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Chapter 1

Differentiation of measures

1.1 Covering theorems
Covering theorems provide a tool which enables us to infer global properties from local ones in
the context of measure theory.

Vitali theorem
Definition. Let A ⊂ Rn. We say that a system V consisting of closed balls from Rn forms Vitali
cover of A, if

∀x ∈ A ∀ε > 0 ∃B ∈ V : x ∈ B ∧ diamB < ε.

Notation.

• λn . . . Lebesgue measure on Rn

• λ∗
n . . . outer Lebesgue measure on Rn

• If B ⊂ Rn is a ball and α > 0, then α ⋆ B denotes the ball, which is concentric with B
and with α-times greater radius than B.

Theorem 1.1 (Vitali). Let A ⊂ Rn and V be a system of closed balls forming a Vitali cover of
A. Then there exists a countable disjoint subsystem A ⊂ V such that λn(A \

⋃
A) = 0.

Proof. First assume that A is bounded. Take an open bounded set G ⊂ Rn with A ⊂ G. Set

V∗ = {B ∈ V ; B ⊂ G}.

The system V∗ is a Vitali cover of A again. If there exists a finite disjoint subsystem V∗ covering
A, we are done. So assume

(⋆) there is no finite disjoint subsystem of V∗ covering A.

7



8 CHAPTER 1. DIFFERENTIATION OF MEASURES

1st step. We set
s1 = sup{diamB;B ∈ V∗}

and choose a ball B1 ∈ V∗ such that diamB1 > s1/2. We know that V∗ ̸= ∅ and s1 ≤ diamG <
∞.

k-th step. Suppose that we have already chosen balls B1, . . . , Bk−1. We set

sk = sup
{
diamB; B ∈ V∗ ∧ B ∩

k−1⋃
i=1

Bi = ∅
}
.

The supremum is considered for a nonempty set since the set
⋃k−1

i=1 Bi is closed, which by (⋆) does
not cover A, and V∗ is a Vitali cover of A. We choose a ball Bk ∈ V∗ such that Bk∩

⋃k−1
i=1 Bi = ∅

and diamBk > sk/2.
This finishes the construction of the sequence (Bk)

∞
k=1. Set A = {Bk; k ∈ N}. We verify

that A is the desired system.

• A is countable. This follows immediately from the construction.

• A is disjoint. This follows from the construction.

• It holds λn(A \
⋃

A) = 0. We have

∞∑
i=1

λn(Bi) = λn

( ∞⋃
i=1

Bi

)
≤ λn(G) < ∞.

Thus the series
∑∞

i=1 λn(Bi) is convergent, therefore limi λn(Bi) = 0. Using the fact that Bi,
i ∈ N, are balls we also have limi diamBi = 0. We know that 2 diamBi > si, consequently
limi si = 0.

We show that

∀x ∈ A \
⋃

A ∀i ∈ N ∃j ∈ N, j > i : x ∈ 5 ⋆ Bj.

Take x ∈ A \
⋃

A and i ∈ N. Denote δ = dist(x,
⋃i

k=1Bk). It holds δ > 0 and there exists
B ∈ V∗ such that x ∈ B and diamB < δ. Then we have B ∩

⋃i
k=1 Bk = ∅. Thus we have

diamB > sp for some p ∈ N since limi si = 0. Therefore there exists j > i with Bj∩B ̸= ∅. Let
j be the smallest number with this property. Then we have sj ≥ diamB since B ∩

⋃j−1
l=1 Bl = ∅.

Further we have diamBj > sj/2 ≥ 1
2
diamB. Together we have 2 diamBj ≥ diamB. This

implies x ∈ B ⊂ 5 ⋆ Bj .

For any i ∈ N we have

λ∗
n(A \

⋃
A) ≤ λn

(∞⋃
j=i

5 ⋆ Bj

)
≤

∞∑
j=i

λn(5 ⋆ Bj) = 5n
∞∑
j=i

λn(Bj).
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Using limi→∞
∑∞

j=i λn(Bj) = 0 we get λ∗
n(A \

⋃
A) = 0, and therefore λn(A \

⋃
A) = 0.

Now we assume that the set A is a general subset of Rn. Let (Gj)
∞
j=1 be a sequence of bounded

disjoint open sets such that λn(R
n \

⋃∞
j=1Gj) = 0. Denote

V∗
j = {B ∈ V ; B ⊂ Gj}.

The system V∗
j forms a Vitali cover of the bounded set Gj ∩ A. Using the previous part of the

construction we find a countable disjoint system Aj ⊂ V∗
j with λn

(
(Gj ∩A) \

⋃
Aj

)
= 0. Now

we set A =
⋃

j Aj .

Definition. We say that a measure µ on Rn satisfies Vitali theorem, if for every M ⊂ Rn and
every Vitali cover V of M there exists countable disjoint cover A ⊂ V such that µ

(
M\

⋃
A
)
= 0.

Remark. (1) By Theorem 1.1 λn satisfies Vitali theorem.

(2) If µ satisfies Vitali theorem and ν ≪ µ, then ν satisfies Vitali theorem.

Remark. If µ is the Borel measure on R2 such that µ(A) = λ1

(
A∩ (R×{0})

)
for any A ⊂ R2

Borel, then Vitali theorem does not hold for µ.

The end of the lecture no. 1, 1. 10. 2024

Theorem 1.2. Let E ⊂ Rn be measurable and S be a finite system of closed balls covering E.
Then there exists a disjoint system L ⊂ S such that λn(E) ≤ 3n

∑
B∈L λn(B).

Proof. Without any loss of generality we may assume that S is nonempty. Choose B1 ∈ S
with maximal radius among balls in S. Suppose that we have already constructed B1, . . . , Bk−1.
If possible, choose Bk ∈ S disjoint with

⋃
i<k Bi and with maximal radius among balls in S

satisfying this property. We construct a finite sequence of closed balls B1, . . . , BN and set L =
{B1, . . . , BN}. We have E ⊂

⋃
B∈L 3 ⋆B. To this end consider x ∈ E. Then there exists B ∈ S

with x ∈ B. We find minimal k such that B ∩ Bk ̸= ∅. Then we have radius(B) ≤ radius(Bk).
This implies that x ∈ B ⊂ 3 ⋆ Bk.

Then we have

λn(E) ≤ λn

(⋃
B∈L

3 ⋆ B
)
≤

∑
B∈L

λn(3 ⋆ B) = 3n
∑
B∈L

λn(B).

Besicovitch theorem
Theorem 1.3 (Besicovitch [?]). For each n ∈ N there exists N ∈ N with the following property.
If A ⊂ Rn and ∆: A → (0,∞) is a bounded function, then there exist sets A1, . . . , AN such
that
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•
{
B(x,∆(x)); x ∈ Ai

}
is disjoint for every i ∈ {1, . . . , N},

• A ⊂
⋃{

B(x,∆(x)); x ∈
⋃N

i=1Ai

}
.

Proof. The case of a bounded set A. Let R = supA ∆. Choose B1 := B(a1, r1) such that a1 ∈ A
and r1 := ∆(a1) >

3
4
R. Assume that we have already chosen balls B1, . . . , Bj−1 where j ≥ 2.

If

Fj := A \
j−1⋃
i=1

B(ai, ri) = ∅,

then the process stops and we set J = j. If Fj ̸= ∅, we continue by choosing Bj := B(aj, rj)
such that aj ∈ Fj and

rj := ∆(aj) >
3
4
sup
Fj

∆. (1.1)

If Fj ̸= ∅ for all j, then we set J = ∞. In this case limj→∞ rj = 0 because A is bounded and
the inequalities

∥ai − aj∥ ≥ ri =
1

3
ri +

2

3
ri >

1

3
ri +

1

2
rj >

1

3
ri +

1

3
rj

for i < j < J imply that {
1
3
⋆ Bj; j < J

}
is a disjoint family. (1.2)

In case J < ∞, we have A ⊂
⋃

j<J Bj . This is also true in the case J = ∞. Otherwise there
exist a ∈

⋂∞
j=1 Fj and j0 ∈ N with rj0 ≤ 3

4
∆(a), contradicting the choice of rj0 .

Fix k < J . We set I = {i < k; Bi ∩ Bk ̸= ∅}. We now prove that there exists M ∈ N
depending only on n which estimates |I|. To this end we split I into I1 and I2 and we estimate
their cardinality separately.

I1 = {i < k; Bi ∩Bk ̸= ∅, ri < 10rk},
I2 = {i < k; Bi ∩Bk ̸= ∅, ri ≥ 10rk}.

The estimate of |I1|. We have 1
3
⋆ Bi ⊂ 15 ⋆ Bk for every i ∈ I1. Indeed, if x ∈ 1

3
⋆ Bi, then

∥x− ak∥ ≤ ∥x− ai∥+ ∥ai − ak∥ ≤ 10

3
rk + ri + rk ≤

43

3
rk < 15rk.

Hence, there are at most 60n elements of I1, because for any i ∈ I1 we have

λn(
1
3
⋆ Bi) = λn(B(0, 1)) ·

(
1
3
ri
)n

> λn(B(0, 1)) ·
(
1
4
rk
)n

=
1

60n
λn(15 ⋆ Bk).

The end of the lecture no. 2, 8. 10. 2024
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The estimate of |I2|. Denote bi = ai − ak. An elementary mesh-like construction gives a family
{Qm; 1 ≤ m ≤ (22n)n} of closed cubes with edge length 1/(11n) (so that diamQm ≤ 1/11),
which cover [−1, 1]n and thus in particular the unit sphere. We claim that for each 1 ≤ m ≤
(22n)n there is at most one i ∈ I2 such that bi/∥bi∥ ∈ Qm, which estimates the cardinality of I2.

If the claim were not valid, then there would exist i, j ∈ I2, i < j, such that∥∥∥∥ bi
∥bi∥

− bj
∥bj∥

∥∥∥∥ ≤ 1

11
.

Notice that
ri < ∥bi∥ < ri + rk and rj < ∥bj∥ < rj + rk, (1.3)

as the balls Bi, Bj intersect Bk but does not contain ak. Hence∣∣∥bi∥ − ∥bj∥
∣∣ ≤ |ri − rj|+ rk ≤ |ri − rj|+

1

10
rj.

and
∥bj∥ ≤ rj + rk ≤ rj +

1

10
rj =

11

10
rj. (1.4)

We have

∥ai − aj∥ = ∥bi − bj∥ ≤
∥∥∥bi − ∥bj∥

∥bi∥
bi

∥∥∥+
∥∥∥∥bj∥∥bi∥

bi − bj

∥∥∥
=

∥∥∥∥bi∥bi∥bi∥
− ∥bj∥

∥bi∥
bi

∥∥∥+
∥∥∥∥bj∥∥bi∥

bi −
∥bj∥
∥bj∥

bj

∥∥∥
≤

∣∣∥bi∥ − ∥bj∥
∣∣+ 1

11
∥bj∥

≤ |ri − rj|+
1

10
rj +

1

10
rj (using (1.3) and (1.4))

≤

{
ri − 4

5
rj < ri if ri > rj,

−ri +
6
5
rj ≤ −ri +

8
5
ri < ri if ri ≤ rj.

In the last inequality we have used that i < j and thus rj < 4
3
ri by (1.1). We arrived at a

contradiction as i < j and thus aj /∈ Bi. Hence |I2| ≤ (22n)n.

Thus it is sufficient to choose M > 60n + (22n)n.

Choice of A1, . . . , AM . For each k ∈ N we define λk ∈ {1, 2, . . . ,M} such that λk = k
whenever k ≤ M and for k > M we define λk inductively as follows. There is λk ∈ {1, . . . ,M}
such that

Bk ∩
⋃

{Bi; i < k, λi = λk} = ∅.

Now we set Aj = {ai; λi = j}, j = 1, . . . ,M .

The case of a general set A. For each l ∈ N apply the previously obtained result with A replaced
by

Al = A ∩ {x; 3(l − 1)R ≤ ∥x∥ < 3lR},
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and denote resulting sets as Al
i, i = 1, . . . ,M . Then we set

Ai =
⋃

l is odd

Al
i, AM+i =

⋃
l is even

Al
i, i = 1, . . . ,M.

Then we constructed N := 2M subsets which have the required properties.

Definition. Let P be a locally compact space and S be a σ-algebra of subsets of P . We say that
µ is a Radon measure on (P,S) if

(a) S contains all Borel subsets of P ,

(b) µ(K) < ∞ for every compact set K ⊂ P ,

(c) µ(G) = sup{µ(K); K ⊂ G is compact} for every open set G ⊂ P ,

(d) µ(A) = inf{µ(G); A ⊂ G,G is open} for every A ∈ S,

(e) µ is complete.

Definition. Let µ be a measure on X . Outer measure corresponding to µ is defined by

µ∗(A) = inf{µ(B); A ⊂ B,B is µ-measurable}.

Remark. Let µ be a Radon measure on (Rn,S) and A ∈ S. Then there exist a Borel set B ⊂ Rn

such that A ⊂ B and µ(B \ A) = 0. If ν is a Radon measure on (Rn,S ′) with ν ≪ µ, then
S ⊂ S ′.

The end of the lecture no. 3, 15. 10. 2024

Lemma 1.4. Let µ be a measure on X and {Aj}∞j=1 be an increasing sequence of subset of X .
Then limµ∗(Aj) = µ∗(⋃∞

j=1Aj

)
.

Proof. For every j ∈ N find a µ-measurable set Bj with Aj ⊂ Bj and µ∗(Aj) = µ(Bj). We set
Mk =

⋂k
j=1 Aj . Then Mk is µ-measurable Ak ⊂ Mk, and µ(Mk) = µ∗(Ak) for every k ∈ N.

Moreover, {Mk} is nondecreasing sequence of sets. Then we have

lim
k→∞

µ∗(Ak) = lim
k→∞

µ(Mk) = µ
( ∞⋃
k=1

Mk

)
≥ µ∗( ∞⋃

k=1

Ak

)
≥ lim

k→∞
µ∗(Ak)

and we are done.

Theorem 1.5. Let µ be a Radon measure on Rn and F be a system of closed balls in Rn. Let
A denote the set of centers of the balls in F . Assume inf{r; B(a, r) ∈ F} = 0 for each a ∈ A.
Then there exists a countable disjoint system G ⊂ F such that µ

(
A \

⋃
G
)
= 0.
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Proof. The case µ∗(A) < ∞. Let N be the natural number from Theorem 1.3. Fix θ such that
1− 1

N
< θ < 1.

Claim. Let U ⊂ Rn be an open set. There exists a disjoint finite system H ⊂ F such that⋃
H ⊂ U and

µ∗((A ∩ U) \
⋃

H
)
≤ θµ∗(A ∩ U). (1.5)

Proof of Claim. We may assume that µ∗(A∩U) > 0. Let F1 = {B ∈ F ; diamB < 1, B ⊂ U}.
By Theorem 1.3 there exist disjoint families G1, . . . ,GN ⊂ F1 such that

A ∩ U ⊂
N⋃
i=1

⋃
Gi.

Thus

µ∗(A ∩ U) ≤
N∑
i=1

µ∗(A ∩ U ∩
⋃

Gi

)
.

Consequently, there exists an integer 1 ≤ j ≤ N for which

µ∗(A ∩ U ∩
⋃

Gj

)
≥ 1

N
µ∗(A ∩ U) > (1− θ)µ∗(A ∩ U).

Using Lemma 1.4 we find a finite system H ⊂ Gj such that

µ∗(A ∩ U ∩
⋃

H
)
> (1− θ)µ∗(A ∩ U).

The set
⋃

H is µ-measurable and therefore

µ∗(A ∩ U) = µ∗(A ∩ U ∩
⋃

H
)
+ µ∗(A ∩ U \

⋃
H
)

≥ (1− θ)µ∗(A ∩ U) + µ∗(A ∩ U \
⋃

H
)
.

This gives (1.5).

Set U1 = Rn. Using Claim we find a disjoint finite system H1 ⊂ F such that
⋃
H1 ⊂ U1 and

µ∗((A ∩ U1) \
⋃

H1

)
≤ θµ∗(A ∩ U1).

Continuing by induction we obtain a sequence of open set (Uj) and finite disjoint finite systems
(Hj) such that Uj+1 = Uj \

⋃
Hj , Hj ⊂ F ,

⋃
Hj ⊂ Uj , and

µ(A ∩ Uj+1) = µ∗((A ∩ Uj) \
⋃

Hj

)
≤ θµ∗(A ∩ Uj)

for every j ∈ N. Together we have

µ∗(A ∩ Uj+1

)
≤ θjµ∗(A)

for every j ∈ N. Since µ∗(A) < ∞ we get µ∗(A \
⋃∞

j=1

⋃
Hj

)
= 0. Thus we set G =

⋃∞
j=1 Hj

and we are done.

The general case. We find a sequence of bounded disjoint open sets (Gj)
∞
j=1 such that µ

(
Rn \⋃∞

j=1Gj

)
= 0. Then µ(Gj) < ∞ for every j ∈ N and we proceed as in the proof of Theorem 1.1
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1.2 Differentiation of measures
Notation. The symbol B stands for the family of all closed balls in Rn.

Definition. Let ν and µ are measures on Rn and x ∈ Rn. Then we define

• upper derivative of ν with respect to µ at x by

D(ν, µ, x) = lim
r→0+

(sup{ν(B)/µ(B); x ∈ B, B ∈ B, diamB < r}) ,

if the term at the right side is defined,

• lower derivative of ν with respect to µ at x by

D(ν, µ, x) = lim
r→0+

(inf{ν(B)/µ(B); x ∈ B, B ∈ B, diamB < r}) ,

if the term at the right side is defined,

• derivative of ν with respect to µ at x (denoting D(ν, µ, x)) as the common value of
D(ν, µ, x) and D(ν, µ, x), if it is defined.

The end of the lecture no. 4, 22. 10. 2024

Remark. The value D(ν, µ, x) (D(ν, µ, x)) is well defined if and only if

∀B ∈ B, x ∈ B : µ(B) > 0.

Theorem 1.6. Let ν and µ be Radon measures on Rn and µ satisfy Vitali theorem. Then
D(ν, µ, x) and D(ν, µ, x) exist µ-a.e.

Proof. Denote

M = {x ∈ Rn; D(ν, µ, x) is not defined},
V = {B ∈ B; µ(B) = 0}.

The family V is a Vitali cover of M . We find a countable disjoint system A ⊂ V such that
µ(M \

⋃
A) = 0. The we have

µ
(⋃

A
)
=

∑
B∈A

µ(B) = 0,

therefore µ(M) = 0.
The proof for D(ν, µ, x) is analogous.

Theorem 1.7. Let ν and µ be Radon measures on Rn, µ satisfy Vitali theorem, c ∈ (0,∞), and
M ⊂ Rn.
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(i) If for every x ∈ M we have D(ν, µ, x) > c, then ν∗(M) ≥ cµ∗(M).

(ii) If for every x ∈ M we have D(ν, µ, x) < c, then there exists H ⊂ M such that µ(M\H) =
0 and ν∗(H) ≤ cµ∗(M).

Proof. (i) Choose ε > 0. There exists an open set G ⊂ Rn with M ⊂ G and ν(G) ≤ ν∗(M)+ε.
Set

V = {B ∈ B; B ⊂ G, ν(B) > cµ(B)}.
The family V is a Vitali cover of M . There exists a disjoint countable subfamily A ⊂ V with
µ(M \

⋃
A) = 0. Then we have

ν∗(M) + ε ≥ ν(G) ≥ ν
(⋃

A
)
=

∑
B∈A

ν(B)

≥
∑
B∈A

cµ(B) = cµ(
⋃

A) ≥ cµ∗(M).

Taking ε → 0+ we get the desired inequality.

(ii) Choose k ∈ N. There exists an open set Gk ⊂ Rn such that M ⊂ Gk and µ(Gk) ≤
µ∗(M) + 1/k. Set

Vk = {B ∈ B; B ⊂ Gk, ν(B) < cµ(B)}.
The system Vk is a Vitali cover of M . Thus there exists a countable disjoint subfamily Ak ⊂ Vk

such that µ(M \
⋃

Ak) = 0. Set Hk = M ∩
⋃
Ak. Then µ(M \Hk) = 0, Hk ⊂ M and we have

ν∗(Hk) ≤ ν
(⋃

Ak

)
=

∑
B∈A

ν(B) ≤ c
∑
B∈A

µ(B) = cµ
(⋃

A
)

≤ cµ(Gk) ≤ c
(
µ∗(M) + 1

k

)
.

Now we set H =
⋂∞

k=1Hk. Then we have ν∗(H) ≤ cµ∗(M) and

µ(M \H) = µ∗(M \H) ≤
∞∑
k=1

µ∗(M \Hk) = 0.

Theorem 1.8. Let ν and µ be Radon measures on Rn and µ satisfies Vitali theorem. Then
D(ν, µ, x) is finite µ-a.e.

Proof. Denote

D = {x ∈ Rn; D(ν, µ, x) ∈ ⟨0,∞)},
N1 = {x ∈ Rn; D(ν, µ, x) is not defined},
N2 = {x ∈ Rn; D(ν, µ, x) is not defined},
N3 = {x ∈ Rn; D(ν, µ, x) = ∞},
N4 = {x ∈ Rn; D(ν, µ, x) < D(ν, µ, x)}.

Then we have
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• D = Rn \ (N1 ∪N2 ∪N3 ∪N4),

• µ(N1) = µ(N2) = 0 (Theorem 1.6).

Further we define

Ak = {x ∈ Rn; D(ν, µ, x) > k},
A(r, s) = {x ∈ Rn; D(ν, µ, x) < s < r < D(ν, µ, x)}, s, r ∈ Q+, s < r.

The we have

N3 =
∞⋂
k=1

Ak,

N4 =
⋃

{A(r, s); r, s ∈ Q+, s < r}.

We show µ(N3) = 0. Choose Q ⊂ N3 bounded. By Theorem 1.7(i) we have

kµ∗(Q) ≤ ν∗(Q) < ∞

for every k ∈ N. Therefore µ∗(Q) = 0 and thus also µ(N3) = 0, since N3 is a countable union
of bounded sets.

We show µ(N4) = 0. It is sufficient to show µ(A(r, s)) = 0 for every s, r ∈ Q+, s < r. Choose
Q ⊂ A(r, s) bounded. By Theorem 1.7(ii) there exists H ⊂ Q such that µ(Q \ H) = 0 and
ν∗(H) ≤ sµ∗(Q). By Theorem 1.7(i) we have rµ∗(H) ≤ ν∗(H). We may conclude

rµ∗(Q) = rµ∗(H) ≤ ν∗(H) ≤ sµ∗(Q) < ∞.

Since r > s > 0, we have µ∗(Q) = 0. This implies µ(A(r, s)) = 0.

Lemma 1.9. Let ν and µ be Radon measures on Rn and µ satisfies Vitali theorem. Then the
mappings x 7→ D(ν, µ, x), x 7→ D(ν, µ, x) are µ-measurable.

Proof. We start with the following observation.

The set

M(r, α) =
{
x ∈ Rn; ∃B ∈ B : diamB < r ∧ x ∈ B ∧ ν(B)

µ(B)
< α

}
is open for every r > 0 and α ∈ R.

If x ∈ M(r, α), then there exist y ∈ Rn and s > 0 with x ∈ B(y, s), 2s < r,

ν
(
B(y, s)

)
µ
(
B(y, s)

) < α.
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We find s′ > s such that 2s′ < r, ν
(
B(y, s′)

)
/µ

(
B(y, s′)

)
< α. Now we have x ∈ B(y, s′) ⊂

M(r, α). This finishes the proof of the observation.

The end of the lecture no. 5, 29. 10. 2024

Denote D = {x ∈ Rn; D(ν, µ, x) exists finite}. The set D is µ-measurable by Theorem 1.8.
For every x ∈ D we have

D(ν, µ, x) < α

⇔ ∃τ ∈ Q, τ > 0 ∀r ∈ Q, r > 0 ∃B ∈ B : diamB < r, x ∈ B,
ν(B)

µ(B)
< α− τ

⇔ ∃τ ∈ Q, τ > 0 ∀r ∈ Q, r > 0 : x ∈ M(r, α− τ).

The set {x ∈ Rn; D(ν, µ, x) < α} is intersection of D with a Borel set. This implies that
the mapping x 7→ D(ν, µ, x) is µ-measurable.

Measurability of the mapping x 7→ D(ν, µ, x) can be proved analogously.

Theorem 1.10. Let ν and µ be Radon measures on Rn, µ satisfy Vitali theorem, ν ≪ µ, and
B ⊂ Rn be µ-measurable. Then we have∫

B

D(ν, µ, x) dµ(x) = ν(B).

Proof. Choose β ∈ R, β > 1. Define

Bk = {x ∈ B; βk < D(ν, µ, x) ≤ βk+1}, k ∈ Z,

N = {x ∈ B; D(ν, µ, x) = 0}.

These sets are µ-measurable by Lemma 1.9. Using Theorem 1.8 we have

µ
(
B \

( ∞⋃
k=−∞

Bk ∪N
))

= 0.

Then we have∫
B

D(ν, µ, x) dµ(x) =
∞∑

k=−∞

∫
Bk

D(ν, µ, x) dµ(x) ≤
∞∑

k=−∞

βk+1µ(Bk)

Theorem 1.7(i)
≤

∞∑
k=−∞

βk+1β−kν(Bk) ≤ βν(B).

Going β → 1+ we get ∫
B

D(ν, µ, x) dµ(x) ≤ ν(B).
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Now let β > 1 again. Define

Ck = {x ∈ B; βk ≤ D(ν, µ, x) < βk+1}, k ∈ Z.

Besides the equality

µ
(
B \ (

∞⋃
k=−∞

Ck ∪N)
)
= 0,

we have also ν
(
B \ (

⋃∞
k=−∞ Ck ∪ N)

)
= 0, since ν ≪ µ. By Theorem 1.7(ii) and absolute

continuity of ν with respect to µ we obtain ν∗(Q) ≤ cµ∗(Q) < ∞ for any c > 0 and Q ⊂ N
bounded. Similarly as in the proof of Theorem 1.8 we get ν(N) = 0. Then we have∫

B

D(ν, µ, x) dµ(x) ≥
∞∑

k=−∞

∫
Ck

D(ν, µ, x) dµ(x) ≥
∞∑

k=−∞

βkµ(Ck)

Theorem 1.7(ii)
≥

∞∑
k=−∞

βkβ−(k+1)ν(Ck) =
1

β
ν(B).

Now it follows
∫
B
D(ν, µ, x) dµ(x) ≥ ν(B).

1.3 Lebesgue points
Definition. Let µ be a Radon measure on Rn. The symbol L1

loc(µ) denotes the set of all functions
f : Rn → C, which are µ-measurable and for every x ∈ Rn there exists r > 0 such that∫
B(x,r)

|f(t)| dµ(t) < ∞.

Definition. Let f ∈ L1
loc(µ). We say that x ∈ Rn is Lebesgue point of f (with respect to µ), if

it holds

∀ε > 0 ∃δ > 0 ∀B ∈ B, x ∈ B, diamB < δ :

∫
B
|f(t)− f(x)| dµ(t)

µ(B)
< ε.

Theorem 1.11. Let µ be a Radon measure on Rn satisfying Vitali theorem and f ∈ L1
loc(µ).

Then µ-a.e. points of f are Lebesgue points.

Proof. Without any loss of generality we may assume that µ(Rn) < ∞ and f ∈ L1(µ). Let
(Ck) be a sequence of closed discs in C, which forms a basis of C. We denote

gk(x) := dist(f(x), Ck), x ∈ Rn.

The function gk is nonnegative µ-measurable function satisfying gk ∈ L1(µ). Let νk =
∫
gk dµ.

By Theorem 1.10 we have D(νk, µ, x) = gk(x) µ-a.e. Denote

Pk = {x ∈ f−1(Ck); ¬(D(νk, µ, x) = 0)}.
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We have gk = 0 on f−1(Ck), therefore µ(Pk) = 0. We show that every point from Rn \
⋃∞

k=1 Pk

is a Lebesgue point of f .
Let x ∈ Rn \

⋃∞
k=1 Pk. Choose ε > 0. We find Ck such that f(x) ∈ Ck and Ck ⊂

B(f(x), ε/2). For any t ∈ Rn it holds

|f(t)− f(x)| ≤ gk(t) + ε.

There exists δ > 0 such that

∀B ∈ B, x ∈ B, diamB < δ :

∫
B
gk(t) dµ(t)

µ(B)
< ε,

since D(νk, µ, x) = 0. Take B ∈ B with x ∈ B, diamB < δ we get∫
B
|f(t)− f(x)| dµ(t)

µ(B)
≤

∫
B
gk(t) dµ(t) + εµ(B)

µ(B)
< 2ε.

This finishes the proof.

1.4 Density theorem
Definition. Let µ be a measure on Rn, A ⊂ Rn be µ-measurable, and x ∈ Rn. We say that
c ∈ [0, 1] is µ-density of the set A at x, if

∀ε > 0 ∃δ > 0 ∀B ∈ B, x ∈ B, diamB < δ :
∣∣∣µ(A ∩B)

µ(B)
− c

∣∣∣ < ε.

We denote dµ(A, x) = c.

The end of the lecture no. 6, 12. 11. 2024

Theorem 1.12. Let µ be a Radon measure on Rn satisfying Vitali theorem and M ⊂ Rn be
µ-measurable. Then

• dµ(M,x) = 1 for µ-a.e. x ∈ M ,

• dµ(M,x) = 0 for µ-a.e. x ∈ Rn \M .

Proof. Define ν on Rn by

ν(A) = µ(A ∩M) for every A ⊂ Rn µ-measurable.

Then we have

• dµ(M,x) = D(ν, µ, x), if at least one term is well defined,

• ν ≪ µ,

• ν =
∫
χM dµ.

By Theorem 1.10 we have ν =
∫
D(ν, µ, x) dµ(x) therefore dµ(M,x) = D(ν, µ, x) =

χM(x) µ-a.e.
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1.5 AC and BV functions
Remark. For a, c, b ∈ R, a < c < b, it holds

• Vb
a f = Vc

a f +Vb
c f ,

• |f(b)− f(a)| ≤ Vb
a f .

Example. Let f be a function with continuous derivative on an interval [a, b]. Then Vb
a f =∫ b

a
|f ′(x)| dx.

Remark. Let I be a closed nonempty interval. Then we have

(a) f, g ∈ AC(I) ⇒ f + g ∈ AC(I),

(b) f ∈ AC(I), α ∈ R ⇒ αf ∈ AC(I).

Theorem 1.13. Let f : [a, b] → R, a < b. Then f is absolutely continuous on [a, b] if and only if
f is difference of of two nondecreasing absolutely continuous functions on [a, b].

Proof. ⇒ We denote v(x) = Vx
a f , x ∈ [a, b]. The function v is well defined since f ∈

BV ([a, x]), x ∈ [a, b]. For every x, y ∈ I := [a, b], x < y, we have v(y)− v(x) = V y
x f .

The function v is nondecreasing. This is obvious.

The function v − f is nondecreasing. For every x, y ∈ I, x < y we have(
v(y)− f(y)

)
−
(
v(x)− f(x)

)
=

(
v(y)− v(x)

)
−
(
f(y)− f(x)

)
= V y

x f −
(
f(y)− f(x)

)
≥ 0.

The function v is absolutely continuous. Choose ε > 0. We find δ > 0 such that

m∑
j=1

|f(bj)− f(aj)| < ε,

whenever a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm are points from I = [a, b] with
∑m

j=1(bj − aj) <
δ. Now assume that we have points A1 < B1 ≤ A2 < B2 ≤ · · · ≤ Ap < Bp from I satisfying∑p

j=1(Bj − Aj) < δ. For each j ∈ {1, . . . , p} we find points

Aj = aj1 < bj1 = aj2 < bj2 = · · · < bjmj
= Bj

such that

v(Bj)− v(Aj) = V
Bj

Aj
f <

mj∑
i=1

|f(bji )− f(aji )|+
ε

p
.

The we have
p∑

j=1

mj∑
i=1

(bji − aji ) =

p∑
j=1

(Bj − Aj) < δ
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and
p∑

j=1

|v(Bj)− v(Aj)| <
p∑

j=1

( mj∑
i=1

|f(bji )− f(aji )|+
ε

p

)
< ε+ ε = 2ε

Now we can write f = v − (v − f).

Remark. Let F : R → R be nondecreasing function which is continuous at each point from the
right. Then there exists a Radon measure νF such that F is the distribution function of νF , i.e.,

νF
(
(a, b]

)
= F (b)− F (a), a, b ∈ R, a < b.

Lemma 1.14. Let f : (a, b) → R, x0 ∈ (a, b), and f ′(x0) ∈ R. Then we have

lim
[x1,x2]→[x0,x0]

x1≤x0≤x2,x1 ̸=x2

f(x2)− f(x1)

x2 − x1

= f ′(x0).

Lemma 1.15. Let f : (a, b) → R be nondecreasing on (a, b), C(f) be the set of all points of
continuity of f , and A ∈ R. Then for every x0 ∈ C(f) it holds

f ′(x0) = A ⇔ lim
[x1,x2]→[x0,x0]

x1≤x0≤x2,x1 ̸=x2

x1,x2∈C(f)

f(x2)− f(x1)

x2 − x1

= A.

The end of the lecture no. 7, 19. 11. 2024

Lemma 1.16. Let f be a distribution function of a Radon measure µ on R, x0 ∈ C(f), A ∈ R.
Then

f ′(x0) = A ⇔ D(µ, λ1, x0) = A.

Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval I . Then we have

(a) f ′(x) exists a.e. in I ,

(b) f ′ is measurable and
∣∣∫ b

a
f ′
∣∣ ≤ |f(b)− f(a)|, whenever a, b ∈ I, a < b,

(c) f ′ ∈ L1
loc(I).

Proof. Without any loss of generality we may assume that f is nondecreasing. Let a, b ∈ I ,
a < b. We define

g(x) =


limt→a+ f(t), x ∈ (−∞, a]

limt→x+ f(t), x ∈ (a, b),

f(b), x ∈ [b,∞).

The function g is nondecreasing, continuous from the right at each point of R, and {x ∈
(a, b) f(x) ̸= g(x)} is countable. By Remark there exists a Radon measure ν on R such that

∀c, d ∈ R, c < d : ν((c, d]) = g(d)− g(c).

We find Radon measures µ, σ such that ν = σ + µ, σ ≪ λ, and µ⊥λ.
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Claim. We have D(µ, λ, x) = 0 λ-a.e.

Proof of Claim. There exists a Borel set N such that λ(N) = 0 and µ(R \ N) = 0. Denote
D = {x ∈ R \N ; D(µ, λ, x) > c}. Then we have 0 = µ(D) ≥ cλ(D). This implies λ(D) = 0,
and, consequently, λ({x ∈ R \N ; D(µ, λ, x) > 0}) = 0. This gives the claim.

Lemma 1.16 gives g′(x) = D(ν, λ, x) λ-a.e. in [a, b], since g is continuous at each point [a, b]
except a countable set. For every x0 ∈ (a, b) ∩ C(f) we have f ′(x0) = A ∈ R if and only if
g′(x0) = A ∈ R (Lemma 1.15), since f(t) = g(t) whenever t ∈ C(f) ∩ (a, b). This implies (a).

(b) We have

f(b)− f(a) ≥ g(b)− g(a) = ν((a, b]) ≥ σ((a, b])

=

∫ b

a

D(σ, λ, x) dλ(x)
Claim
=

∫ b

a

D(ν, λ, x) dλ(x).

(c) This follows from (b).

Theorem 1.18. Let I be a nonempty interval and f ∈ BV (I). Then f ′(x) exists finite a.e. in I .

Theorem 1.19. Let f : [a, b] → R, a < b. Then the following assertions are equivalent.

(i) f ∈ AC([a, b]).

(ii) We have φ ∈ L1([a, b]) such that

f(x) = f(a) +

∫ x

a

φ(t) dt, x ∈ [a, b].

(iii) f ′(x) exists a.e. in [a, b], f ′ ∈ L1([a, b]) and

f(x) = f(a) +

∫ x

a

f ′(t) dt, x ∈ [a, b].

The end of the lecture no. 8, 26. 11. 2024
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Theorem 1.20 (per partes for Lebesgue integral). Let f, g ∈ AC([a, b]). Then we have∫ b

a

f ′g = [fg]ba −
∫ b

a

fg′.

Theorem 1.21. Let g be a nonnegative function on [a, b] with g ∈ L1([a, b]). Let f be a continu-
ous function on [a, b]. Then there exists ξ ∈ [a, b] such that∫ b

a

fg = f(ξ)

∫ b

a

g.

Theorem 1.22. Let f ∈ L1([a, b]) and g be a monotone function on [a, b]. Then there exists
ξ ∈ [a, b] such that ∫ b

a

fg = g(a)

∫ ξ

a

f + g(b)

∫ b

ξ

f.
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1.6 Rademacher theorem
Definition. Let M ⊂ Rn. We say that f : M → R is Lipschitz (on M ), if there exists K > 0
such that

∀x, y ∈ M : |f(x)− f(y)| ≤ K||x− y||.

Remark. If f is Lipschitz on M , then f is continuous on M .

Theorem 1.23. Let G ⊂ Rn be open nonempty and f : G → R be Lipschitz on G. Then f is
differentiable a.e. on G.

Lemma 1.24. Let f : Rn → R be continuous and i ∈ {1, . . . , n}. Then the set

Di =
{
x ∈ Rn; ∂f

∂xi
(x) exists

}
is Borel.

Proof. We have

∂f

∂xi

(x) exists

⇔ ∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ (−δ, δ) \ {0} :
∣∣f(x+t1ei)−f(x)

t1
− f(x+t2ei)−f(x)

t2

∣∣ < ε

⇔ ∀ε ∈ Q+ ∃δ ∈ Q+ ∀t1, t2 ∈
(
(−δ, δ) ∩Q

)
\ {0} :

∣∣f(x+t1ei)−f(x)
t1

− f(x+t2ei)−f(x)
t2

∣∣ < ε.

For ε > 0 and nonzero t1, t2 denote

D(ε, t1, t2) =
{
x ∈ Rn;

∣∣f(x+t1ei)−f(x)
t1

− f(x+t2ei)−f(x)
t2

∣∣ < ε
}
.

The set D(ε, t1, t2) is open since f is continuous. We have

Di =
⋂

ε∈Q+

⋃
δ∈Q+

⋂
t1∈(−δ,δ)∩Q

t1 ̸=0

⋂
t2∈(−δ,δ)∩Q

t2 ̸=0

D(ε, t1, t2),

therefore Di is Borel.

The end of the lecture no. 9, 3. 12. 2024
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Lemma 1.25. Let β > 0, A ̸= ∅, fα, α ∈ A, be β-Lipschitz function on Rn and x ∈ Rn be such
that supα∈A fα(x) is finite. Then the function z 7→ supα∈A fα(z) is β-Lipschitz on Rn.

Proof. Let u, v ∈ Rn. Then |fγ(u)− fγ(x)| ≤ β||u− x|| for any γ ∈ A, therefore

fγ(u) ≤ fγ(x) + β||u− x|| ≤ sup
α∈A

fα(x) + β||u− x||.

This implies
sup
γ∈A

fγ(u) ≤ sup
α∈A

fα(x) + β||u− x||,

thus supγ∈A fγ(u) ∈ R. Further we have

fγ(u) ≤ fγ(v) + β||u− v|| ≤ sup
α∈A

fα(v) + β||u− v|| for every γ ∈ A.

We get
sup
γ∈A

fγ(u) ≤ sup
α∈A

fα(v) + β||u− v||.

Thus we have
sup
α∈A

fα(u)− sup
α∈A

fα(v) ≤ β||u− v||.

Interchanging the roles of u and v we obtain

sup
α∈A

fα(v)− sup
α∈A

fα(u) ≤ β||u− v||,

which proves β-Lipschitzness.

Lemma 1.26. Let β > 0, E ⊂ Rn be nonempty and f : E → R be β-Lipschitz. Then there
exists β-Lipschitz function f̃ : Rn → R with f̃ |E = f .

Proof. The function fx : y 7→ f(x)− β · ||y − x|| is β-Lipschitz for every x ∈ E since

|fx(u)− fx(v)| =
∣∣β · ||u− x|| − β · ||v − x||

∣∣ ≤ β||u− v||

for every u, v ∈ Rn. For every y ∈ E we have supx∈E fx(y) ≤ f(y). Using Lemma 1.25 we get
the mapping defined by

f̃(y) = sup
x∈E

(f(x)− β||y − x||)

is β-Lipschitz on Rn. For z ∈ E we have f̃(z) ≥ fz(z) = f(z). Moreover fx(z) = f(x) −
β||z − x|| ≤ f(z), which gives f̃(z) ≤ f(z). Thus we prove f̃(z) = f(z).

Proof of Theorem 1.23. By Lemma 1.26 we may suppose that f is Lipschitz with the constant β
on Rn, i.e.,

∀x, y ∈ Rn : |f(x)− f(y)| ≤ β||x− y||.

We show that f is differentiable a.e. This gives also the statement of the theorem. Let E ⊂ Rn

be a set of those points where at least one partial derivative does not exist. The set Rn \ Di is
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by Lemma 1.24 measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see
Remark) to get λn(R

n \Di) = 0. Then we have λn(E) = 0, since E =
⋃n

i=1(R
n \Di).

For p, q ∈ Qn, m ∈ N, denote

S(p, q,m) =
{
x ∈ Rn; ∀i ∈ {1, . . . , n} ∀t ∈ (−1/m, 1/m) \ {0} : pi ≤ f(x+tei)−f(x)

t
≤ qi

}
.

It is easy to verify that the set S(p, q,m) is Borel. Let S̃(p, q,m) be the set of all points of
S(p, q,m), where S(p, q,m) has density 1. Then Theorem 1.12 gives

λn

(
S(p, q,m) \ S̃(p, q,m)

)
= 0.

The set
N =

⋃
{S(p, q,m) \ S̃(p, q,m); p, q ∈ Qn,m ∈ N}

is of measure zero.
We show that f is differentiable at each point x ∈ Rn \ (E ∪ N). Take x ∈ Rn \ (E ∪ N)

and ε ∈ (0, 1). Choose p, q ∈ Qn such that

qi − ε < pi <
∂f

∂xi

(x) < qi, i = 1, . . . , n.

Then there is m ∈ N such that x ∈ S(p, q,m). Since x /∈ N , the point x is a point of density of
the set S(p, q,m). Denote S = S(p, q,m).

We find δ ∈ (0, 1/m) such that

λn

(
B(x, r) \ S

)
≤

(
ε
2

)n
λn(B(x, r))

for every r ∈ (0, 2δ). Notice that the set B(x, (1 + ε)τ) \ S does not contain a ball with radius
ετ , whenever τ ∈ (0, δ). Otherwise it would hold

cn(ετ)
n ≤ (ε/2)ncn(1 + ε)nτn,

a contradiction. (The symbol cn denotes n-dimensional measure of the unit ball.)
Choose y ∈ B(x, δ), y ̸= x. Denote

yi = [y1, y2, . . . , yi, xi+1, . . . , xn].

For every i ∈ {0, . . . , n} define a ball Bi = B(yi, ε||y − x||). Using the preceding observation
we have Bi∩S ̸= ∅. Find points zi ∈ S∩Bi, i = 0, . . . , n−1, and denote wi = zi−1+(yi−xi)ei,
i = 1, . . . , n.

Then we have

pi ≤
f(wi)− f(zi−1)

yi − xi

≤ qi if xi ̸= yi,

pi <
∂f

∂xi

(x) < qi,
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therefore ∣∣∣f(wi)− f(zi−1)− ∂f

∂xi

(x)(yi − xi)
∣∣∣ ≤ (qi − pi)|yi − xi| ≤ ε∥y − x∥.

Then we have

∣∣∣f(y)− f(x)−
n∑

i=1

∂f

∂xi

(x)(yi − xi)
∣∣∣

≤
n∑

i=1

∣∣∣f(wi)− f(zi−1)− ∂f

∂xi

(x)(yi − xi)
∣∣∣+ n∑

i=1

(|f(yi)− f(wi)|+ |f(zi−1)− f(yi−1)|)

≤ nε||y − x||+ 2nβε||y − x|| = ε(n+ 2nβ)||y − x||,

thus the proof is finished.

Remark. Let us mention the following two deep results of D. Preiss ([?]).

1. Let H be a Hilbert space and f : H → R be Lipschitz. Then there exists x ∈ H , where
f is Fréchet differentiable, i.e., there exists a continuous linear mapping L : H → R such
that

lim
h→0

|f(x+ h)− f(x)− L(h)|
||h||

= 0.

2. There exists a closed measure zero set F ⊂ R2 such that any Lipschitz function on R2 is
differentiable at some point of F .

The end of the lecture no. 10, 10. 12. 2024

1.7 Lipschitz functions and W 1,∞

Remark. We have

W 1,∞(Ω) =
{
u ∈ L∞(Ω); ∂iu ∈ L∞(Ω) (in the sense of distributions), i ∈ {1, . . . , n}

}
.

Theorem 1.27. Let U ⊂ Rn be open. Then f : U → R is local Lipschitz on U if and only if
f ∈ W 1,∞

loc (U).

Without proof.
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1.8 Maximal operator
Definition. Let f : Rn → R be measurable. For x ∈ Rn we define

Mf(x) = sup
B∈B,x∈B

1

λn(B)

∫
B

|f |.

Theorem 1.28 (Hardy-Littlewood-Wiener).

(a) If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then Mf is finite a.e.

(b) There exists c > 0 such that for every f ∈ L1(Rn) and α > 0 we have

λn({x ∈ Rn; Mf(x) > α}) ≤ c

α
∥f∥1.

(c) Let p ∈ (1,∞]. Then there exists A such that for every f ∈ Lp(Rn) we have ∥Mf∥p ≤
A∥f∥p.
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