matrices ((ai,j , uk,l))(i,k)×(j,l)∈I×J

with entries from X1 × Y1 and ((bi,j , vk,l))(i,k)×(j,l)∈I×J with entries from X2 × Y2.
It is not too hard to show that these are mutually orthogonal latin squares, we
leave it as an exercise. □

Corollary 9.5. For every n ̸≡ 2 (mod 4) there exist mutually orthogonal matrices
of order n.

Proof. Let n = pk1
1 · . . . · pkm

m be a prime decomposition of n. Since n ̸≡ 2 (mod 4),

none of the prime powers pki
i is equal to 21. By Proposition 9.3 there exist mutually

orthogonal latin squares of order pki
i for all i = 1, . . . ,m. By repeatedly applying

Proposition 9.4 we can also construct mutually orthogonal latin squares of order
n. □

For n = 2 we have already shown that mutually orthogonal latin squares do not
exist, for n = 6 by the already mentioned result no example exists. You might
be tempted to conjecture (like Euler) that for no number n ̸≡ 2 (mod 4) mutually
orthogonal latin squares exists. However, in 1958, it was shown that for all n ≥ 10,
there is also a solution. Thus n = 2, 6 are the only exceptions.

However, it remains unclear up to this day how many orthogonal squares of a
fixed size n can exist. It is not difficult to prove that there are at most n − 1,
so Proposition 9.3 gives the optimal answer for prime powers n. But for other
numbers it is unknown. For n = 10 for instance, there are provably less than 9 such
squares, but how many is unknown. (The existence of n − 1 mutually orthogonal

53

Latin squares of order n is equivalent to the existence of a projective plane of order
n, connecting the problem with finite geometries).

And what about the design of experiments mentioned in the section title? Con-
sider the following problem: We have n varieties of a given crop, n types of fer-
tilizer and n types of pesticide and want to find out which combination is best.
If we wanted to try all the combinations, we need n3 experiments; which is a lot
(especially if you’re a researcher with scarce funding).

Wouldn’t n2 be enough? To still get a balanced experiment set-up there are
then two reasonable conditions: every object (crop, fertilizer, pesticide) is used the
same number of times (n times) and further we would like each pair of objects to be
used just once (so that we can better trace back interesting outcomes to a specific
combination of variables). A solution to this problem is a Latin square (ai,j)i,j over
the set {1, 2 . . . , n}. We divide the experimental field into n × n fields, such that
we sow the i-th crop variety in the i-th row, pour the j-th fertilizer into the j-th
column and use the ai,j-th pesticide on index (i, j).

Now consider adding another factor, such as n degrees of irrigation. We can
construct a second latin square (bi,j)i,j for it and we will irrigate the field with
index bi,j ; But it’s not good to take this square arbitrarily: if, for example, we
choose bi,j = ai,j then plants who receive the same pesticide use also the same level
of water. If we pick (bi,j) to be an orthogonal square to (ai,j) however, this problem
will not appear.

This was a simple example of a problem that is studied in design theory, an area of
mathematics which deals with the construction of objects with various requirements
for “balance”, and has application in design of statistical experiments.

54

Groups

55

10. Groups

10.1. Definition and examples. One of the main motivations for group theory is
to study the symmetries and transformations of mathematical objects. The name
group originally came from Galois theory and referred to a ‘group’ (in the sense of
‘set’) of permutations G that are closed under composition. So for all permutation
π, σ ∈ G also their composition π ◦ σ is an element of G.

The abstraction of this concept created a big branch of algebra, called group
theory. Applications of group theory can be found in many different areas of math-
ematics, such as in combinatorics (finite groups) and geometry (linear groups).

Definition. A group G = (G, ∗,′ , e), consists of a set G, a binary operation ∗ : G×
G → G, a unary operation ′ : G → G and a constant e ∈ G, such that for all
a, b, c ∈ G the following identities hold:

a ∗ (b ∗ c) = (a ∗ b) ∗ c, a ∗ e = e ∗ a = a, a ∗ a′ = a′ ∗ a = e.

The group is additionally called Abelian if for all a, b ∈ G:

a ∗ b = b ∗ a.

The element e is called the neutral element. For every a ∈ G, the element a′ is
called the inverse element of a.

Similar to rings, we formally distinguish the carrier set G and the group G =
(G, ∗,′ , e), which additionally contains the information about the algebraic struc-
ture.

For specific examples of groups often the notation ·,−1 , 1 (multiplicative nota-
tion) or +,−, 0 (additive notation) is used to describe the group operations. The
additive notation is usually reserved for Abelian groups.

Definition. Let G = (G, ∗,′ , e) be a group and H ⊆ G be a subset of the carrier
set, such that e ∈ H, and for all a, b ∈ H also

a′ ∈ H and a ∗ b ∈ H.

We then say that H is closed under the group operations of G. In this case, also
H = (H, ∗|H ,′ |H , e), where |H denotes the restriction to H is a group. We call H
a subgroup of G, and write for short H ≤ G. Every group G has {e} and G as
subgroups; these two are called the trivial subgroups.

There are countless examples of groups in mathematics; but we will only give
examples of four important families of groups, which find very widespread use:
permutation groups, matrix groups, groups describing geometric transformations
and groups stemming from rings.

Example. The symmetric group SX consists of the set of all the permutations on a
given non-empty set X, together with the binary operation ◦ (which composes two
permutations), −1 (which outputs the inverse function), and the neutral element
id : x 7→ x, so

SX = ({π : π is a permutation of X, }, ◦,−1 , id).

For finite sets X = {1, . . . , n}, we also write Sn instead of SX . The subgroups of
SX are called permutation groups. Some important examples are

• the alternating group An ≤ Sn, which contains all even permutations.

56

Figure 6. The dihedral groups D8 and D10

• Let us label the vertices of a regular n-gon by the numbers 1, 2, . . . , n (clock-
wise). The dihedral group D2n ≤ Sn consists then of all the permutations
of {1, 2, . . . , n} that preserve the edges of the n-gon. This corresponds to
all symmetries (reflections and rotations) of the n-gon (see Figure 6).

• various other symmetry groups of geometric objects, automorphism groups
of graphs and other mathematical structures.

Example. A special type of permutation group are groups describing geometric
transformations of geometrical spaces (Euclidean, affine, projective, ...) that pre-
serve certain properties. An example of this is the Euclidean group En, which
consists of all isometries of the Euclidean space Rn (so all the permutations of Rn

that preserve all distances). This gives us another possible way to describe the
dihedral group D2n; namely as the subgroup of all elements of E2 that map the
entire regular n-gon to itself.

Example (Matrix groups). If F is a field, and n ∈ N, then the general linear group
GLn(F) consists of the regular n×n matrices with entries from F. The operations
are the matrix multiplication ·, the matrix inversion −1, and the identity matrix I
as the neutral element, so

GLn(F) = ({A : A is a regular n× n matrix over the field F}, ·,−1 , I).

The subgroups of the general linear group are called matrix groups. Examples
include:

• the special linear group SLn(F), consisting of all matrices with determinant
1;

• the orthogonal group On(F), which consists of all orthogonal matrices, i.e.
all matrices A such that AAT = I (Over the field R, these are all the ma-
trices, whose rows form an orthonormal basis with respect to the standard
inner product).

Permutation and matrix groups are, in a sense, universal examples: Every group
G can be represented as a permutation group and every finite group can be represent
as a matrix group (you can learn more about this in Algebra 2).

Example. The quaternion group Q8 is defined on the set {±1,±i,±j,±k}. Its
multiplication · is defined by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j,

and xy = −(yx) and (−x)y = x(−y) = −(xy) for all x, y ∈ {i, j, k}.

57

A big source of Abelian groups are groups derived from commutative rings:

Example. Let R = (R,+,−, 0, ·) be a ring. Then (R,+,−, 0) is an Abelian group.
Examples here include many ‘arithmetical’ groups, such as Z,Q,R and the group
Zn of elements {0, 1, 2, . . . , n− 1} together with the addition modulo n.

Example. Let R = (R,+,−, 0, ·) be a commutative ring with unity 1, and let R∗

be the set of invertible elements in R. Then R∗ = (R, ·,−1 , 1) is an Abelian group,
the multiplicative group of R. It is easy to verify that R∗ indeed satisfies the group
axioms, most of them follow directly from the ring axioms for R. Furthermore
a−1 · a = 1 for all a ∈ R∗, by the definition of invertible element.

• If R∗ is a field, then R∗ = (R \ {0}, ·,−1 , 1).
• For every polynomial ring (R[x])∗ = R∗, since the only invertible elements
are the constant polynomials, which are invertible in R∗

• Z∗ = ({1,−1}, ·,−1 , 1).
• For every n ∈ N the group Z∗

n consists of the elements a ∈ {1, . . . , n − 1},
which are coprime to n.

An important tool in the construction of groups is the direct product:

Definition. The direct product of a family of groups Gi = (Gi, ∗i,′i , ei) for i ∈
1, . . . , n is defined as the group

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn = (G1 × · · · ×Gn, ∗,′ , e),

such that its operations are defined coordinate-wise,i.e. for elements (a1, . . . , an), (b1, . . . , bn) ∈
G1 × · · · ×Gn:

(a1, . . . , an) ∗ (b1, . . . , bn) = (a1 ∗1 b1, . . . , an ∗n bn),

(a1, . . . , an)
′ = ((a1)

′1, . . . , (an)
′n),

e = (e1, . . . , en).

It is not hard to see that these operations satisfy the group axioms, implying that
the direct product of groups is also a group.

In the case in which the groups G1 = · · · = Gn = G are equal, we call their
direct product a direct power of G, and denote it by Gn.

W remark that we can analogously also define the direct products of rings (or of
other families of algebraic structures of the same type).

As in the case of commutative rings, the definition of groups contains only the
minimum number of necessary axioms. In the following proposition we derive some
direct consequences:

Proposition 10.1 (Basic properties of groups). Let G = (G, ∗,′ , e) be a group and
a, b, c ∈ G. Then

(1) If a ∗ c = b ∗ c or c ∗ a = c ∗ b, then a = b;
(2) if a ∗ b = a or b ∗ a = a, then b = e;
(3) if a ∗ b = e or b ∗ a = e, then b = a′;
(4) (a′)′ = a;
(5) (a ∗ b)′ = (b′) ∗ (a′).

Proof.

58

(1) If a ∗ c = b ∗ c, then (a ∗ c) ∗ c′ = (b ∗ c) ∗ c′. By the group axioms we can
rewrite the left side to (a ∗ c) ∗ c′ = a ∗ (c ∗ c′) = a ∗ e = a, and similarly
the right side to (b ∗ c) ∗ c′ = b. Thus a = b. The proof for c ∗ a = c ∗ b is
symmetric.

(2) If a ∗ b = a = a ∗ e, then (1) implies b = e. The proof is symmetric for
b ∗ a = a.

(3) If a ∗ b = e = a ∗ a′, then (1) implies b = a′. The proof is symmetric for
b ∗ a = e.

(4) This follows directly from a′ ∗ a = e and the uniqueness of the inverse
element of a′ shown in (3).

(5) For this, note that (a ∗ b) ∗ (b′ ∗ a′) = a ∗ (b ∗ b′) ∗ a′ = a ∗ e ∗ a′ = a ∗ a′ = e.
By (3) we get (a ∗ b)′ = b′ ∗ a′.

□

Note also that, by the associativity of ∗, we don’t need to care about brackets
when writing down products a1 ∗ a2 ∗ . . . ∗ an of more than two group elements
(Proposition 3.1).

10.2. Powers and the order of a group element. In the last section we al-
ready mentioned that group operations are sometimes denoted by different symbols.
Starting from this section, we are going to stick to the multiplicative notation, if
not stated otherwise. So we are going to write G = (G, ·,−1 , 1) for a general group.

In the multiplicative notation, for an element a ∈ G and n ∈ Z, then we define
the n-th power of a by

an =

1 if n = 0

a · a · . . . · a︸ ︷︷ ︸
n times

if n > 0

a−1 · a−1 · . . . · a−1︸ ︷︷ ︸
−n times

if n < 0

The following rules hold for powers:

Proposition 10.2 (powers). Let G be a group, a, b ∈ G and k, l ∈ Z. Then

ak+l = ak · al, akl = (ak)l = (al)k.

If G is and Abelian group, then additionally (ab)k = akbk holds.

Proof. We prove ak+l = ak · al. If k, l ≥ 0, we immediately see that the number of
a’s appearing on both the products on the left and right side are equal; thus the
identity holds. Analogously we can deal with k, l ≤ 0 (then we get a product of the
same number of inverses a−1 on both sides).

In the remaining cases, a certain number of a and a−1 in the product on the
right hand side cancel out. Let us assume for instance that k > 0 > l and |l| < |k|;
then

ak · al = a · . . . · a︸ ︷︷ ︸
k

· a−1 · . . . · a−1︸ ︷︷ ︸
−l

= a · . . . · a︸ ︷︷ ︸
k+l

· a · . . . · a︸ ︷︷ ︸
−l

· a−1 · . . . · a−1︸ ︷︷ ︸
−l

= ak+l.

the right side consists of the product of k-many copies of a and (−l)-many copies
of a−1. All other cases can be dealt with in the same way.

We leave the proof of the remaining identities as an exercises. □

59

If we look at a group G = (G,+,−, 0) in the additive notation, the expression
a+ a+ . . .+ a︸ ︷︷ ︸

n times

is usually shortened to n · a. Then Proposition 10.2 implies

(k + l) · a = k · a+ l · a, (kl) · a = k · (la), k · (a+ b) = k · a+ k · b,
where the last equality only applies to Abelian groups.(If you think these identities
resemble the definition of vector space, you are on the right track. The theory of
Abelian groups is to a large extent equal to the theory of modules over Z, where
modules are a generalization of vector spaces. However, we are not going to discuss
modules in this course).

Definition. The order of a group G is defined as the size of its carrier set; we
write |G| for it.
Let a be an element of a group G. Then we define ord(a), the order of a, to be the
smallest n ∈ N such that an = 1. If no such n exists then we set ord(a) = ∞.

It might seem confusing that we use “order” to describe two different concepts
for groups; but we will see in the next section that the order of an element is equal
to the order of the subgroup it generates. We give a few examples:

Example.

• ord(2) = 7 in Z7, since 7 · 2 ≡ 0 (mod 7), but n · 2 ̸≡ 0 (mod 7) for all
n = 1, . . . 6:

• ord(2) = 3 in the multiplication group Z∗
7, since 2

3 ≡ 1 (mod 7), but 2n ̸≡ 1
(mod 7) for n = 1, 2.

Thus it is important to always specify, with respect to which group we study the
order of an element.

Example. Infinite groups can have elements of arbitrary order:

• In Q, we have ord(0) = 1 and ord(a) = ∞ for all a ̸= 0
• In Q∗, we have ord(1) = 1, ord(−1) = 2 and ord(a) = ∞ for all a ̸= ±1
• In the group C∗ we have ord(e2πi/k) = k for every k ∈ N.

Example. Finite groups of the same order do not have to have elements of the
same orders

• In Z6, we have ord(0) = 1, ord(1) = 6, ord(2) = 3, ord(3) = 2, ord(4) = 3,
ord(5) = 6; so we get elements of orders 1, 2, 3, 6

• In Sym(3) we have ord(id) = 1, ord((i, j)) = 2, ord((i, j, k)) = 3, so there
are elements of order 1, 2 and 3.

Note that (in the finite case) the order of each element divides the order of the
whole group. This is not a coincidence, but follows from Lagrange’s theorem, which
we are going to prove in the next section.

Proposition 10.3 (The order of a permutation). Let π ∈ Sn be a permutation.
Then its order is equal to the least common multiple of the length of its cycles.

Proof. It is easy to see that a cycle of length l has order l. Next, assume that
C1, . . . , Cm are the disjoint cycles, such that π = C1 ◦· · ·◦Cm. As they are disjoint,
πk = (C1 ◦ · · · ◦ Cm)k = Ck

1 ◦ · · · ◦ Ck
m holds for every k. It is now not hard to

see that (C1 ◦ · · · ◦ Cm)k = id if k is a multiple of all cycle lengths; thus the least
common multiple of all cycle lengths is equal to the order of π. □

60

Figure 7. The subgroup generated by X

11. Subgroups

11.1. Generators.

Lemma 11.1. The intersection of a family of subgroups is again a subgroup.

Proof. Let G = (G, ·,−1 , 1) be a group and (Hi)i∈I a family of subgroups of G.
Let H =

⋂
i∈I Hi be the intersection of the carrier sets of the Hi. We then are

going to show that H is closed under the group operations.
Since 1 ∈ Hi for all i ∈ I, clearly also 1 ∈ H. Next, assume that a, b ∈ H. This

implies that a, b ∈ Hi for all i ∈ I. Since every Hi is closed under ·, we get that
a · b ∈ Hi for all i ∈ I. In other words a · b must be in the intersection H =

⋂
i∈I Hi.

Finally note that a ∈ H means that a ∈ Hi for all i ∈ I. Since every Hi is
a subgroup, also a−1 ∈ Hi for every i ∈ I. In other words a−1 ∈ H =

⋂
i∈I Hi.

Thus H is closed under the group operations, and thus H = (H, ·,−1 , 1) forms a
subgroup of G. □

Definition. Let G be a group and X ⊆ G be a subset of its carrier set. Then we
define the subgroup generated by X as the smallest subgroup of G (with respect to
inclusion) that contains X. For short, we write ⟨X⟩G for the subgroup generated
by X. Such a group always exists, we can simply take the intersection

⟨X⟩G =
⋂

{H ≤ G : X ⊆ H}.

By definition ⟨X⟩G contains X, and is a subset of every subgroup containing X;
and by the previous Lemma 11.1, it is a subgroup of G itself.

Given a subset X ⊆ G, how can we compute the subgroup generated by it? For
finite groups it is possible to use a ‘greedy’ algorithm: we start with the elements
of the set X and add to it all products and inverses of elements of X. We iterate
this step and stop, when we are unable to add any new elements. Then our set is
closed under the group operations and thus equal to the subgroup generated by X
(see Figure 7).

However, it is sometimes more effective to use the following statement, which is
also true for infinite groups.

Proposition 11.2. Let G be a group and X ⊆ G. Then

⟨X⟩G = {ak1
1 · ak2

2 · . . . · akn
n : n ∈ N, a1, . . . , an ∈ X, k1, . . . , kn ∈ Z}.

61

Proof. Let us for short write M for the set on the right hand side of the above
equation. To show that M is equal to ⟨X⟩G, we need to show that

(1) M is a subgroup of G,
(2) M contains X,
(3) M is the smallest subgroup containing X.

It is not hard to see that M is closed under the group multiplication ·. Further
1 = a0 ∈ M , and for every element a = ak1

1 · ak2
2 · . . . · akn

n ∈ M , also it inverse

a−1 = (ak1
1 · ak2

2 · . . . · akn
n)−1 = a−kn

n · . . . · a−k2
2 · a−k1

1 ∈ M . Therefore (1) holds.
For (2), simply note that for every a ∈ X also a = a1 ∈ X.
To see (3), let H be an arbitrary subgroup of G containing X. Then, for every

a ∈ X and k ∈ Z it also must contain ak. Since H is closed under the group
multiplication, it also must contain all expressions ak1

1 · ak2
2 · . . . · akn

n , such that all
ai are in X, thus H contains M . □

As direct consequences we obtain the following:

Corollary 11.3. Let G be a group and a ∈ G. Then ⟨a⟩G = {ak : k ∈ Z}.

Corollary 11.4. Let G be an Abelian group and u1, u2, . . . , un ∈ G. Then

⟨u1, u2, . . . , un⟩G = {uk1
1 · uk2

2 · . . . · ukn
n : k1, . . . , kn ∈ Z}.

If we use the additive notation G = (G,+,−, 0) for an Abelian group, then
⟨u1, u2, . . . , un⟩G = {k1u1 + k2u2 + . . .+ knun : k1, . . . , kn ∈ Z}. (So the generated
subgroup can be obtained similarly to the span of some vectors in a vector space.
However, be careful: Notions such as linear independence, basis, and dimension,
cannot be directly generalized!).

Example. It is a recurring problem to figure out which subgroups are generated
by a given set:

• ⟨ 34 ,
1
3 ⟩Q = {k 3

4 + l 13 : k, l ∈ Z} = { k
12 : k ∈ Z} = ⟨ 1

12 ⟩Q. Here, the first
and last equation follow from Corollary 11.4. The second equality holds,
since 3

4 ,
1
3 ∈ ⟨ 1

12 ⟩ on one hand and 1
12 ∈ ⟨ 34 ,

1
3 ⟩Q on the other hand (since

1
12 = 3

4 − 2 · 1
3).

• ⟨ 34 ,
1
3 ⟩Q∗ = {(34)

k · (13)
l : k, l ∈ Z} = {3l4k : k, l ∈ Z}.

Example. Another important problem is to find a minimal (or particularly nice)
set of generators for a given group. So, given a group G, find a ‘small’ set X such
that ⟨X⟩G = G.

• Z = ⟨1⟩ = ⟨−1⟩, Z∗ = ⟨−1⟩, Q∗ = ⟨−1, primes ⟩.
• Zn = ⟨1⟩, however the multiplication group Z∗

n does not need to be gen-
erated by one element. For example Z∗

7 = ⟨3⟩, but Z∗
8 = ⟨3, 5⟩, and every

generating set of Z∗
8 is least of size 2.

• There are (infinite) groups that don’t have a minimal set of generators.
For instance { 1

n : n ∈ N} generates Q, and omitting finitely many elements
gives us still a set of generators, but a minimal subset does not exists.

Proposition 11.5 (Generators of permutation groups).

• The symmetric group Sn is generated by all transpositions.
• The alternating group An is generated by all cycles of length 3.

62

Proof. Every permutation can be written as the product of cycles. A cycle of
arbitrary length can be decomposed into transpositions as follows

(a1a2 · · · ak) = (a1ak) ◦ (a1ak−1) ◦ · · · ◦ (a1a2).
Therefore Sn is generated by all transpositions.

The alternating group An, by definition, consists of all permutations that can be
written as a product of an even number of transpositions. Therefore it is enough to
show that every product of 2 transpositions can be written as a product of 3-cycles.
But this holds since (ij) ◦ (ij) = id, (ij) ◦ (jk) = (ijk) and (ij) ◦ (kl) = (kil) ◦ (ijk)
for all pairwise different elements i, j, l, k. □

The above set of generators of Sn is not of minimal size, as can be seen from the
following example:

Example.

Sn = ⟨(12), (123 . . . n)⟩

Proof. Thanks to Proposition 11.5, we know that every permutation can be written
as the product of transpositions. Thus it is enough to show that (12) and (123 . . . n)
generate all transpositions. First we show that we can generate the transposition
(k k+1) for every k = 1, 2, . . . , n−1. But this can be easily shown by the induction
(k + 1 k + 2) = (123 . . . n) · (k k + 1) · (123 . . . n)−1.

Next, we show that for a fixed k all the permutations (k k + i) are generated.
This can be shown by induction on i = 1, 2, . . .; an induction step can be shown by
(k k + i+ 1) = (k + i k + i+ 1) ◦ (k k + i) ◦ (k + i k + i+ 1)−1. □

Proposition 11.6 (Order of an element vs. order of subgroup). Let G be a group
and a ∈ G. Then

ord(a) = |⟨a⟩G|

Proof. By Corollary 11.3, the subgroup generated by a is equal to ⟨a⟩G = {ak : k ∈
Z}. Now there are two cases: Either all elements ak are pairwise different from
each other. Then |{ak : k ∈ Z}| = ∞, and clearly also ord(a) = ∞. In the other
case, there are numbers k ≥ 0, l > 0, such that ak = ak+l. In fact, this equation is
equivalent to the same equation any k ∈ Z (you can see this by multiplying with
suitable powers of a on both sides). In particular it is equivalent to 1 = a0 = al.
Let l be the minimal number such that it holds. Then, by definition ord(a) = l.
But on the other hand, since ak = ak+l, for all k: ⟨a⟩G = {e, a, a2, . . . al−1}, thus
| ord(a)| = |⟨a⟩G|. □

11.2. Langrange’s theorem. A fundamental property of finite groups is the fact
that the order of a subgroup divides the order of the whole group, i.e.

H ≤ G ⇒ |H| | |G|.
In particular, thanks to it, the order of an element always divides the order of the
entire group. The proof of this theorem by Lagrange is not complicated: we divide
the whole group G into several subsets, all of which are pairwise disjoint and of the
same size as H. The number of elements of group G will be equal to the number
of elements H. times the number of these subset.

Definition. Let G be a group and H be a subgroup of G.

• The set aH = {ah : h ∈ H}, where a ∈ G, is called a left coset of H.

63

Figure 8. A groupG, subgroupH, and a transversal of the cosets
of H.

• A set T is called a transversal of the cosets of H if |T ∩ aH| = 1 for every
a ∈ G.

• The index of a subgroup H is defined as the number of its cosets:

[G : H] = |{aH : a ∈ G}|

Note that, in this definition we defined the cosets of H by multiplying with
elements from the left. We can also look at cosets that we obtain by multiplication
from the right, i.e. right cosets Ha = {ah : h ∈ H}. In general the right and left
cosets of a subgroup are different.

Example. Let n ∈ N, and H = {x ∈ Z : n | x}. Then it is not hard to see, that
for a ∈ Z the coset is given by

a+H = {a+ h : h ∈ H} = {a+ kn : k ∈ Z} = {u ∈ Z : u ≡ a (mod n)}.
In this example two cosets a+H and b+H are either equal (if a ≡ b (mod n)), or
disjoint. We are going to prove that this fact also holds in general.

Example. Let H = An ≤ Sn = G. Then πAn = Anπ = An holds for every even
permutation π, and πAn = Anπ for every odd π. The group Sn therefore composes
into two composition classes with transversal set T = {id, (12)}.

The left and right cosets do not always have to be equal, as can be seen from
the following example:

Example. Let G = S3, and H = {id, (12)}. We can easily compute the left and
right coset of H with respect to (13), which are:

H ◦ (13) = {(13), (123)}, but (13) ◦H = {13), (132)}.

We can prove Lagrange’s theorem by showing two properties of cosets: if two
cosets of a given subgroup are not equal, they are disjoint; and all cosets have the
same size.

Lemma 11.7. Let H ≤ G. Then, for all a, b ∈ G, either aH = bH, or aH ∩ bH =
∅.

Proof. Let us assume that aH∩bH ̸= ∅. Then we are going to prove that aH = bH.
Let c ∈ aH ∩ bH, so there are elements h1, h2 ∈ H such that c = ah1 = bh2. Then,
for every ah ∈ aH we have

ah = ah1h
−1
1 h = b h2h

−1
1 h︸ ︷︷ ︸

∈H

,

64

thus ah ∈ bH. □

Lemma 11.8. Let H ≤ G. Then, for all a ∈ G: |aH| = |H|.

Proof. In order to prove this statement, let us define the map f : G → G, by
f(x) = ax. This map is injective, since ax = f(x) = f(y) = ay implies that x = y
(by multiplying with a−1 on both sides). It is even a bijection, since every element
b ∈ G is the image b = f(a−1b). Since f(H) = aH, f |H must be a bijection between
H and aH, and thus |aH| = |H|. □

Using these lemmas we are next going to prove Langrange’s theorem. We remark
that its statement is even correct for infinite groups (using cardinal arithmetic, i.e.
|A| · |B| = |A×B|), however we will just apply it to finite groups.

Theorem 11.9 (Lagrange’s theorem). Let G be a group and H a subgroup. Then

|G| = |H| · [G : H]

Proof. Let T be a transversal set (with respect to the cosets of H). Then

G =
⋃
a∈T

aH.

By Lemma 11.7 these cosets are all disjoint, and by Lemma 11.8 they are of the
same size as |H|. Thus

|G| =
∑
a∈T

|aH| =
∑
a∈T

|H| = |T | · |H| = [G : H] · |H|.

In the last equation we use |T | = [G : H], which just follows from the definition of
the transversal set. □

Example. A special case of Lagrange’s theorem is Euler’s theorem (Theorem 2.4),
which we already proved directly. For an alternative proof we can set G = Z∗

n and
H = ⟨a⟩. By Lagrange’s theorem then ord(a) = |H| must divide |Z∗

n| = φ(n), and
therefore

aφ(n) = aord(a)·k = (aord(a))k = 1k = 1,

or, in the language of number theory, aφ(n) ≡ 1 (mod n).

To conclude this section, we will a criterion that characterizes the situation in
which two elements lie in the same coset with respect to H

Proposition 11.10. Let G be a group and H a subgroup. For all a, b ∈ G it then
holds that:

(1) aH = bH if and only if a−1b ∈ H;
(2) Ha = Hb if and only if ab−1 ∈ H.

Proof. We only show (1), since (2) can be shown symmetrically. For the implication
(⇒), let us assume that aH = bH. This implies that b ∈ aH, so there is an element
h ∈ H such that b = ah. Thus a−1b = h ∈ H.

To show the implication (⇐) let us assume that a−1b ∈ H. This implies in
particular that

b = a · a−1b︸︷︷︸
∈H

∈ aH.

So b is both an element of aH and bH. Thus, by Lemma 11.7, aH = bH. □

65

Exercise 11.11. Show, using Proposition 11.10, that there is a bijection between
the left and right cosets of H, given by aH 7→ Ha−1.

12. Group actions

In many situations, it is helpful to interpret a given group as a group of permu-
tations on a certain set. For example, the abstract group Zn can be interpreted as
a permutation group of the plane, where the number k corresponds to the (anti-
clockwise) rotation by an angle k · (2π/n) (=k · 360

n degrees). The sum of the two
numbers k1, k2 in Zn then corresponds to the composition of the respective rota-
tions by k1 ·(2π/n) and k2 ·(2π/n) degrees. The neutral element 0 corresponds to to
the identity map (=rotation by 0 degrees), and the inverse −k in Zn corresponds to
the inverse rotation (by the angle −k · (2π/n) = (n− k) · (2π/n)). This observation
motivates the following definition.

Definition. An action of a group G on a set X is a map π : G → SX such that

π(g · h) = π(g) ◦ π(h), π(g−1) = π(g)−1 and π(1) = id,

for all g, h ∈ G. For short, we are going to write g(x) for the image of x under the
the permutation π(g).

It follows from this definition that the neutral element 1 ofG acts as a the identity
map, g−1 acts as the inverse permutation of π(g), and the relation (gh)(x) = g(h(x))
holds. We can imagine that the elements of the group G ‘move’ the elements of
the set X, such that when two group elements are multiplied, the corresponding
‘move’ are composed.

Example. A trivial example is the group action of a permutation group G ≤ SX

on the set X, which is simply given by π(g) = g.

Example. The action of Zn on the plane X = R2 that we described in the first
paragraph is given by the map π : Zn → SR2 such that π(k) is the permutation(

a
b

)
7→
(
cos(k · 2π/n) − sin(k · 2π/n)
sin(k · 2π/n) cos(k · 2π/n)

)
·
(
a
b

)
Example. Similarly, every matrix groups G ≤ GLn(F) can be interpreted as
permutations of the corresponding vector space X = Fn. The action π then maps
a matrix A ∈ G simply to the linear map π(A) : x 7→ A · x for all vectors x ∈ X.

This seemingly abstract concept of group action on a set has some very nice
application in combinatorics. It allows us to answer questions of the following type:
How many objects are there, up to a given symmetry?

For example: How many ways are there to color the squares on a Rubik’s cube,
using only 6 colors, up to rotational symmetry (or up to moves using the cube’s me-
chanics)? As such numbers can get very big quite quickly, we are, for the beginning,
just look at an easy model problem:

Example. Let us color the 4 fields of a 2 × 2 square with 2 colors (white and

black ×). How many such 2-colorings are there up to rotations (of the whole 2×2
square)?

In the example with the Rubic’s cube, it seems to be impossible to list all possible
colorings by hand. However, for our model problem, we can show directly that the
answers is 6 since there are the following 6 distinct colorings:

66

×
×
×
× ×

×
×

×
× ×

× ×

Let us first clarify what is meant by counting “objects up to symmetry” in
this example. The objects X are the colorings of the 4 squares with 2 colors, so
|X| = 24 = 16. The “symmetries” are the rotations of the square around its central
point that map the square to itself, i.e. the rotation by 0, 90, 180 and 270 degrees.
As discussed before, these rotations can be modelled by the action of G = Z4 on X
(such that g(x) is the rotation of the coloring x by g ·360/n degrees). Two colorings
x, y ∈ X are then considered the same (or equivalent), if there is a rotation g such
that g(x) = y.

This motivates the following definition for general group actions:

Definition. The transitivity relation ∼ on X is defined by x ∼ y if and only if
there is a g ∈ G, such that g(x) = y.

Lemma 12.1. The transitivity relation ∼ is an equivalence relation on X.

Proof. Reflexivity: For every x: 1(x) = id(x) = x, and therefore x ∼ x. Symmetry:
Assume x ∼ y, so there is a g ∈ G such that g(x) = y. Then g−1(y) = x, and
therefore also y ∼ x. Transitivity: Let x ∼ y ∼ z, so there are group elements
g, h ∈ G such that g(x) = y and h(y) = z. Then (h · g)(x) = h(g(x)) = h(y) = z,
and therefore x ∼ z. □

Example. In our example, the transitivity relation on the set of 2-colorings on a
2x2 square is given by the following diagram:

×
×
×
×

×
×
×

×
××

×
×
× ××

×

×
× ××

×
×

××
×
× ×

×

× ×
× ×

such that every row is an equivalence class of ∼. These equivalence classes are
called the orbits of the group action.

Definition. A point x ∈ X is called a fixpoint of an element g ∈ G if g(x) = x.
For the set of all fixpoints of some g, let us write

Xg = {x ∈ X : g(x) = x}.
Vice-versa, the stabilizer Gx of an element x ∈ X is the set of all group elements,
which fix x, i.e.

Gx = {g ∈ G : g(x) = x}.

Example. In our example, the stabilizers of both monochromatic colorings are

the full group Z4. The stabilizer of × is just the identity, ({0} ≤ Z4) while the

stabilizer of×× consists of the identity and the rotation by 180 degrees ({0, 2} ≤ Z4)

67

Lemma 12.2. For every x ∈ X, the stabilizer Gx is a subgroup of G.

Proof. Clearly Gx contains the neutral element 1 of G, since 1(x) = id(x) = x.
For every g, h ∈ Gx note that (g · h)(x) = g(h(x)) = g(x) = x, so also gh ∈ Gx.
Furthermore g(x) = x implies g−1(x) = x, so g−1 ∈ Gx. □

Proposition 12.3 (orbit size vs. index of stabilizer). Let G be a group acting on
a set X. Then, for every x ∈ X, we have

|[x]∼| = [G : Gx].

Proof. The index [G : Gx] is equal to the number of cosets of Gx in G. We define
the map:

ϕ : {gGx : g ∈ G} → [x]∼, gGx 7→ g(x).

In order to prove the theorem, we are going to show that ϕ is a bijection.
First we show that ϕ(gGx) does not depend on the representation of the coset.

So let g, h ∈ G such that gGx = hGx. By Proposition 11.10, this is equivalent to

gGx = hGx ⇔ h−1g ∈ Gx ⇔ h−1g(x) = x ⇔ g(x) = h(x),

and thus ϕ is indeed a well-defined map.
By the same equivalence, ϕ is an injective map (different cosets are mapped to

different elements under ϕ). Moreover ϕ is surjective, since by the definition of ∼
for every y ∈ [x]∼, there is an element g ∈ G, such that g(x) = y. Thus ϕ is a
bijection. □

If a group is finite, then Proposition 12.3, together with Lagrange’s theorem
implies that

|G| = |Gx| · |[x]∼|.
In particular, the size of every orbit must divide the order of the group (note that
this holds in our example).

12.1. Counting orbits with Burnside’s lemma. Let X/∼ denote the set of
all the classes of an equivalence relation ∼ on X. In our setting (when ∼ is the
transitivity relation), X/∼ is thus the set of orbits. Burnside’s lemma (also called
Burnside’s counting theorem) then allows us to compute this number:

Theorem 12.4 (Burnside’s lemma). Let G be a finite group acting on a set X.
Then

|X/∼| =
1

|G|
·
∑
g∈G

|Xg|.

Proof. Let

M = {(g, x) ∈ G×X : g(x) = x}.
We can compute the size of this M in two ways: on one hand, we can first compute
the number of pairs (g, x) ∈ M for fixed x (so the size of the stabilizer sets Gx),
and then sum over all x. On the other hand, we can first determine the number of
pairs (g, x) ∈ M for fixed g (so the size of the fixpoint sets Xg), and then sum over
all g. So

|M | =
∑
g∈G

|Xg| =
∑
x∈X

|Gx|.

68

If we divide this number by |G|, we get

1

|G|
·
∑
g∈G

|Xg| =
1

|G|
·
∑
x∈X

|Gx| =
1

|G|
·
∑
x∈X

|G|
|[x]∼|

=
∑
x∈X

1

|[x]∼|

=
∑

O∈X/∼

∑
x∈O

1

|[x]∼|
=

∑
O∈X/∼

∑
x∈O

1

|O|
=

∑
O∈X/∼

|O| 1

|O|
=

∑
O∈X/∼

1,

which is equal to the size of X/∼. □

Example. Let us return to the motivational example, with G = Z4 acting on
colorings X. The identity fixes all elements of X, so |X0| = |X| = 16. The rotation
by 90 degrees maps the left upper corner to the left lower corner, the left lower corner
to right lower corner and so on. So we get that the elements of X1 must have the
same color on all 4 boxes. Thus |X1| = 2. A 180 degree rotation interchanges the
right upper with the left lower box, and the left upper with the right lower box.
So |X2| has 4 elements. For a rotation by 270 degrees, we get, similarly to 90 only
monochromatic colorings as fixpoints, so |X3| = 2. Burnside’s lemma then gives us

|X/∼| =
1

|4|
(16 + 2 + 4 + 2) = 6,

which is the correct answer, as we already know.

Exercise. A children’s game contains three red, three green and three blue squares
tiles. In how many ways can they be arranged into a 3 × 3 square? Here, two
configurations are considered equal if (a) we can get one by the other by rotation,
or (b) by rotations and reflections.

Solution. For the first problem (a), we need to consider the action of Z4 (the 4
rotations) on the set of colorings X of 3× 3 squares with 3 red, 3 green, and 3 blue
tiles (so |X| =

(
9
3

)
·
(
6
3

)
= 1680). In the case (b), where also reflections are allowed,

we get an action of the dihedral group D8.
Note that a configuration is a fixpoint of a group element g ∈ Z4 (or g ∈ D8), if

and only if g maps every red tile to a red tile, every green tile to a green tile, and
every blue tile to a blue tile. This allows us quite easily to determine the number
Xg, depending on the ’type’ of g:

We present a table, in the which the first column lists different types of group
elements G, in the second column we write the number of elements of the given
type and the third column shows the number of fixed points in X of these elements:

g # |Xg|
id 1 1680

rotation by ± 90◦ 2 0
rotation by 180◦ 1 0

reflection at diagonal axis 2 36
reflection at perpendicular axis 2 36

By Burnside’s lemma we obtain

(a) 1
4 (1680 + 2 · 0 + 1 · 0) = 420,

(b) 1
8 (1680 + 2 · 0 + 1 · 0 + 2 · 36 + 2 · 36) = 228.

□

69

Exercise. Let’s assume that you are a crafty football fan. How many different neck-
laces can you make for (a: Sparta Praha) from three reds, three yellows and three
blue balls, (b: Bohemians Praha) from six green and three white balls? (Which
group describes the symmetry here? (Note that rotating a neckless by 180 degree
and reflecting it at the midpoint will give you the same result).

Exercise. How may ways are there to color the faces of a cube with 2 colors? How
many dice are there (=labelings of the faces of a cube with the numbers from 1 to
6). And how many dice are there such that the numbers of opposite sides add up
to 7? all these questions are up to rotational symmetry

Solution. Let X be the set of 2-colorings of the cube. Let Y be the set of dice,
and let Z be the set of dice such that opposite sides add up to 7. The rotational
symmetries of a cube are described by a group G. We actually do give a full
description of G, to apply Burnside’s lemma, it is enough to know all elements of
G and their actions on X (and Y , Z respectively). We can make a table, listing all
rotations depending on their axis and angle:

g # |Xg| |Yg| |Zg|
Identity 1 26 6! 48

axis though centers of opposite faces, ±90◦ 6 23 0 0
axis though centers of opposite faces, +180◦ 3 24 0 0
axis though centers of opposite edges, +180◦ 6 23 0 0

diagonal axis, ±120◦ 8 22 0 0

We then get

• |X/∼| = 1
24 · (26 + 23 + 24 + 23 + 22) = 10

• |Y/∼| = 1
24 · (6!) = 30

• |Z/∼| = 1
24 · (48) = 2

In fact, you might already know that the two possibilities in the case |Z/∼| = 2,
can be described by the clockwise and counterclockwise ordering of the numbers
1, 2, 3, when looking at the corner of the cube that shares these numbers. □

Burnside’s lemma can be used in a number of other applications, e.g. if we want
to find out the number of some structures of a given size up to isomorphism.

Example. Let X be the set of all (loopless) graphs with vertices 1, 2, 3, 4, So
|X| = 26. Two graphs are isomorphic, if there is a permutation π ∈ S4 that maps
an edge to edge and a non-edge to a non-edge.The so the orbits of S4 on X contain
the mutually isomorphic graphs, and the number of non-isomorphic graphs is equal
to the number orbit. In order to count this number (using Burnside’s lemma) we
create a table of the number of fixpoints.

In this case it is easiest to look at the permutations depending on their ’cycle
type’:

g # |Xg|
id 1 26

(..) 6 24

(..)(..) 3 24

(...) 8 22

(....) 6 22

70

It follows that the number of graphs with 4 vertices up to isomorphisms is

1

24
(26 + 6 · 24 + 3 · 24 + 8 · 22 + 6 · 22) = 11

We finish by showing an interesting result about permutation groups with an
elegant proof. A permutation group is called transitive if it has only one orbit
(with respect to its natural action). For example, the groups Sn, An, Dn are
transitive, but ⟨(12)(34)⟩ is not.

Theorem 12.5 (Jordan’s theorem). Every finite transitive permutation group G
on an at least two-element set X contains a permutation without a fixed point.

Proof. According to Burnside’s lemma, the number of orbits |X/∼| is equal to the
average number of fixed points 1

|G| ·
∑

g∈G |Xg|. But transitivity on the other hand

implies |X/∼| = 1. At the same time, the identity id has |X| ≥ 2 fixpoints, (i.e. an
above-average amount). If every other permutation had at least one fixpoint, this
would imply that

1 = |X/∼| =
1

|G|
·
∑
g∈G

|Xg| ≥
|G|+ 1

|G|
> 1,

which is a contradiction. Thus, there is a permutation without fixpoints. □

13. Cyclic groups

13.1. Subgroups, generators, elementary properties. A group G is called
cyclic, if it is generated by one element, i.e.

G = ⟨a⟩G,

for some a ∈ G. Thanks to Corollary 11.3 the elements of a cyclic subgroup are
then powers of the generator:

G = {ak : k ∈ Z},

and as a consequence G is an Abelian group. If ord(a) = n < ∞, then we know
by Proposition 11.6, that |G| = n and G = {e, a, a2, . . . , an−1}. We give some
examples of cyclic groups:

Example.

• The groups Z and Zn (for every n ∈ N) are cyclic, with generator 1.
• The group Cn ≤ C∗ consisting of the roots of the polynomial xn − 1 is

cyclic, with Cn = ⟨e 2π
n ⟩

• The multiplication group of every finite field is cyclic (see Section 13.2)
• Some groups Z∗

n are cyclic (Z∗
6 = {1, 5} = ⟨5⟩), while other are not (Z∗

8 =
{1, 3, 5, 7} is not cyclic).

• Every group G of prime order is cyclic: For this, consider one of its sub-
groups ⟨a⟩ generated by any element a ̸= 1. Then, by Lagrange’s theorem,
this subgroup must divide the order of G. Since |⟨a⟩| ≠ 1, it must have the
same order as G, thus ⟨a⟩ = G.

We next study some elementary properties of cyclic groups.

Proposition 13.1. Every subgroup of a cyclic group is also a cyclic group.

71

Proof. Let G = {ak : k ∈ Z}, be a cyclic group, generated by some a ∈ G, and
let H be a subgroup. If H = {1}, then H is also a cyclic group (with generator
1). Otherwise H contains some power of a. Let n be the smallest positive number
such that an ∈ H (note that such a positive number must always exist since a−k ∈
H ⇔ ak ∈ H). Then clearly ⟨an⟩ ⊆ H. We claim that even equality holds. For
contradiction, assume that there is a l ∈ N, such that al ∈ H \ ⟨an⟩. By the
minimality of n, l > n; furthermore l cannot be a multiple of n, since al /∈ \⟨an⟩.
Therefore we can write l = q · n+ r for a remainder 0 < r < n. Note that then

ar = al−qn = al · (an)−q ∈ H,

but since r < n, this is a contradiction to the minimality of n! □

Example. Every subgroup of Z is of the form

⟨k⟩ = kZ = {x ∈ Z : k | x},

for some k ∈ Z. With the exception of {0}, these subgroups all are of infinite order.
Note that kZ = lZ, if and only if k = ±l. Furthermore kZ ≤ lZ if and only if k
is a multiple of l. So, in other words, the inclusion order on the subgroups of Z
corresponds to the (inverse) order of the numbers N ∪ {0} by divisibility.

The situation is more complicated for finite cyclic groups, since many different
elements can generate the same subgroups.

Lemma 13.2. Let G = ⟨a⟩ be a cyclic group. Then

(1) ⟨al, ak⟩ = ⟨agcd(l,k)⟩,
(2) If |G| = n, then ⟨al⟩ = ⟨agcd(l,n)⟩

Proof. (1) Since both l and k are multiples of gcd(l, k), clearly al, ak ∈ ⟨agcd(l,k)⟩,
and thus ⟨al, ak⟩ ⊆ ⟨agcd(l,k)⟩. On the other hand, we can write gcd(l, k) =
ul + vk for some u, v ∈ Z, by Bézout’s identity., and therefore

agcd(l,k) = aul+vk = (al)u · (ak)v ∈ ⟨al, ak⟩,

which implies ⟨al, ak⟩ ⊇ ⟨agcd(l,k)⟩.
(2) If |G| = n, then an = 1, and by (1): ⟨al⟩ = ⟨al, an⟩ = ⟨agcd(l,n)⟩.

□

Proposition 13.3 (Generator of cyclic groups). Let G = ⟨a⟩ be a cyclic group.

• If |G| is infinite, then a and a−1 are the only generators.
• If |G| = n is finite, then the generators are all elements ak, such that k and

n are coprime.

Proof. • Clearly a and a−1 are always generators of G. For any k ∈ N:
⟨ak⟩ = {(ak)n : n ∈ Z} = {akn : n ∈ Z}. Since, in the infinite case, all
powers of a must be distinct (see also the proof of Proposition 11.6), we
get that a /∈ ⟨ak⟩, for k ̸= 1,−1, and therefore ⟨ak⟩ ≠ G.

• By Lemma 13.2, ⟨ak⟩ = ⟨agcd(k,n)⟩, for every k. So, if k and n are coprime,
we get ⟨ak⟩ = ⟨a⟩ = G. On the other hand, if gcd(k, n) = d ̸= 1, then
⟨ak⟩ = {ad, a2d, . . . , ad·nd }, which is a proper subgroup (not containing a).

□

72

Example (The subgroups of Zn). The group Zn is cyclic and generated by 1. So
its subgroups are also cyclic and thus of the form

⟨k⟩ = kZn = {ku mod n : u = 0, . . . , n− 1},
for k ∈ {0, 1, . . . , n − 1}. By Lemma 13.2 (2) two subgroups kZn = lZn are equal
if gcd(k, n) = gcd(l, n). Thus, the subgroups of Zn correspond to the divisors of n.
For two divisors k, l | n we further have kZn ≤ lZn if k is a multiple of l. So, in
other words, the inclusion order on the subgroups of Zn corresponds to the (inverse)
order of the divisors of n according to divisibility.

Example. The group Z∗
11 = ⟨2⟩ is cyclic of order 10. So its subgroups are also

cyclic and of the form ⟨2k⟩ = {2ku mod 11: u = 0, . . . , 10}, for k ∈ {0, 1, . . . , 9}.
By Lemma 13.2 (2) two subgroups ⟨2k⟩ = ⟨2l⟩ if gcd(k, 10) = gcd(l, 10). Thus, the
subgroups of Z∗

11 are

⟨21⟩ = Z∗
11, ⟨22⟩ = {1, 4, 5, 9, 3}, ⟨25⟩ = {1, 10}, ⟨210⟩ = {1}.

Every generator Z∗
11 is of the form 2k, such that k is coprime to 10. Thus 21 = 2,

23 = 8, 27 = 7, 29 = 6 are all the generators. Note that these are just the numbers
that don’t belong to any of the proper subgroups listed above This fact generalized
to all multiplication groups Z∗

p, where p is a prime (we’ll see later that they are
always cyclic).

It follows from Proposition 13.3 that a cyclic group of order n has exactly φ(n)
generators, where φ denotes Euler’s totient function. In fact, we can use Euler’s
function, more generally, to count in a cyclic group the number of elements of a
given order:

Proposition 13.4. A cyclic group of order n has exactly φ(d) elements of order
d, for every d that divides n.

Proof. Let G = ⟨a⟩ be a subgroup of order n. By Lemma 13.2 its subgroups
are of the form ⟨ak⟩, for divisors of k | n. The only subgroup of order d is then
⟨an

d ⟩ = {an
d , a2

n
d , . . . , ad

n
d }. By Proposition 13.3, an element ai

n
d generates ⟨an

d ⟩
if and only if i and d are coprime. Therefore ⟨an

d ⟩ has φ(d) generators, and, as a
consequence, there are φ(d) elements of order d in G. □

As a direct consequence, we obtain the following nice fact about Euler’s function:

Proposition 13.5. For every n ∈ N:∑
d|n

φ(d) = n.

Proof. Let us consider the group Zn (or any other cyclic group of order n). By
Lagrange’s theorem, the order of every element of Zn must divide n. By Proposition
13.4, Zn has exactly φ(d) elements of order d, for every divisor d | n. Since Zn has
n elements in total, we get

∑
d|n φ(d) = n. □

13.2. The multiplication group of finite fields are cyclic. The statement
given in the title of the subsection has far-reaching implications in the theory of
finite fields. We are going to use the following criterion for cyclic groups:

Lemma 13.6. Let G be a finite group, such that for every natural number k, there
are at most k many solution of the equation xk = 1 in G. Then G is cyclic.

73

Proof. Let n = |G| be the order of the group G. For every k, let uk denote the
number of elements of G of order k. By Lagrange’s theorem, uk can only be different
from 0 if k | n. Thus n =

∑
k|n uk (we count the elements of G depending on their

order, as in the proof of Proposition 13.5).
Next assume that uk ̸= 0, for some k. Then there must be an element b = ad

of order k. It generates a cyclic subgroup ⟨b⟩ = {1, ad, a2d, . . . , a(k−1)d}. Note that
all elements of this subgroup satisfy the identity xk = 1. However, since there are
at most k many such elements, ⟨b⟩ must already contain all elements satisfying xk.
In particular it contains all elements of order k. By Proposition 13.3 (2), we know
that ⟨b⟩ has φ(k) many generators. Thus uk = φ(k).

If there was a k | n with uk = 0, then n =
∑

k|n uk would be smaller to
∑

k|n φ(k),

which is a contradiction to Proposition 13.5. So, in particular un ̸= 0. In other
words, G has an element a of order n, which implies G = ⟨a⟩ □

Theorem 13.7. Let F be a field and G ≤ F∗ be a finite subgroup of its multipli-
cation group. Then G is cyclic.

Proof. By Theorem 4.4, there are at most k many roots of the polynomial xk − 1
in F. In other words, the equation xk = 1 has at most k many solutions. This is
also true in the group G, so by Lemma 13.6, G is cyclic. □

Theorem 13.7 in particular implies to the multiplication groups of finite fields,
which are cyclic. The generators of F∗ are also called primitive elements. Primitive
elements a are used for example in the fast Fourier transformation algorithm, which
can evaluate and interpolate polynomials in points 1, a, . . . , an in time O(n log n)
(while for n randomly selected points we need quadratic time).

For the field Zp, Theorem 13.7 can be phrased purely in elementary number
theory: Then it says that for every prime p there exists a number a ∈ {2, . . . , p−1}
(a generator of Z∗

p) such that each b ∈ {1, 2, . . . , p− 1} can be expressed in exactly

one way as b = ak mod p for some k = 1, 2, . . . , p− 1.

13.3. Discrete logarithms and cryptography. Let G = ⟨a⟩ be a cyclic group
of order n. Then, let us define the map

exp : Zn → G, i 7→ ai.

This map is called a discrete exponential function, and it follows from the earlier
subsections that it is bijective. The inverse map is called a discrete logarithm. In
other words,the discrete logarithm of the element b ∈ G assigns to it the number
k ∈ {0, 1, . . . , n− 1}, such that b = ak; we will denote it by k = loga b.

Computing a discrete exponential is easy. Naively, it might seem like we need
to perform k multiplications to compute ak. However actually only 2⌊log2 k⌋ steps
are needed.

For this, note that k can be represented in binary as k =
∑⌊log2 k⌋

i=0 ui2
i, with

ui ∈ {0, 1}.
Therefore

ak = a
∑⌊log2 k⌋

i=0 ui2
i

=
∏

i : ui=1

a2
i

.

So to compute ak, we only need to compute the values of the powers a, a2, a4 =
(a2)2, a8 = (a4)2, . . . , and then multiply those powers appearing in the binary
representation of k. This can be done in ≤ 2⌊log2 k⌋ steps.

74

Experiments indicate however, that computing the discrete logarithm is difficult
for many cyclic groups. Finding the logarithm by brute force (by going through
all n possible exponents) is exponentially slower than computing the exponential
function (as described above). For some groups the calculation is easy (see the
example Zn below), but for example for the multiplication groups Z∗

p, where p is
prime, or for groups derived from elliptic curves over finite fields, there exist no
better known algorithms than those using the brute force method.

Example. Consider a cyclic group Zn = ⟨a⟩. The logarithm loga(b) is then the
unique value of k ∈ {0, 1, . . . , n−1} such that k ·a ≡ b (mod n). Such a value can be
easily found with Euclid’s algorithm: By Proposition 13.3, a and nmust be coprime,
and thus we can compute the Bézout coefficients u, v such that 1 = ua+vn. Because
of this b = bua + bvn. Modulo n, we get b ≡ bua (mod n), thus k = bu mod m is
the logarithm of b.

We will however continue with examples of cyclic group G for which the discrete
exponential is computationally manageable, but not the logarithm (in practice, Z∗

p

for primes p > 21000 is an example). We will show two cryptographic algorithms
based on discrete logarithms: the Diffie-Hellman key exchange protocol (this is the
most common algorithm of its kind) and ElGamal encryption for public key cryp-
tography (this algorithm is sometimes used in practice, although versions of the
RSA algorithm from Section 2.2 are more popular).

Diffie-Hellman key exchange: Alice and Bob need to come up with a common
secret password (a common key), while they can only communicate via a corrupted
channel (e.g. a wire-tapped phone). How to do it?

First, Alice and Bob agree on some cyclic group and a generator, G = ⟨a⟩. Next,
Alice chooses a number m and Bob a number n from interval 2, . . . , |G| − 1, each
will keep his number secret. Then they do the following: Alice computes u = am

and sends the value to Bob, while Bob computes v = an and sends it to Alice.
Then Alice computes vm = (an)m = amn and Bob computes un = (am)n = amn.

Both obtained the same element anm, and take it as the common key.
If an enemy listened to their communication, what would they find out? They

would know the group G, the generator a and the values of u = am and v = an.
In order to obtain the common key, they would need to calculate the element amn.
This task is also called the Diffie-Hellman’s problem. The obvious solution is to
compute the discrete logarithm of u and v to get the numbers m,n, multiply them
and calculate amn. However, this solution is not computational feasible and no
effective procedure to do it is currently know.

ElGamal encyption: In ElGamal encryption, the recipient chooses a cyclic
group G = ⟨a⟩, a random number k from the interval 2, . . . , |G| − 1, and computes
b = ak. He publishes the public key, G, a, b, while keeping the private key k secret.

A sender of the message selects a random number l from the interval 2, . . . , |G|−1,
which he destroys after sending his message. Instead of his original message x ∈ G,
he sends the encrypted message

y = (al, x · bl).
The recipient receives this pair y = (u, v) and decrypts it using k as follows:

v · u−k = x · bl · (al)−k = x · bl · b−l = x.

75

If we, as attackers, could compute the discrete logarithm quickly, we would
immediately get the private key k (from the public key a, b), and thus could also
encrypt the message. However, also other ways of attacking El Gamal’s algorithm
are known for specific groups G. Because of this, for instance ElGamal encyption
with the groups G = Z∗

p is not considered safe. However, in general, no attack is
known, and ElGamal is considered safe, on sufficiently large groups derived from
elliptic curves.

One of the basic concepts in cryptography is the concept of a one-way function.
To put it very simply, it is a bijective map f such that the values f(x) can be com-
puted quickly/efficiently, but there is no known way to get statistically significant
information about the values under the inverse map f−1(y).

Examples are

• any discrete exponential function exp: Zp−1 → Z∗
p, k 7→ ak mod p for big

enough primes p
• The map ZN → ZN , a 7→ ak mod N , for big enough product of 2 primes
N = pq and coprime k (see the discussion about RSA encryption in Section
2.2)

Why is this a good feature in cryptography? Here an example:
Alice and Bob want to remotely play a game. Alice will toss coins, and Bob has

to guess if it is heads or tails. But how can Bob know that Alice didn’t cheat when
Bob couldn’t look at the coin? Let’s choose a one-way function f on a big-enough
set {1, . . . , n}. If Alice throws a head, she chooses a random odd number x, for
tails she selects an even number x. She then sends Bob the value f(x). Because
f is one-way, Bob can’t compute the value of x (not even in a probabilistic way).
He chooses his guess and tells it to Alice. Now Alice publishes the number x and
Bob immediately sees if he has won. To check that Alice did not cheat, he only
needs to compute f(x) and compares it with the value he got at the beginning. If
the values disagree, Alice cheated. Can Alice cheat on Bob so that he does not
find out? For this, let’s assume that she threw head, and Bob guessed correctly. In
order for Alice to cheat, she would need to shows Bob an even value x0 such that
f(x0) = f(x). But such x0 does not exist since f is a bijection!

	I. Number theory
	1. Prime factorization and the greatest common divisor
	1.1. Divisibility and the fundamental theorem of arithmetic
	1.2. Euclid's algorithm and Bézout's identity

	2. Modular arithmetic
	2.1. Congruences
	2.2. Euler's theorem and the cryptosystem RSA
	2.3. The Chinese remainder theorem

	II. Polynomials
	3. Fields, rings and integral domains
	3.1. Definitions and examples
	3.2. Basic properties
	3.3. Quotient fields

	4. Polynomials
	4.1. Polynomial rings
	4.2. Polynomial maps
	4.3. Division of polynomials with remainder
	4.4. Roots and divisibilty

	5. Basic notions of divisibility
	5.1. Divisors and associates
	5.2. Greatest common divisor
	5.3. Irreducible polynomials and decompositions
	5.4. Divisibility in unique factorization domains

	6. Divisibility in polynomial rings
	6.1. Polynomials in one variable over a field
	6.2. Polynomials over a ring vs. polynomials over a quotient field
	6.3. Rational roots and Eisenstein's criterion for irreducibility

	7. Abstract divisibility theory
	7.1. Generalization of the fundamental theorem of arithmetic
	7.2. Euclid's algorithm and Bézout coefficients

	8. Computations modulo polynomials
	8.1. The Chinese remainder theorem and interpolation
	8.2. Quotient rings modulo polynomials

	9. Finite fields and some applications
	9.1. Finite fields and data representation
	9.2. Secret sharing
	9.3. Error-correcting codes
	9.4. Mutually orthogonal latin squares and experimental design

	III. Groups
	10. Groups
	10.1. Definition and examples
	10.2. Powers and the order of a group element

	11. Subgroups
	11.1. Generators
	11.2. Langrange's theorem

	12. Group actions
	12.1. Counting orbits with Burnside's lemma

	13. Cyclic groups
	13.1. Subgroups, generators, elementary properties
	13.2. The multiplication group of finite fields are cyclic
	13.3. Discrete logarithms and cryptography

