I. Introduction

I.1. Sets

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

- $x \in A \dots x$ is an element (or member) of the set A
- $x \notin A \dots x$ is not a member of the set A
- $A \subset B$... the set A is a subset of the set B (inclusion)
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- Ø ... an empty set
- $A \cup B \dots$ a union of the sets A and B
- $A \cap B$... an intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B
- $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; a_1 \in A_1, \dots, a_m \in A_m\} \dots$ a Cartesian product

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $\bigcap_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to every A_{α}

I.2. Logic, methods of proofs

A statement (or proposition) is a sentence which can be declared to be either true or false.

- ¬, also non ... negation
- & (also ∧) ... conjunction, logical "and"
- $\vee \dots disjuction$ (alternative), logical "or"
- \Rightarrow ... implication
- \Leftrightarrow ... equivalence; "if and only if"

Tautology is a compound statement, which is true independently of the truthness of its elementary statements. Examples of tautologies:

- \bullet $A \lor \neg A$
- $\neg (A \& \neg A)$
- $\bullet \ \big((A \ \& \ B) \ \& \ C \big) \Leftrightarrow \big(A \ \& \ (B \ \& \ C) \big)$
- $\neg (A \& B) \Leftrightarrow (\neg A \lor \neg B)$
- $\neg (A \lor B) \Leftrightarrow (\neg A \& \neg B)$
- $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$
- $\neg (A \Rightarrow B) \Leftrightarrow (A \& \neg B)$
- $(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \& (B \Rightarrow A))$
- $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$

A *predicate* (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

General form:

$$V(x), x \in M$$

$$V(x_1,\ldots,x_n), x_1 \in M_1,\ldots,x_n \in M_n$$

If A(x), $x \in M$ is a predicate, then the statement "A(x) holds for every x from M." is shortened to

$$\forall x \in M : A(x)$$
.

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M : A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

$$\exists ! x \in M : A(x).$$

If A(x), $x \in M$ and B(x), $x \in M$ are predicates, then

$$\forall x \in M, B(x) : A(x) \text{ means } \forall x \in M : (B(x) \Rightarrow A(x)),$$

$$\exists x \in M, B(x) : A(x) \text{ means } \exists x \in M : (A(x) \& B(x)).$$

Negations of the statements with quantifiers:

$$\neg(\forall x \in M : A(x))$$
 is the same as $\exists x \in M : \neg A(x)$,

$$\neg(\exists x \in M : A(x))$$
 is the same as $\forall x \in M : \neg A(x)$.

Methods of proofs

- direct proof
- · indirect proof
- proof by contradiction
- mathematical induction

Theorem 1 (de Morgan rules). Let S, A_{α} , $\alpha \in I$, where $I \neq \emptyset$, be sets. Then

$$S \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (S \setminus A_{\alpha})$$
 and $S \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (S \setminus A_{\alpha}).$

Theorem 2 (Cauchy inequality). Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be real numbers. Then

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Example (irrationality of $\sqrt{2}$). If a real number x solves the equation $x^2 = 2$, then x is not rational.

I.3. Number sets

Rational numbers

• A set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• A set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• A set of rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q}; \ p \in \mathbb{Z}, q \in \mathbb{N} \right\},\,$$

where $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ if and only if $p_1 \cdot q_2 = p_2 \cdot q_1$.

Real numbers

By a set of real numbers \mathbb{R} we will understand a set on which there are operations of *addition* and *multiplication* (denoted by + and \cdot), and a relation of *ordering* (denoted by \leq), such that it has the following three groups of properties.

- I. The properties of addition and multiplication and their relationships.
- II. The relationships of the ordering and the operations of addition and multiplication.
- III. The infimum axiom.

The properties of addition and multiplication and their relationships:

- $\forall x, y \in \mathbb{R} : x + y = y + x$ (commutativity of addition),
- $\forall x, y, z \in \mathbb{R}$: x + (y + z) = (x + y) + z (associativity),
- There is an element in \mathbb{R} (denoted by 0 and called a *zero element*), such that x + 0 = x for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$ (y is called the *negative* of x, such y is only one, denoted by -x),
- $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$ (commutativity),
- $\forall x, y, z \in \mathbb{R}$: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity),
- There is a non-zero element in \mathbb{R} (called *identity*, denoted by 1), such that $1 \cdot x = x$ for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1 \text{ (such } y \text{ is only one, denoted by } x^{-1} \text{ or } \frac{1}{x} \text{)},$
- $\forall x, y, z \in \mathbb{R}$: $(x + y) \cdot z = x \cdot z + y \cdot z$ (distributivity).

The relationships of the ordering and the operations of addition and multiplication:

- $\forall x, y, z \in \mathbb{R}$: $(x \le y \& y \le z) \Rightarrow x \le z$ (transitivity),
- $\forall x, y \in \mathbb{R}$: $(x \le y \& y \le x) \Rightarrow x = y$ (weak antisymmetry),
- $\forall x, y \in \mathbb{R} : x \le y \lor y \le x$,
- $\forall x, y, z \in \mathbb{R} : x \le y \Rightarrow x + z \le y + z$,
- $\forall x, y \in \mathbb{R} : (0 \le x \& 0 \le y) \Rightarrow 0 \le x \cdot y$.

Definition. We say that the set $M \subset \mathbb{R}$ is *bounded from below* if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a *lower bound* of the set M. Analogously we define the notions of a *set bounded from above* and an *upper bound*. We say that a set $M \subset \mathbb{R}$ is *bounded* if it is bounded from above and below.

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

- (i) $\forall x \in M : x > g$,
- (ii) $\forall g' \in \mathbb{R}, g' > g \exists x \in M : x < g'$.

The number g is denoted by $\inf M$ and is called the $\inf M$ of the set M.

Remark.

- The infimum axiom says that every non-empty set bounded from below has an infimum.
- The infimum of the set M is its greatest lower bound.
- The real numbers exist and are uniquely determined by the properties I–III.

The following hold:

- (i) $\forall x \in \mathbb{R} : x \cdot 0 = 0 \cdot x = 0$,
- (ii) $\forall x \in \mathbb{R}: -x = (-1) \cdot x$,
- (iii) $\forall x, y \in \mathbb{R} : xy = 0 \Rightarrow (x = 0 \lor y = 0),$
- (iv) $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} : x^{-n} = (x^{-1})^n$,

- (v) $\forall x, y \in \mathbb{R} : (x > 0 \land y > 0) \Rightarrow xy > 0$,
- (vi) $\forall x \in \mathbb{R}, x \ge 0 \ \forall y \in \mathbb{R}, y \ge 0 \ \forall n \in \mathbb{N} : x < y \Leftrightarrow x^n < y^n$.

Let $a, b \in \mathbb{R}$, $a \le b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; a < x < b\},\$
- A closed interval $[a,b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a,b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; a < x < b\}.$

The point a is called the *left endpoint of the interval*. The point b is called the *right endpoint of the interval*. A point in the interval which is not an endpoint is called an *inner point of the interval*.

Unbounded intervals:

$$(a, +\infty) = \{x \in \mathbb{R}; \ a < x\}, \quad (-\infty, a) = \{x \in \mathbb{R}; \ x < a\},\$$

analogically $(-\infty, a]$, $[a, +\infty)$ and $(-\infty, +\infty)$. We have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. If we transfer the addition and multiplication from \mathbb{R} to the above sets, we obtain the usual operations on these sets.

A real number that is not rational is called *irrational*. The set $\mathbb{R} \setminus \mathbb{Q}$ is called the *set of irrational numbers*.

Complex numbers

By the set of *complex numbers* we mean the set of all expressions of the form a+bi, where $a,b \in \mathbb{R}$. The set of all complex numbers is denoted by \mathbb{C} . On \mathbb{C} there are operations of addition and multiplication satisfying the group of properties I and moreover $i \cdot i = -1$.

Theorem ("fundamental theorem of algebra"). Let $n \in \mathbb{N}$, $a_0, \ldots, a_n \in \mathbb{C}$, $a_n \neq 0$. Then the equation

$$a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots + a_1 z + a_0 = 0$$

has at least one solution $z \in \mathbb{C}$.

Consequences of the infimum axiom

Definition. Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

- (i) $\forall x \in M : x \leq G$,
- (ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a *supremum* of the set M.

Theorem 3 (Supremum theorem). *Let* $M \subset \mathbb{R}$ *be a non-empty set bounded from above. Then there exists a unique supremum of the set* M.

The supremum of the set M is denoted by sup M.

The following holds: $\sup M = -\inf(-M)$.

Definition. Let $M \subset \mathbb{R}$. We say that a is a *maximum* of the set M (denoted by max M) if a is an upper bound of M and $a \in M$. Analogously we define a *minimum* of M, denoted by min M.

Lemma 4 ("no holes"). *Let* $M \subset \mathbb{R}$ *and*

$$\forall x, y \in M \ \forall z \in \mathbb{R}, x < z < y \colon z \in M.$$

Then M is an interval.

Theorem 5 (Archimedean property). For every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x.

Theorem 6 (existence of an integer part). For every $r \in \mathbb{R}$ there exists an integer part of r, i.e. a number $k \in \mathbb{Z}$ satisfying $k \le r < k + 1$. The integer part of r is determined uniquely and it is denoted by [r].

Theorem 7 (nth root). For every $x \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in [0, +\infty)$ satisfying $y^n = x$.

Theorem 8 (density of \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$). Let $a, b \in \mathbb{R}$, a < b. Then there exist $r \in \mathbb{Q}$ satisfying a < r < b and $s \in \mathbb{R} \setminus \mathbb{Q}$ satisfying a < s < b.

II. Limit of a sequence

II.1. Introduction

Definition. Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_n . Then we say that $\{a_n\}_{n=1}^{\infty}$ is a *sequence* of real numbers. The number a_n is called the *nth member* of this sequence.

A sequence $\{a_n\}_{n=1}^{\infty}$ is equal to a sequence $\{b_n\}_{n=1}^{\infty}$ if $a_n = b_n$ holds for every $n \in \mathbb{N}$.

By the set of all members of the sequence $\{a_n\}_{n=1}^{\infty}$ we understand a set

$${x \in \mathbb{R}; \ \exists n \in \mathbb{N} : a_n = x}.$$

Definition. We say that a sequence $\{a_n\}$ is

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,
- bounded if the set of all members of this sequence is bounded.

Definition. We say that a sequence $\{a_n\}$ is

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_n \ge a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\{a_n\}$ is *monotone* if it satisfies one of the conditions above. A sequence $\{a_n\}$ is *strictly monotone* if it is increasing or decreasing.

Definition. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

- By the sum of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{a_n + b_n\}$.
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence $\{b_n\}$ are non-zero. Then by the *quotient of sequences* $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{\frac{a_n}{b_n}\}$.
- If $\lambda \in \mathbb{R}$, then by the λ -multiple of the sequence $\{a_n\}$ we understand a sequence $\{\lambda a_n\}$.

II.2. Convergence of sequences

Definition. We say that a sequence $\{a_n\}$ has a *limit* which equals to a number $A \in \mathbb{R}$ if to every positive real number ε there exists a natural number n_0 such that for every index $n \ge n_0$ we have $|a_n - A| < \varepsilon$, i.e.

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < \varepsilon.$$

We say that a sequence $\{a_n\}$ is *convergent* if there exists $A \in \mathbb{R}$ which is a limit of $\{a_n\}$.

Theorem 9 (uniqueness of a limit). Every sequence has at most one limit.

We use the notation $\lim_{n\to\infty} a_n = A$ or simply $\lim a_n = A$.

Remark. Let $\{a_n\}$ be a sequence of real numbers and $A \in \mathbb{R}$. Then

$$\lim a_n = A \Leftrightarrow \lim (a_n - A) = 0 \Leftrightarrow \lim |a_n - A| = 0.$$

Theorem 10. Every convergent sequence is bounded.

Definition. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that a sequence $\{b_k\}_{k=1}^{\infty}$ is a *subsequence* of $\{a_n\}_{n=1}^{\infty}$ if there is an increasing sequence $\{n_k\}_{k=1}^{\infty}$ of natural numbers such that $b_k = a_{n_k}$ for every $k \in \mathbb{N}$.

Theorem 11 (limit of a subsequence). Let $\{b_k\}_{k=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$. If $\lim_{n\to\infty} a_n = A \in \mathbb{R}$, then also $\lim_{k\to\infty} b_k = A$.

Remark. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers, $A \in \mathbb{R}, K \in \mathbb{R}, K > 0$. If

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon |a_n - A| < K\varepsilon,$$

then $\lim a_n = A$.

Theorem 12 (arithmetics of limits). Suppose that $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. Then

- $(i) \lim(a_n + b_n) = A + B,$
- (ii) $\lim(a_n \cdot b_n) = A \cdot B$,
- (iii) if $B \neq 0$ and $b_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim (a_n/b_n) = A/B$.

Theorem 13. Suppose that $\lim a_n = 0$ and the sequence $\{b_n\}$ is bounded. Then $\lim a_n b_n = 0$.

Theorem 14 (limits and ordering). Let $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$.

- (i) Suppose that there is $n_0 \in \mathbb{N}$ such that $a_n \geq b_n$ for every $n \geq n_0$. Then $A \geq B$.
- (ii) Suppose that A < B. Then there is $n_0 \in \mathbb{N}$ such that $a_n < b_n$ for every $n \ge n_0$.

Theorem 15 (two policemen/sandwich theorem). Let $\{a_n\}$, $\{b_n\}$ be convergent sequences and let $\{c_n\}$ be a sequence such that

- (i) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 : a_n \leq c_n \leq b_n$,
- (ii) $\lim a_n = \lim b_n$.

Then $\lim c_n$ exists and $\lim c_n = \lim a_n$.

II.3. Infinite limits of sequences

Definition. We say that a sequence $\{a_n\}$ has a limit $+\infty$ (*plus infinity*) if

$$\forall L \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon a_n > L.$$

We say that a sequence $\{a_n\}$ has a limit $-\infty$ (minus infinity) if

$$\forall K \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon a_n < K.$$

Theorem 9 on the uniqueness of a limit holds also for the limits $+\infty$ and $-\infty$. If $\lim a_n = +\infty$, then we say that the sequence $\{a_n\}$ diverges to $+\infty$, similarly for $-\infty$. If $\lim a_n \in \mathbb{R}$, then we say that the limit is *finite*, if $\lim a_n = +\infty$ or $\lim a_n = -\infty$, then we say that the limit is *infinite*.

Theorem 10 does not hold for infinite limits. But:

Theorem 10'.

- Suppose that $\lim a_n = +\infty$. Then the sequence $\{a_n\}$ is not bounded from above, but is bounded from below.
- Suppose that $\lim a_n = -\infty$. Then the sequence $\{a_n\}$ is not bounded from below, but is bounded from above.

Theorem 11 (limit of a subsequence) holds also for infinite limits.

Definition. We define the *extended real line* by setting $\mathbb{R}^* = \mathbb{R} \cup \{+\infty, -\infty\}$ with the following extension of operations and ordering from \mathbb{R} :

- $a < +\infty$ and $-\infty < a$ for $a \in \mathbb{R}, -\infty < +\infty$,
- $a + (+\infty) = (+\infty) + a = +\infty$ for $a \in \mathbb{R}^* \setminus \{-\infty\}$,
- $a + (-\infty) = (-\infty) + a = -\infty$ for $a \in \mathbb{R}^* \setminus \{+\infty\}$,
- $a \cdot (\pm \infty) = (\pm \infty) \cdot a = \pm \infty \text{ for } a \in \mathbb{R}^*, a > 0,$
- $a \cdot (\pm \infty) = (\pm \infty) \cdot a = \mp \infty$ for $a \in \mathbb{R}^*, a < 0$,
- $\frac{a}{+\infty} = 0$ pro $a \in \mathbb{R}$.

The following operations are not defined:

•
$$(-\infty) + (+\infty), (+\infty) + (-\infty), (+\infty) - (+\infty), (-\infty) - (-\infty),$$

- $(+\infty) \cdot 0$, $0 \cdot (+\infty)$, $(-\infty) \cdot 0$, $0 \cdot (-\infty)$,
- $\frac{+\infty}{+\infty}$, $\frac{+\infty}{-\infty}$, $\frac{-\infty}{-\infty}$, $\frac{-\infty}{+\infty}$, $\frac{a}{0}$ for $a \in \mathbb{R}^*$.

Theorem 12' (arithmetics of limits). Suppose that $\lim a_n = A \in \mathbb{R}^*$ and $\lim b_n = B \in \mathbb{R}^*$. Then

- (i) $\lim(a_n \pm b_n) = A \pm B$ if the right-hand side is defined,
- (ii) $\lim(a_n \cdot b_n) = A \cdot B$ if the right-hand side is defined,
- (iii) $\lim a_n/b_n = A/B$ if the right-hand side is defined.

Theorem 16. Suppose that $\lim a_n = A \in \mathbb{R}^*$, A > 0, $\lim b_n = 0$ and there is $n_0 \in \mathbb{N}$ such that we have $b_n > 0$ for every $n \in \mathbb{N}$, $n \ge n_0$. Then $\lim a_n/b_n = +\infty$.

Theorem 14 (limits and ordering) and Theorem 15 (sandwich theorem) hold also for infinite limits. Even the following modification holds:

Theorem 15' (one policeman). Let $\{a_n\}$ and $\{b_n\}$ be two sequences.

- If $\lim a_n = +\infty$ and there is $n_0 \in \mathbb{N}$ such that $b_n \geq a_n$ for every $n \in \mathbb{N}$, $n \geq n_0$, then $\lim b_n = +\infty$.
- If $\lim a_n = -\infty$ and there is $n_0 \in \mathbb{N}$ such that $b_n \leq a_n$ for every $n \in \mathbb{N}$, $n \geq n_0$, then $\lim b_n = -\infty$.

Definition. Let $A \subset \mathbb{R}$ be non-empty. If A is not bounded from above, then we define $\sup A = +\infty$. If A is not bounded from below, then we define $\inf A = -\infty$.

Lemma 17. Let $M \subset \mathbb{R}$ be non-empty and $G \in \mathbb{R}^*$. Then the following statements are equivalent:

- (i) $G = \sup M$.
- (ii) The number G is an upper bound of M and there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of members of M such that $\lim x_n = G$.

II.4. Deeper theorems on limits of sequences

Theorem 18 (limit of a monotone sequence). Every monotone sequence has a limit. If $\{a_n\}$ is non-decreasing, then $\lim a_n = \sup\{a_n; n \in \mathbb{N}\}$. If $\{a_n\}$ is non-increasing, then $\lim a_n = \inf\{a_n; n \in \mathbb{N}\}$.

Theorem 19 (Bolzano-Weierstraß). Every bounded sequence contains a convergent subsequence.

III. Mappings

Definition. Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol f(x). The element y is called an *image* of x and the element x is called a *pre-image* of y.

- By $f: A \to B$ we denote the fact that f is a mapping from A to B.
- By $f: x \mapsto f(x)$ we denote the fact that the mapping f assigns f(x) to an element x.
- The set A from the definition of the mapping f is called the domain of f and it is denoted by D_f .

Definition. Let $f: A \to B$ be a mapping.

- The subset $G_f = \{[x, y] \in A \times B; x \in A, y = f(x)\}$ of the Cartesian product $A \times B$ is called the *graph of the mapping* f.
- The *image* of the set $M \subset A$ under the mapping f is the set

$$f(M) = \{ y \in B; \exists x \in M : f(x) = y \} \ (= \{ f(x); x \in M \}).$$

- The set f(A) is called the *range* of the mapping f, it is denoted by R_f .
- The *pre-image* of the set $W \subset B$ under the mapping f is the set

$$f_{-1}(W) = \{x \in A; \ f(x) \in W\}.$$

Remark. Let $f: A \rightarrow B, X, Y \subset A, U, V \subset B$. Then

- $f_{-1}(U \cup V) = f_{-1}(U) \cup f_{-1}(V)$,
- $f_{-1}(U \cap V) = f_{-1}(U) \cap f_{-1}(V)$,
- $f(X \cup Y) = f(X) \cup f(Y)$,
- $f(X \cap Y) \subset f(X) \cap f(Y)$.

Definition. Let A, B, C be sets, $C \subset A$ and $f: A \to B$. The mapping $\tilde{f}: C \to B$ given by the formula $\tilde{f}(x) = f(x)$ for each $x \in C$ is called the *restriction of the mapping* f *to the set* C. It is denoted by $f|_C$.

Definition. Let $f: A \to B$ and $g: B \to C$ be two mappings. The symbol $g \circ f$ denotes a mapping from A to C defined by

$$(g \circ f)(x) = g(f(x)).$$

This mapping is called a *compound mapping* or a *composition of the mapping* f *and the mapping* g.

Definition. We say that a mapping $f: A \to B$

- maps the set A onto the set B if f(A) = B, i.e. if to each $y \in B$ there exist $x \in A$ such that f(x) = y;
- is one-to-one (or injective) if images of different elements differ, i.e.

$$\forall x_1, x_2 \in A : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2),$$

• is a bijection of A onto B (or a bijective mapping), if it is at the same time one-to-one and maps A onto B.

Definition. Let $f: A \to B$ be bijective (i.e. one-to-one and onto). An *inverse mapping* $f^{-1}: B \to A$ is a mapping that to each $y \in B$ assigns a (uniquely determined) element $x \in A$ satisfying f(x) = y.

IV. Functions of one real variable

IV.1. Basic notions

Definition. A function f of one real variable (or a function for short) is a mapping $f: M \to \mathbb{R}$, where M is a subset of real numbers.

Definition. A function $f: J \to \mathbb{R}$ is *increasing* on an interval J, if for each pair $x_1, x_2 \in J$, $x_1 < x_2$ the inequality $f(x_1) < f(x_2)$ holds. Analogously we define a function *decreasing* (non-decreasing, non-increasing) on an interval J.

Definition. A monotone function on an interval J is a function which is non-decreasing or non-increasing on J. A strictly monotone function on an interval J is a function which is increasing or decreasing on J.

Definition. Let f be a function and $M \subset D_f$. We say that f is

- bounded from above on M if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,
- bounded from below on M if there is $K \in \mathbb{R}$ such that $f(x) \geq K$ for all $x \in M$,
- bounded on M if there is $K \in \mathbb{R}$ such that $|f(x)| \leq K$ for all $x \in M$,
- odd if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = -f(x),
- even if for each $x \in D_f$ we have $-x \in D_f$ and f(-x) = f(x),
- periodic with a period a, where $a \in \mathbb{R}$, a > 0, if for each $x \in D_f$ we have $x + a \in D_f$, $x a \in D_f$ and f(x + a) = f(x a) = f(x).

IV.2. Limit of a function

Definition. Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

- a neighbourhood of a point c with radius ε by $B(c, \varepsilon) = (c \varepsilon, c + \varepsilon)$,
- a punctured neighbourhood of a point c with radius ε by $P(c, \varepsilon) = (c \varepsilon, c + \varepsilon) \setminus \{c\}$.

Definition. We say that $A \in \mathbb{R}$ is a *limit of a function* f at a point $c \in \mathbb{R}$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$$

Theorem 20 (uniqueness of a limit). Let f be a function and $c \in \mathbb{R}$. Then f has a most one limit $A \in \mathbb{R}$ at c.

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by $\lim_{x \to c} f(x) = A$.

Definition. We say that a function f is *continuous at a point* $c \in \mathbb{R}$ if

$$\lim_{x \to c} f(x) = f(c).$$

Remark. A function f is continuous at a point c if and only if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in B(c, \delta): \ f(x) \in B(f(c), \varepsilon).$$

Definition. Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty, \varepsilon) = B(+\infty, \varepsilon) = (1/\varepsilon, +\infty),$$

$$P(-\infty, \varepsilon) = B(-\infty, \varepsilon) = (-\infty, -1/\varepsilon).$$

Definition. We say that $A \in \mathbb{R}^*$ is a *limit of a function* f at $c \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c, \delta) \colon f(x) \in B(A, \varepsilon).$$

Theorem 20 holds also for $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$, so we can again use the notation $\lim_{x \to c} f(x) = A$.

Definition. Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^-(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by $P^+(c, \varepsilon) = (c, c + \varepsilon)$,
- a left punctured neighbourhood of c by $P^{-}(c, \varepsilon) = (c \varepsilon, c)$,
- a left neighbourhood and left punctured neighbourhood of $+\infty$ by $B^-(+\infty,\varepsilon)=P^-(+\infty,\varepsilon)=(1/\varepsilon,+\infty)$,
- a right neighbourhood and right punctured neighbourhood of $-\infty$ by $B^+(-\infty,\varepsilon) = P^+(-\infty,\varepsilon) = (-\infty,-1/\varepsilon)$.

Definition. Let $A \in \mathbb{R}^*$, $c \in \mathbb{R} \cup \{-\infty\}$. We say that a function f has a *limit from the right* at c equal to $A \in \mathbb{R}^*$ (denoted by $\lim_{x \to c+} f(x) = A$) if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P^+(c, \delta) \colon f(x) \in B(A, \varepsilon).$$

Analogously we define the notion of *limit from the left* at $c \in \mathbb{R} \cup \{+\infty\}$ and we use the notation $\lim_{x \to c^-} f(x)$.

Remark. Let $c \in \mathbb{R}$, $A \in \mathbb{R}^*$. Then

$$\lim_{x \to c} f(x) = A \Leftrightarrow \left(\lim_{x \to c+} f(x) = A \& \lim_{x \to c-} f(x) = A\right).$$

Definition. Let $c \in \mathbb{R}$. We say that a function f is *continuous at c from the right (from the left*, resp.) if $\lim_{x\to c^+} f(x) = f(c)$ ($\lim_{x\to c^-} f(x) = f(c)$, resp.).

Theorem 21. Let f has a finite limit at $c \in \mathbb{R}^*$. Then there exists $\delta > 0$ such that f is bounded on $P(c, \delta)$.

Theorem 22 (arithmetics of limits). Let $c \in \mathbb{R}^*$, $\lim_{x \to c} f(x) = A \in \mathbb{R}^*$ and $\lim_{x \to c} g(x) = B \in \mathbb{R}^*$. Then

- (i) $\lim_{x\to c} (f(x) + g(x)) = A + B$ if the expression A + B is defined,
- (ii) $\lim_{x\to c} f(x)g(x) = AB$ if the expression AB is defined,
- (iii) $\lim_{x\to c} f(x)/g(x) = A/B$ if the expression A/B is defined.

Corollary. Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f + g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Theorem 23. Let $c \in \mathbb{R}^*$, $\lim_{x \to c} g(x) = 0$, $\lim_{x \to c} f(x) = A \in \mathbb{R}^*$ and A > 0. If there exists $\eta > 0$ such that the function g is positive on $P(c, \eta)$, then $\lim_{x \to c} (f(x)/g(x)) = +\infty$.

Definition. A polynomial is a function P of the form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R},$$

where $n \in \mathbb{N} \cup \{0\}$ and $a_0, a_1, \ldots, a_n \in \mathbb{R}$. The numbers a_0, \ldots, a_n are called the *coefficients of the polynomial P*.

Remark. Let $n, m \in \mathbb{N} \cup \{0\}$ and

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R},$$

$$Q(x) = b_0 + b_1 x + \dots + b_m x^m, \quad x \in \mathbb{R},$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$, $a_n \neq 0, b_0, b_1, \ldots, b_m \in \mathbb{R}$, $b_m \neq 0$. If the polynomials P and Q are equal (i.e. P(x) = Q(x) for each $x \in \mathbb{R}$), then n = m and $a_0 = b_0, \ldots, a_n = b_n$.

Definition. Let P be a polynomial of the form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n, \quad x \in \mathbb{R}.$$

We say that P is a polynomial of degree n if $a_n \neq 0$. The degree of a zero polynomial (i.e. a constant zero function defined on \mathbb{R}) is defined as -1.

Theorem 24 (limits and inequalities). Suppose that $c \in \mathbb{R}^*$ and $\lim_{x \to c} f(x)$, $\lim_{x \to c} g(x)$ exist.

(i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

$$\forall x \in P(c, \delta) \colon f(x) > g(x).$$

(ii) If there exists $\delta > 0$ such that $\forall x \in P(c, \delta)$: $f(x) \leq g(x)$, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

(iii) (two policemen/sandwich theorem) Suppose that there exists $\eta > 0$ such that

$$\forall x \in P(c, \eta) : f(x) \le h(x) \le g(x).$$

If moreover $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = A \in \mathbb{R}^*$, then the limit $\lim_{x\to c} h(x)$ also exists and equals A.

Corollary. Let $c \in \mathbb{R}^*$, $\lim_{x \to c} f(x) = 0$ and suppose there exists $\eta > 0$ such that g is bounded on $P(c, \eta)$. Then $\lim_{x \to c} (f(x)g(x)) = 0$.

Theorem 25 (limit of a composition). Let $c, A, B \in \mathbb{R}^*$, $\lim_{x\to c} g(x) = A$, $\lim_{y\to A} f(y) = B$ and at least on of the following conditions is satisfied:

- (I) $\exists \eta \in \mathbb{R}, \eta > 0 \ \forall x \in P(c, \eta) \colon g(x) \neq A$,
- (C) the function f is continuous at A.

Then

$$\lim_{x \to c} f(g(x)) = B.$$

Corollary. Suppose that the function g is continuous at $c \in \mathbb{R}$ and the function f is continuous at g(c). Then the function $f \circ g$ is continuous at c.

Theorem 26 (Heine). Let $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$ and the function f satisfies $\lim_{x\to c} f(x) = A$. If the sequence $\{x_n\}$ satisfies $x_n \in D_f$, $x_n \neq c$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} x_n = c$, then $\lim_{n\to\infty} f(x_n) = A$.

Theorem 27 (limit of a monotone function). Let $a, b \in \mathbb{R}^*$, a < b. Suppose that f is a function monotone on an interval (a, b). Then the limits $\lim_{x\to a+} f(x)$ and $\lim_{x\to b-} f(x)$ exist. Moreover,

- if f is non-decreasing on (a,b), then $\lim_{x\to a+} f(x) = \inf f((a,b))$ and $\lim_{x\to b-} f(x) = \sup f((a,b))$;
- if f is non-increasing on (a,b), then $\lim_{x\to a+} f(x) = \sup f(a,b)$ and $\lim_{x\to b-} f(x) = \inf f(a,b)$.

IV.3. Functions continuous on an interval

Definition. Let $J \subset \mathbb{R}$ be a non-degenerate interval (i.e. it contains infinitely many points). A function $f: J \to \mathbb{R}$ is *continuous* on the interval J if

- f is continuous at every inner point J,
- f is continuous from the right at the left endpoint of J if this point belongs to J,
- f is continuous from the left at the right endpoint of J if this point belongs to J.

Theorem 28 (continuity of the compound function on an interval). Let I and J be intervals, $g: I \to J$, $f: J \to \mathbb{R}$, let g be continuous on I and let f be continuous on J. Then the function $f \circ g$ is continuous on I.

Theorem 29 (Bolzano, intermediate value theorem). Let f be a function continuous on an interval [a,b] and suppose that f(a) < f(b). Then for each $C \in (f(a), f(b))$ there exists $\xi \in (a,b)$ satisfying $f(\xi) = C$.

Theorem 30 (an image of an interval under a continuous function). Let J be an interval and let $f: J \to \mathbb{R}$ be a function continuous on J. Then f(J) is an interval.

Definition. Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that f attains its *maximum* (resp. *minimum*) on M at $x \in M$ if

$$\forall y \in M : f(y) \le f(x) \quad (\text{resp. } \forall y \in M : f(y) \ge f(x)).$$

The point x is called the *point of maximum* (resp. *minimum*) of the function f on M. The symbol $\max_M f$ (resp. $\min_M f$) denotes the maximal (resp. \min value of f on M (if such a value exists). The points of maxima or \min are collectively called the points of *extrema*.

Definition. Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that the function f has at x

- a local maximum with respect to M if there exists $\delta > 0$ such that $\forall y \in B(x, \delta) \cap M$: $f(y) \leq f(x)$,
- a local minimum with respect to M if there exists $\delta > 0$ such that $\forall y \in B(x, \delta) \cap M$: $f(y) \ge f(x)$,
- a strict local maximum with respect to M if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M$: f(y) < f(x),
- a strict local minimum with respect to M if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M : f(y) > f(x)$.

The points of local maxima or minima are collectively called the points of local extrema.

Theorem 31 (Heine theorem for continuity on an interval). Let f be a function continuous on an interval J and $c \in J$. Then $\lim f(x_n) = f(c)$ for each sequence $\{x_n\}_{n=1}^{\infty}$ of points in the interval J satisfying $\lim x_n = c$.

Theorem 32 (extrema of continuous functions). Let f be a function continuous on an interval [a, b]. Then f attains its maximum and minimum on [a, b].

Corollary 33 (boundedness of a continuous function). Let f be a function continuous on an interval [a,b]. Then f is bounded on [a,b].

Theorem 34 (continuity of an inverse function). Let f be a continuous function that is increasing (resp. decreasing) on an interval J. Then the function f^{-1} is continuous and increasing (resp. decreasing) on the interval f(J).

IV.4. Elementary functions

Theorem 35 (logarithm). There exist a unique function (denoted by log and called the natural logarithm) with the following properties:

- (L1) $D_{\log} = (0, +\infty),$
- (L2) the function \log is increasing on $(0, +\infty)$,
- (L3) $\forall x, y \in (0, +\infty)$: $\log xy = \log x + \log y$,
- $(L4) \lim_{x \to 1} \frac{\log x}{x 1} = 1.$

Properties of the logarithm

- $\log 1 = 0$,
- $\forall x \in (0, +\infty)$: $\log(1/x) = -\log x$,
- $\forall n \in \mathbb{Z} \ \forall x \in (0, +\infty)$: $\log x^n = n \log x$,
- $\lim_{x \to +\infty} \log x = +\infty$, $\lim_{x \to 0+} \log x = -\infty$,
- the function log is continuous on $(0, +\infty)$,
- $R_{\log} = \mathbb{R}$,
- there exists a unique number $e \in (0, +\infty)$ satisfying $\log e = 1$.

Definition. The *exponential function* (denoted by exp) is defined as an inverse function to the function log.

Properties of the exponential function

- $D_{\text{exp}} = \mathbb{R}$, $R_{\text{exp}} = (0, +\infty)$,
- the function exp is continuous and increasing on \mathbb{R} ,
- $\exp 0 = 1$, $\exp 1 = e$,
- $\forall x, y \in \mathbb{R}$: $\exp(x + y) = \exp(x) \exp(y)$,
- $\forall x \in \mathbb{R}$: $\exp(-x) = 1/\exp x$,
- $\forall n \in \mathbb{Z} \ \forall x \in \mathbb{R} : \exp(nx) = (\exp x)^n$,
- $\lim_{x \to +\infty} \exp x = +\infty$, $\lim_{x \to -\infty} \exp x = 0$,
- $\bullet \lim_{x \to 0} \frac{\exp(x) 1}{x} = 1,$
- $\forall r \in \mathbb{Q}$: $\exp r = e^r$.

Definition. Let $a, b \in \mathbb{R}$, a > 0. The *general power* a^b is defined by

$$a^b = \exp(b \log a).$$

Definition. Let $a, b \in (0, +\infty)$, $a \ne 1$. The general logarithm to base a is defined by

$$\log_a b = \frac{\log b}{\log a}.$$

Theorem 36 (the sine and the number π). There exists a unique positive real number (denoted by π) and a unique function sine (denoted by sin) with the following properties:

- (S1) $D_{\sin} = \mathbb{R}$,
- (S2) sin is increasing on $[-\pi/2, \pi/2]$,
- $(S3) \sin 0 = 0,$
- (S4) $\forall x, y \in \mathbb{R}$: $\sin(x+y) = \sin x \cdot \sin(\frac{\pi}{2} y) + \sin(\frac{\pi}{2} x) \cdot \sin y$,
- $(S5) \lim_{x \to 0} \frac{\sin x}{x} = 1.$

Definition. The function *cosine* is defined by $\cos x = \sin(\frac{\pi}{2} - x), x \in \mathbb{R}$.

Properties of the sine and cosine

- The function cos is decreasing on $[0, \pi]$.
- $\cos \frac{\pi}{2} = 0$, $\cos 0 = \sin \frac{\pi}{2} = 1$, $\sin \pi = 0$, $\cos \pi = \sin(-\frac{\pi}{2}) = -1$, $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$
- $\forall x \in \mathbb{R}$: $\sin(x + \pi) = -\sin x$
- The function cos is even, the function sin is odd.
- The functions sin and cos are 2π -periodic.
- $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$
- $\forall x \in \mathbb{R}$: $|\sin x| \le 1, |\cos x| \le 1$
- $\forall x, y \in \mathbb{R}$: $\sin x \sin y = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$
- The functions \sin and \cos are continuous on \mathbb{R} .
- $R_{\sin} = R_{\cos} = [-1, 1]$
- The function sin is equal to zero exactly at the points of the set $\{k\pi; k \in \mathbb{Z}\}$, the function cos is equal to zero exactly et the points of the set $\{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\}$.

Definition. The function *tangent* is denoted by tg and defined by

$$tg x = \frac{\sin x}{\cos x}$$

for every $x \in \mathbb{R}$ for which the fraction is defined, i.e.

$$D_{\text{tg}} = \{ x \in \mathbb{R}; \ x \neq \pi/2 + k\pi, k \in \mathbb{Z} \}.$$

The function *cotangent* is denoted by cotg and defined on a set $D_{\text{cotg}} = \{x \in \mathbb{R}; x \neq k\pi, k \in \mathbb{Z}\}$ by

$$\cot g x = \frac{\cos x}{\sin x}.$$

Properties of the tangent and cotangent

- $\operatorname{tg} \frac{\pi}{4} = \operatorname{cotg} \frac{\pi}{4} = 1$
- The functions tg and cotg are continuous at every point of their domains.
- The functions tg and cotg are odd.
- The functions tg and cotg are π -periodic.
- The function tg is increasing on $(-\pi/2, \pi/2)$, the function cotg is decreasing on $(0, \pi)$.
- $\bullet \lim_{x \to \frac{\pi}{2} -} \operatorname{tg} x = +\infty, \lim_{x \to -\frac{\pi}{2} +} \operatorname{tg} x = -\infty, \lim_{x \to 0 +} \operatorname{cotg} x = +\infty, \lim_{x \to \pi -} \operatorname{cotg} x = -\infty$
- $R_{\text{tg}} = R_{\text{cotg}} = \mathbb{R}$

Definition.

- The function arcsine (denoted by arcsin) is an inverse function to the function $\sin \left|_{[-\frac{\pi}{2},\frac{\pi}{2}]}\right|$.
- The function *arccosine* (denoted by arccos) is an inverse function to the function $\cos |_{[0,\pi]}$.
- The function arctangent (denoted by arctg) is an inverse function to the function $\lg \left|_{\left(-\frac{\pi}{2},\frac{\pi}{2}\right)}\right|$.
- The function arccotangent (denoted by arccotg) is an inverse function to the function $\cot |_{(0,\pi)}$.

Properties of inverse trigonometric functions

- $D_{\text{arcsin}} = D_{\text{arccos}} = [-1, 1], D_{\text{arctg}} = D_{\text{arccotg}} = \mathbb{R}$
- The functions arcsin and arctg are odd.
- The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).
- The functions arcsin, arccos, arctg, and arccotg are continuous on their domains.
- arctg 0 = 0, $arctg 1 = \frac{\pi}{4}$, $arccotg 0 = \frac{\pi}{2}$
- $\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arctan x}{x} = 1$
- $\forall x \in [-1, 1]$: $\arcsin x + \arccos x = \frac{\pi}{2}, \forall x \in \mathbb{R}$: $\arctan x + \operatorname{arccotg} x = \frac{\pi}{2}$
- $\lim_{x \to +\infty} \operatorname{arctg} x = \frac{\pi}{2}$, $\lim_{x \to -\infty} \operatorname{arctg} x = -\frac{\pi}{2} \lim_{x \to +\infty} \operatorname{arccotg} x = 0$, $\lim_{x \to -\infty} \operatorname{arccotg} x = \pi$

IV.5. Derivatives

Definition. Let f be a function and $a \in \mathbb{R}$. Then

• the derivative of the function f at the point a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

• the *derivative of f at a from the right* is defined by

$$f'_{+}(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h},$$

• the *derivative of f at a from the left* is defined by

$$f'_{-}(a) = \lim_{h \to 0-} \frac{f(a+h) - f(a)}{h},$$

if the respective limits exist.

Definition. Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \}.$$

is called the *tangent to the graph of* f *at the point* [a, f(a)].

Theorem 37. Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. Then f is continuous at a.

Theorem 38 (arithmetics of derivatives). *Suppose that the functions* f *and* g *have finite derivatives at* $a \in \mathbb{R}$ *and let* $\alpha \in \mathbb{R}$. *Then*

- (i) (f+g)'(a) = f'(a) + g'(a),
- (ii) $(\alpha f)'(a) = \alpha \cdot f'(a)$,
- (iii) (fg)'(a) = f'(a)g(a) + f(a)g'(a),
- (iv) if $g(a) \neq 0$, then

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

Theorem 39 (derivative of a compound function). Suppose that the function f has a finite derivative at $y_0 \in \mathbb{R}$, the function g has a finite derivative at $x_0 \in \mathbb{R}$, and $y_0 = g(x_0)$. Then

$$(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0).$$

Theorem 40 (derivative of an inverse function). Let f be a function continuous and strictly monotone on an interval (a,b) and suppose that it has a finite and non-zero derivative $f'(x_0)$ at $x_0 \in (a,b)$. Then the function f^{-1} has a derivative at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

Derivatives of elementary functions

- (const.)' = 0,
- $(x^n)' = nx^{n-1}, x \in \mathbb{R}, n \in \mathbb{N}; x \in \mathbb{R} \setminus \{0\}, n \in \mathbb{Z}, n < 0$
- $(\log x)' = \frac{1}{x}$ for $x \in (0, +\infty)$,
- $(\exp x)' = \exp x \text{ for } x \in \mathbb{R},$
- $(x^a)' = ax^{a-1}$ for $x \in (0, +\infty), a \in \mathbb{R}$,
- $(a^x)' = a^x \log a$ for $x \in \mathbb{R}$, $a \in \mathbb{R}$, a > 0,
- $(\sin x)' = \cos x \text{ for } x \in \mathbb{R},$
- $(\cos x)' = -\sin x$ for $x \in \mathbb{R}$,
- $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$ for $x \in D_{\operatorname{tg}}$,
- $(\cot x)' = -\frac{1}{\sin^2 x}$ for $x \in D_{\cot x}$,
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ for $x \in (-1, 1)$,
- $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ for $x \in (-1, 1)$,
- $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$ for $x \in \mathbb{R}$,
- $(\operatorname{arccotg} x)' = -\frac{1}{1+x^2}$ for $x \in \mathbb{R}$.

Theorem 41 (necessary condition for a local extremum). Suppose that a function f has a local extremum at $x_0 \in \mathbb{R}$. If $f'(x_0)$ exists, then $f'(x_0) = 0$.

IV.6. Deeper theorems on derivatives

Theorem 42 (Rolle). Suppose that $a, b \in \mathbb{R}$, a < b, and a function f has the following properties:

- (i) it is continuous on the interval [a, b],
- (ii) it has a derivative (finite or infinite) at every point of the open interval (a, b),
- (iii) f(a) = f(b).

Then there exists $\xi \in (a,b)$ satisfying $f'(\xi) = 0$.

Theorem 43 (Lagrange, mean value theorem). Suppose that $a, b \in \mathbb{R}$, a < b, a function f is continuous on an interval [a, b] and has a derivative (finite or infinite) at every point of the interval (a, b). Then there is $\xi \in (a, b)$ satisfying

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 44 (sign of the derivative and monotonicity). Let $J \subset \mathbb{R}$ be a non-degenerate interval. Suppose that a function f is continuous on J and it has a derivative at every inner point of J (the set of all inner points of J is denoted by Int J).

- (i) If f'(x) > 0 for all $x \in \text{Int } J$, then f is increasing on J.
- (ii) If f'(x) < 0 for all $x \in \text{Int } J$, then f is decreasing on J.
- (iii) If $f'(x) \ge 0$ for all $x \in \text{Int } J$, then f in non-decreasing on J.
- (iv) If $f'(x) \leq 0$ for all $x \in \text{Int } J$, then f is non-increasing on J.

Theorem 45 (computation of a one-sided derivative). Suppose that a function f is continuous from the right at $a \in \mathbb{R}$ and the limit $\lim_{x \to a+} f'(x)$ exists. Then the derivative $f'_+(a)$ exists and

$$f'_{+}(a) = \lim_{x \to a+} f'(x).$$

Theorem 46 (l'Hospital's rule). Suppose that functions f and g have finite derivatives on some punctured neighbourhood of $a \in \mathbb{R}^*$ and the limit $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exist. Suppose further that one of the following conditions hold:

- (i) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$,
- (ii) $\lim_{x \to a} |g(x)| = +\infty$.

Then the limit $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists and

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

IV.7. Convex and concave functions

Definition. We say that a function f is

• convex on an interval I if

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda) f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• concave on an interval I if

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• strictly convex on an interval I if

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2),$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$;

• *strictly concave* on an interval *I* if

$$f(\lambda x_1 + (1 - \lambda)x_2) > \lambda f(x_1) + (1 - \lambda) f(x_2).$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$.

Lemma 47. A function f is convex on an interval I if and only if

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

for each three points $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$.

Definition. Suppose that a function f has a finite derivative on some neighbourhood of $a \in \mathbb{R}$. The *second derivative* of f at a is defined by

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

if the limit exists.

Let $n \in \mathbb{N}$ and suppose that f has a finite nth derivative (denoted by $f^{(n)}$) on some neighbourhood of $a \in \mathbb{R}$. Then the (n+1)th derivative of f at a is defined by

$$f^{(n+1)}(a) = \lim_{h \to 0} \frac{f^{(n)}(a+h) - f^{(n)}(a)}{h}$$

if the limit exists.

Theorem 48 (second derivative and convexity). Let $a, b \in \mathbb{R}^*$, a < b, and suppose that a function f has a finite second derivative on the interval (a, b).

- (i) If f''(x) > 0 for each $x \in (a,b)$, then f is strictly convex on (a,b).
- (ii) If f''(x) < 0 for each $x \in (a, b)$, then f is strictly concave on (a, b).
- (iii) If $f''(x) \ge 0$ for each $x \in (a, b)$, then f is convex on (a, b).
- (iv) If $f''(x) \le 0$ for each $x \in (a,b)$, then f is concave on (a,b).

Definition. Suppose that a function f has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of f at [a, f(a)]. We say that the point [x, f(x)] lies below the tangent T_a if

$$f(x) < f(a) + f'(a) \cdot (x - a).$$

We say that the point [x, f(x)] lies above the tangent T_a if the opposite inequality holds.

Definition. Suppose that a function f has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of f at [a, f(a)]. We say that a is an *inflection point* of f if there is $\Delta > 0$ such that

- (i) $\forall x \in (a \Delta, a)$: [x, f(x)] lies below the tangent T_a ,
- (ii) $\forall x \in (a, a + \Delta)$: [x, f(x)] lies above the tangent T_a ,

or

- (i) $\forall x \in (a \Delta, a)$: [x, f(x)] lies above the tangent T_a ,
- (ii) $\forall x \in (a, a + \Delta)$: [x, f(x)] lies below the tangent T_a .

Theorem 49 (necessary condition for inflection). Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 50 (sufficient condition for inflection). Suppose that a function f has a continuous first derivative on an interval (a, b) and $z \in (a, b)$. Suppose further that

- $\forall x \in (a, z) : f''(x) > 0$,
- $\forall x \in (z,b)$: f''(x) < 0.

Then z is an inflection point of f.

IV.8. Investigation of functions

Definition. The line which is a graph of an affine function $x \mapsto kx + q$, $k, q \in \mathbb{R}$, is called an *asymptote* of the function f at $+\infty$ (resp. $v - \infty$) if

$$\lim_{x \to +\infty} (f(x) - kx - q) = 0, \quad \text{(resp. } \lim_{x \to -\infty} (f(x) - kx - q) = 0\text{)}.$$

Proposition 51. A function f has an asymptote at $+\infty$ given by the affine function $x \mapsto kx + q$ if and only if

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \in \mathbb{R} \quad and \quad \lim_{x \to +\infty} (f(x) - kx) = q \in \mathbb{R}.$$

Investigation of a function

- 1. Determine the domain and discuss the continuity of the function.
- 2. Find out symmetries: oddness, evenness, periodicity.
- 3. Find the limits at the "endpoints of the domain".
- 4. Investigate the first derivative, find the intervals of monotonicity and local and global extrema. Determine the range.
- 5. Find the second derivative and determine the intervals where the function is concave or convex. Find the inflection points.
- 6. Find the asymptotes of the function.
- 7. Draw the graph of the function.