I. Introduction

I.1. Sets

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

e x € A...x is an element (or member) of the set A

e x ¢ A...x is not a member of the set A

e A C B ...the set A is a subset of the set B (inclusion)

e A= B ...thesets A and B have the same elements; the following holds: A C Band B C A
e (J...an empty set

e AU B ...aunion of the sets 4 and B

e AN B ... an intersection of the sets 4 and B

disjoint sets ... A and B are disjointif AN B =0

A\ B ={x € A; x ¢ B} ...adifference of the sets A and B
e Ay X+ X Ay ={[a1,...,am]; a1 € A1,...,am € Ay} ...a Cartesian product
Let I be a non-empty set of indices and suppose we have a system of sets A,, where the indices « run over /.

e |J Ay ...the set of all elements belonging to at least one of the sets A,
ael

e () Ay ...the set of all elements belonging to every Ay
ael

I.2. Logic, methods of proofs

A statement (or proposition) is a sentence which can be declared to be either true or false.

e —, alsonon...negation

& (also A) ... conjunction, logical “and”
e V ...disjuction (alternative), logical “or”
e = ...implication

e & ...equivalence; “if and only if”

Tautology is a compound statement, which is true independently of the truthness of its elementary statements.
Examples of tautologies:

e Av—A4

o =(A & —A)

e (4 & B) & C)o (4 & (B & ()
e (A & B) & (—AV —B)

e ~(AV B) & (~4 & —B)

e (A= B) & (—B = —A)

e =(A= B) & (4 & —B)

(A4 B) & ((A= B) & (B = A))

(A= B) & (=AV B)



A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we
substitute certain elements of a given set for the variables.
General form:
Vix), xeM

V(X1,...,Xn), X1 € My,...,xp € My,

If A(x), x € M is a predicate, then the statement “A(x) holds for every x from M .” is shortened to
Vx € M: A(x).
The statement “There exists x in M such that A(x) holds.” is shortened to
dx e M: A(x).
The statement “There is only one x in M such that A(x) holds.” is shortened to
dlx e M: A(x).
If A(x), x € M and B(x), x € M are predicates, then
Vx € M,B(x): A(x) means Vx e M: (B(x)= A(x)),
dx € M,B(x): A(x) means Ix € M: (A(x) & B(x)).

Negations of the statements with quantifiers:
—(Vx e M: A(x)) isthesameas 3Ix € M: —A(x),
—(Ax e M: A(x)) isthesameas Vx e M:—-A(x).

Methods of proofs

direct proof

indirect proof

proof by contradiction

mathematical induction

Theorem 1 (de Morgan rules). Let S, Ay, o € I, where [ # 0, be sets. Then

S\U4a=[1(5\40) and S\ []4a =]\ o).

ael ael ael ael

Theorem 2 (Cauchy inequality). Letay,...,ay, b1, ..., b, be real numbers. Then

(Be) =(5) ()

Example (irrationality of V/2). If a real number x solves the equation x? = 2, then x is not rational.

1.3. Number sets
Rational numbers

e A set of natural numbers
N ={1,2,3,4,...}

e A set of integers
Z=Nu{0jU{-n;neN}={..,-2,-1,0,1,2,...}
e A set of rational numbers
Q= £;p€Z,q€N .
q

where ‘Z—l‘ = % if and only if p; - g2 = p2 - q1.



Real numbers
By a set of real numbers R we will understand a set on which there are operations of addition and multiplication (denoted by
+ and -), and a relation of ordering (denoted by <), such that it has the following three groups of properties.

I. The properties of addition and multiplication and their relationships.
II. The relationships of the ordering and the operations of addition and multiplication.
III. The infimum axiom.
The properties of addition and multiplication and their relationships:
e Vx,y e R: x +y =y + x (commutativity of addition),
e Vx,y,zeR:x+ (y +2) = (x + y) + z (associativity),

e There is an element in R (denoted by 0 and called a zero element), such that x + 0 = x for every x € R,

Vx e Rdy e R: x + y = 0 (y is called the negative of x, such y is only one, denoted by —x),

Vx,y €e R: x -y =y - x (commutativity),

Vx,y,z€R:x-(y-z) = (x-y)-z (associativity),

There is a non-zero element in R (called identity, denoted by 1), such that 1 - x = x for every x € R,

Vx € R\ {0} 3y € R: x-y = 1 (such y is only one, denoted by x~! or %),

e Vx,y,z€eR: (x+y):-z=x-z+y-z (distributivity).

The relationships of the ordering and the operations of addition and multiplication:
e Vx,y,zeR: (x <y & y <z)= x <z (transitivity),

e Vx,yeR: (x <y & y <x) = x =y (weak antisymmetry),

e Vx,yeR:x <yvy<ux,

e Vx,y,zeR:x<y=x4+z=<y+2z,

e Vx,yeR:(0<x & 0<y)=0=<x-y.

Definition. We say that the set M C R is bounded from below if there exists a number a € R such that for each x € M we have
X > a. Such a number a is called a lower bound of the set M. Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M C R is bounded if it is bounded from above and below.

The infimum axiom:
Let M be a non-empty set bounded from below. Then there exists a unique number g € R such that

(i) VxeM: x> g,
(i) V' eR, g’ >gdxeM: x < g.

The number g is denoted by inf M and is called the infimum of the set M.

Remark.

e The infimum axiom says that every non-empty set bounded from below has an infimum.
e The infimum of the set M is its greatest lower bound.
e The real numbers exist and are uniquely determined by the properties I-II1.
The following hold:
(i) VxeR:x-0=0-x=0,

(i) Vx eR: —x =(-1)-x,

(iii)) Vx,yeR:xy=0=(x=0vy =0),

(iv) Vx e RVn e N: x™" = (x~ )",



V) Vx,yeR: (x >0Ay >0)= xy >0,
(vi) VxeR,x>0VyeR,y>0VneN:x <y & x" <y"
Leta,b € R, a < b. We denote:
e Anopen interval (a,b) = {x € R; a < x < b},
e A closed interval [a,b] = {x € R; a < x < b},
o A half-open interval [a,b) = {x € R; a < x < b},
o A half-open interval (a,b] = {x € R; a < x < b}.

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval
which is not an endpoint is called an inner point of the interval.
Unbounded intervals:
(a,400) ={x e R; a<x}, (—o00,a)={x€eR; x<a},

analogically (—o0,a], [a, +00) and (—o0o, +00). We have N C Z C Q C R. If we transfer the addition and multiplication
from R to the above sets, we obtain the usual operations on these sets.
A real number that is not rational is called irrational. The set R \ Q is called the set of irrational numbers.

Complex numbers

By the set of complex numbers we mean the set of all expressions of the form a + bi, where a, b € R. The set of all complex
numbers is denoted by C. On C there are operations of addition and multiplication satisfying the group of properties I and
moreoveri -i = —1.

Theorem (“fundamental theorem of algebra”). Letn € N, ay,...,a, € C, a, # 0. Then the equation
an?" 4+ ap-12"' +ap—2z" 2+ +arz+ap =0

has at least one solution z € C.

Consequences of the infimum axiom

Definition. Let M C R. A number G € R satisfying
(i) VxeM:x <G,
(i) VG' e R,G' < GIx e M: x > G/,

is called a supremum of the set M .

Theorem 3 (Supremum theorem). Let M C R be a non-empty set bounded from above. Then there exists a unique supremum of
the set M.

The supremum of the set M is denoted by sup M.
The following holds: sup M = —inf(—M).

Definition. Let M C R. We say that a is a maximum of the set M (denoted by max M) if a is an upper bound of M anda € M.
Analogously we define a minimum of M, denoted by min M .

Lemma 4 (“no holes”). Let M C R and
Vx,yeMVzeRx<z<y:zeM.
Then M is an interval.

Theorem 5 (Archimedean property). For every x € R there exists n € N satisfying n > x.

Theorem 6 (existence of an integer part). For every r € R there exists an integer part of r, i.e. a number k € 7 satisfying
k <r <k + 1. The integer part of r is determined uniquely and it is denoted by [r].

Theorem 7 (nth root). For every x € [0, +00) and every n € N there exists a unique y € [0, +00) satisfying y* = x.

Theorem 8 (density of Q and R \ Q). Let a,b € R, a < b. Then there exist r € Q satisfyinga <r <bands € R\ Q
satisfying a < s < b.



I1. Limit of a sequence

11.1. Introduction

Definition. Suppose that to each natural number n € N we assign a real number a,. Then we say that {a,},>, is a sequence of
real numbers. The number a,, is called the nth member of this sequence.

A sequence {a, }°2  is equal to a sequence {b, }°2 , if a, = b, holds for every n € N.

By the set of all members of the sequence {a,}52, we understand a set

{x eR; dn e N: q, = x}.
Definition. We say that a sequence {a,} is
e bounded from above if the set of all members of this sequence is bounded from above,
e bounded from below if the set of all members of this sequence is bounded from below,
e bounded if the set of all members of this sequence is bounded.
Definition. We say that a sequence {a,} is
e increasing if a, < ap41 foreveryn € N,
e decreasing if a, > a, 41 foreveryn € N,
e non-decreasing if a, < an41 foreveryn € N,
e non-increasing if a, > an4+; for every n € N.

A sequence {a,} is monotone if it satisfies one of the conditions above. A sequence {a,} is strictly monotone if it is increasing
or decreasing.

Definition. Let {a,} and {b,} be sequences of real numbers.
e By the sum of sequences {a, } and {b, } we understand a sequence {a, + b, }.
e Analogously we define a difference and a product of sequences.

e Suppose all the members of the sequence {b, } are non-zero. Then by the quotient of sequences {a, } and {b,, } we understand
a sequence {Z—:}

e If A € R, then by the A-multiple of the sequence {a, } we understand a sequence {Aa,}.

I1.2. Convergence of sequences

Definition. We say that a sequence {a,} has a limit which equals to a number A € R if to every positive real number ¢ there
exists a natural number 7¢ such that for every index n > ngy we have |a, — A| < &, i.e.

VeeR,e>0Imye NVrneN,n>ng: |la, — A| <e.
We say that a sequence {a, } is convergent if there exists A € R which is a limit of {a, }.
Theorem 9 (uniqueness of a limit). Every sequence has at most one limit.
We use the notation lim a, = A or simply lima, = A.
n—0o0
Remark. Let {a,} be a sequence of real numbers and A € R. Then
lima, = A < lim(a, — A) =0 < lim|a, — A| = 0.
Theorem 10. Every convergent sequence is bounded.

Definition. Let {a,};2 | be a sequence of real numbers. We say that a sequence {bx {7, is a subsequence of {an ;2 if there is
an increasing sequence {ny }7- ; of natural numbers such that by = ay, for every k € N.

Theorem 11 (limit of a subsequence). Let {by}72 | be a subsequence of {an 52 . Iflimy o0 an = A € R, then also limg_ o0 by =
A.



Remark. Let {a,};2; be a sequence of real numbers, 4 € R, K ¢ R, K > 0. If
VeeR,e>03Inge NVneN,n>ng: |a, — A| < Kg,
then lima, = A.
Theorem 12 (arithmetics of limits). Suppose thatlima, = A € R andlimb,, = B € R. Then
(i) lim(a, + b,) = A+ B,
(ii) lim(a, - b,) = A- B,
(iii) if B # 0 and b, # 0 for alln € N, then lim(a,/b,) = A/B.
Theorem 13. Suppose that lima, = 0 and the sequence {by} is bounded. Then lima,b, = 0.
Theorem 14 (limits and ordering). Letlima, = A € R and limb, = B € R.
(i) Suppose that there is ng € N such that a,, > by, for everyn > ng. Then A > B.
(ii) Suppose that A < B. Then there is ng € N such that a, < by for every n > ny.
Theorem 15 (two policemen/sandwich theorem). Let {a,}, {b,} be convergent sequences and let {c, } be a sequence such that
(i) Ino e NVn e N,n>ng: a, <cp < by,
(ii) lima, = lim b,

Then lim ¢, exists and lim ¢,, = lim ay,.

I1.3. Infinite limits of sequences
Definition. We say that a sequence {a, } has a limit +oco (plus infinity) if
VLeR3Inge NVneN,n>ng:a, > L.
We say that a sequence {a, } has a limit —oo (minus infinity) if
VK eR3dnge NVneN,n>ng:a, < K.

Theorem 9 on the uniqueness of a limit holds also for the limits +oco and —oco. If lima, = +o00, then we say that the sequence
{an} diverges to +o00, similarly for —oo. If lima, € R, then we say that the limit is finite, if lima, = 400 or lima, = —o0,
then we say that the limit is infinite.

Theorem 10 does not hold for infinite limits. But:

Theorem 10°.

o Suppose that lima, = 4o00. Then the sequence {a, } is not bounded from above, but is bounded from below.
e Suppose that lima, = —oo. Then the sequence {ay} is not bounded from below, but is bounded from above.
Theorem 11 (limit of a subsequence) holds also for infinite limits.

Definition. We define the extended real line by setting R* = R U {+00, —oo} with the following extension of operations and
ordering from R:

e a < +ooand —oco < afora € R, —oco < 400,

a+ (+00) = (+o0) +a = +oo fora € R* \ {—o0},

a+ (—o00) = (—00) + a = —oco fora € R* \ {+o0},

a-(£oo) = (+oo)-a = toofora e R*, a > 0,

a-(£oo) = (£o0)-a = Foofora € R*, a <0,

a

.:I:oo

=0proa € R.
The following operations are not defined:

* (=00) + (+09), (+00) + (=00), (+00) = (+00), (—00) = (=0),



e (+00)-0,0-(400), (—00)-0,0-(—00),

+o00 400 —o0 —© a *
oo’ —oo’ “oo’ Too» 0 fora € R™.

Theorem 12’ (arithmetics of limits). Suppose thatlima, = A € R* andlimb,, = B € R*. Then
(i) lim(a, *+ b,) = A £ B if the right-hand side is defined,

(i) lim(ay, - b,) = A - B if the right-hand side is defined,

(iii) limay /b, = A/B if the right-hand side is defined.

Theorem 16. Suppose that lima, = A € R*, A > 0, limb, = 0 and there is no € N such that we have b, > 0 for every
n € N, n > ng. Then limay, /b, = +oc.

Theorem 14 (limits and ordering) and Theorem 15 (sandwich theorem) hold also for infinite limits. Even the following
modification holds:

Theorem 15’ (one policeman). Let {a,} and {b,} be two sequences.
e [flima, = +o0o and there is ng € N such that b, > a, for everyn € N, n > ng, then limb, = +oo0.
e [flima, = —oo and there is ny € N such that b, < a, for everyn € N, n > ng, then limb, = —ooc.

Definition. Let A C R be non-empty. If 4 is not bounded from above, then we define sup A = +o0. If 4 is not bounded from
below, then we define inf A = —o0.

Lemma 17. Let M C R be non-empty and G € R*. Then the following statements are equivalent:
(i) G =sup M.

(ii) The number G is an upper bound of M and there exists a sequence {x,}5> | of members of M such that limx, = G.

I1.4. Deeper theorems on limits of sequences

Theorem 18 (limit of a monotone sequence). Every monotone sequence has a limit. If {a,} is non-decreasing, then lima, =
sup{a,; n € N}. If {an} is non-increasing, then lima, = inf{a,; n € N}.

Theorem 19 (Bolzano-Weierstrall). Every bounded sequence contains a convergent subsequence.

II1. Mappings

Definition. Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique
member y of the set B. This element y is denoted by the symbol f(x). The element y is called an image of x and the element x
is called a pre-image of y.

e By f: A — B we denote the fact that f is a mapping from A4 to B.
e By f: x — f(x) we denote the fact that the mapping f assigns f(x) to an element x.

o The set A from the definition of the mapping f is called the domain of f and it is denoted by Dy.
Definition. Let f: A — B be a mapping.

e The subset Gy = {[x,y] € Ax B; x € A,y = f(x)} of the Cartesian product A x B is called the graph of the mapping
f.

e The image of the set M C A under the mapping f is the set
JM)={yeB:IxeM: f(x) =y} (={f(x); xeM}).

o The set f(A) is called the range of the mapping f, it is denoted by Ry.

o The pre-image of the set W C B under the mapping f is the set
faaW)={xed: f(x) e W}

Remark. Let f: A— B, X,Y C A, U,V C B. Then



AU UY) = faU)U f(V),
AU V)= faU)n f),
f(XUY)= f(X)U f(Y),
f(Xny)cfxyn fx).

Definition. Let A, B, C be sets, C C Aand f: A — B. The mapping f : C — B given by the formula f (x) = f(x) for each
x € C is called the restriction of the mapping f to the set C. It is denoted by f|c.

Definition. Let f: A — B and g: B — C be two mappings. The symbol g o f denotes a mapping from A to C defined by
(8o f)(x) = g(f(x)).

This mapping is called a compound mapping or a composition of the mapping f and the mapping g.
Definition. We say that a mapping f': A — B
e maps the set A onto the set B if f(A) = B, i.e.iftoeach y € B there exist x € A such that f(x) = y;

e is one-to-one (or injective) if images of different elements differ, i.e.
Vxi,x2 € A x1 # x2 = f(x1) # f(x2),

e is a bijection of A onto B (or a bijective mapping), if it is at the same time one-to-one and maps A onto B.

Definition. Let f: A — B be bijective (i.e. one-to-one and onto). An inverse mapping f~': B — A is a mapping that to each
y € B assigns a (uniquely determined) element x € A satisfying f(x) = y.

IV. Functions of one real variable

IV.1. Basic notions

Definition. A function f of one real variable (or a function for short) is a mapping f: M — R, where M is a subset of real
numbers.

Definition. A function f: J — R is increasing on an interval J, if for each pair x1,x, € J, x1 < x, the inequality f(x;) <
f(x2) holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval J .

Definition. A monotone function on an interval J is a function which is non-decreasing or non-increasing on J. A strictly
monotone function on an interval J is a function which is increasing or decreasing on J.

Definition. Let f be a function and M C Dy. We say that f is
e bounded from above on M if there is K € R such that f(x) < K forall x € M,

bounded from below on M if there is K € R such that f(x) > K forall x € M,

bounded on M if there is K € R such that | f(x)| < K forall x € M,

odd if for each x € Dy we have —x € Dy and f(—x) = —f(x),

even if for each x € Dy we have —x € Dy and f(—x) = f(x),
e periodic with a period a, where a € R, a > 0, if foreach x € Dy wehave x +a € Dy, x —a € Dy and f(x +a) =

fx—a) = f(x).

IV.2. Limit of a function
Definition. Let ¢ € R and ¢ > 0. We define

e a neighbourhood of a point ¢ with radius ¢ by B(c,e) = (c — &, ¢ + ¢),

e a punctured neighbourhood of a point ¢ with radius € by P(c,e) = (c —¢&,¢c + ¢) \ {c}.
Definition. We say that A € R is a limit of a function f at a point ¢ € R if

VeeR,e>038 €R,6§ >0Vx € P(c,d): f(x) € B(A,¢).



Theorem 20 (uniqueness of a limit). Let f be a function and ¢ € R. Then f has a most one limit A € R at c.

The fact that f has a limit A € R at ¢ € R is denoted by )}me f(x) = A.
Definition. We say that a function f is continuous at a point ¢ € R if
lim f(x) = f(c).
Remark. A function f is continuous at a point c¢ if and only if
VeeR,e>036 €R,§ >0Vx € B(c,8): f(x) € B(f(c),¢).
Definition. Let ¢ > 0. A neighbourhood and a punctured neighbourhood of 400 (resp. —o0) is defined as follows:

P(+00,¢6) = B(4+00,8) = (1/¢, +00),
P(—00,¢) = B(—00,¢) = (—00,—1/¢).

Definition. We say that A € R* is a limit of a function f at c € R* if
VeeR,e>035€R,8§ >0Vx € P(c,08): f(x) € B(A,e).
Theorem 20 holds also for ¢ € R*, A € R*, so we can again use the notation limy—_,. f(x) = A.
Definition. Letc € R and ¢ > 0. We define
e aright neighbourhood of c by BT (c,¢) = [c,c + ¢),
e a left neighbourhood of ¢ by B~ (c,¢) = (¢ — &, c],
e a right punctured neighbourhood of ¢ by P*(c, &) = (c.c + ¢),
e aleft punctured neighbourhood of ¢ by P~ (c, &) = (¢ —¢,¢),
e aleft neighbourhood and left punctured neighbourhood of 400 by B~ (4+00,¢) = P~ (+00,¢) = (1/¢, +00),
e aright neighbourhood and right punctured neighbourhood of —co by B¥ (—00, &) = Pt (—o00,8) = (—o0, —1/e).

Definition. Let A € R*, ¢ € R U {—o0}. We say that a function f has a limit from the right at ¢ equal to A € R* (denoted by
lim f(x) = A)if
x—>c+
VeeR,e>03§€R,§>0Vx e PT(c,8): f(x) € B(A,e).

Analogously we define the notion of limit from the left at c € R U {400} and we use the notation lim f(x).
xX—>c—

Remark. Letc € R, A € R*. Then
tim f = (i =4 &l s =a).

Definition. Let ¢ € R. We say that a function f is continuous at ¢ from the right (from the left, resp.) if limy_.+ f(x) = f(c)
(limyx—c— f(x) = f(c), resp.).
Theorem 21. Let f has a finite limit at ¢ € R*. Then there exists § > 0 such that f is bounded on P(c,§).
Theorem 22 (arithmetics of limits). Let ¢ € R*, limy—,. f(x) = A € R* and limy_,. g(x) = B € R*. Then

(i) limy_.(f(x) + g(x)) = A + B if the expression A + B is defined,

(ii) limy—. f(x)g(x) = AB if the expression AB is defined,
(iii) limy_. f(x)/g(x) = A/B if the expression A/ B is defined.

Corollary. Suppose that the functions f and g are continuous at ¢ € R. Then also the functions [ + g and fg are continuous
at c¢. If moreover g(c) # 0, then also the function f/g is continuous at c.

Theorem 23. Let ¢ € R*, limy_. g(x) = 0, limy_,. f(x) = A € R* and A > 0. If there exists n > 0 such that the function g
is positive on P(c,n), then limy_, . (f(x)/g(x)) = +4o00.



Definition. A polynomial is a function P of the form

P(x)=ao+a1x+---+ayx", xeR,
where n € N U {0} and ag, a1, ...,a, € R. The numbers ay, . .., a, are called the coefficients of the polynomial P.
Remark. Letn,m € N U {0} and

P(x)=ao+a1x +--+ayx", xeR,

O(x) =bo+bix+-+bux™, x€eR,

where ag,a1,...,ay, € R, a, # 0, by, by,...,bym € R, by, # 0. If the polynomials P and Q are equal (i.e. P(x) = Q(x) for
each x € R),thenn = m and ag = by, ...,a, = by,.

Definition. Let P be a polynomial of the form
P(x)=ao+a1x+---+ayx", xeR.

We say that P is a polynomial of degree n if a,, # 0. The degree of a zero polynomial (i.e. a constant zero function defined on R)
is defined as —1.

Theorem 24 (limits and inequalities). Suppose that ¢ € R* and limy_,. f(x), limy_.. g(x) exist.
(i) If limy ¢ f(x) > limy_,. g(x), then there exists § > O such that
Vx € P(c,8): f(x) > g(x).
(ii) If there exists § > 0 such that Vx € P(c,8): f(x) < g(x), then
lim f(x) < lim g(x).
X—>C X—>C
(iii) (two policemen/sandwich theorem) Suppose that there exists n > 0 such that

Vx e P(c.n): f(x) < h(x) < g(x).
If moreover limy_,. f(x) = limy—. g(x) = A € R¥, then the limit limy_,. h(x) also exists and equals A.

Corollary. Let c € R*, limy_. f(x) = 0and suppose there exists ) > 0 such that g is bounded on P(c, n). Then limy_,, (f(x)g(x)) =
0.

Theorem 25 (limit of a composition). Let ¢, A, B € R*, limy_,¢ g(x) = A4, lim,_. 4 f(y) = B and at least on of the following
conditions is satisfied:

() AIneR,n>0Vx e P(c,n): g(x) #£ A,
(C) the function f is continuous at A.

Then
lim f(g(x) = B.

Corollary. Suppose that the function g is continuous at ¢ € R and the function f is continuous at g(c). Then the function f o g
is continuous at c.

Theorem 26 (Heine). Let ¢ € R*, A € R* and the function [ satisfies limy_.. f(x) = A. If the sequence {x,} satisfies
Xn € Dy, xp # c foralln € N and lim, o X, = ¢, then lim, o f(x,) = A.

Theorem 27 (limit of a monotone function). Let a,b € R*, a < b. Suppose that f is a function monotone on an interval (a, b).
Then the limits limy 4+ f(x) and limy_5_ f(x) exist. Moreover,

e if f is non-decreasing on (a,b), then limy_q4 f(x) = inf f((a, b)) and limy_,p— f(x) = sup f((a.b));

e if f is non-increasing on (a, b), then limy_,,4 f(x) = sup f((a, b)) and limy_p_ f(x) = inff((a, b)).

IV.3. Functions continuous on an interval

Definition. Let / C R be a non-degenerate interval (i.e. it contains infinitely many points). A function f: J — R is continuous
on the interval J if

e f is continuous at every inner point J,
e f is continuous from the right at the left endpoint of J if this point belongs to J,

e [ is continuous from the left at the right endpoint of J if this point belongs to J.
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Theorem 28 (continuity of the compound function on an interval). Let I and J be intervals, g: I — J, f:J — R, let g be
continuous on I and let f be continuous on J. Then the function f o g is continuous on I.

Theorem 29 (Bolzano, intermediate value theorem). Let f be a function continuous on an interval [a,b] and suppose that

f(a) < f(b). Then for each C € (f(a), f(b)) there exists £ € (a, b) satisfying f(§) = C.

Theorem 30 (an image of an interval under a continuous function). Let J be an interval and let f: J — R be a function
continuous on J. Then f(J) is an interval.

Definition. Let M C R, x € M and a function f is defined at least on M (i.e. M C Dy). We say that f attains its maximum
(resp. minimum) on M at x € M if

VyeM: f(y) < f(x) (resp.Vy e M: f(y) = f(x)).

The point x is called the point of maximum (resp. minimum) of the function f on M. The symbol maxys f (resp. mings f)
denotes the maximal (resp. minimal) value of f on M (if such a value exists). The points of maxima or minima are collectively
called the points of extrema.

Definition. Let M C R, x € M and a function f is defined at least on M (i.e. M C Dy). We say that the function f has at x
e alocal maximum with respect to M if there exists § > O suchthat Vy € B(x,§) N M: f(y) < f(x),
e a local minimum with respect to M if there exists § > O such that Vy € B(x,8) N M : f(y) = f(x),
e a strict local maximum with respect to M if there exists § > 0 such that Vy € P(x,8) "N M: f(y) < f(x),
e a strict local minimum with respect to M if there exists § > O such that Vy € P(x,§) " M : f(y) > f(x).
The points of local maxima or minima are collectively called the points of local extrema.

Theorem 31 (Heine theorem for continuity on an interval). Let f be a function continuous on an interval J and ¢ € J. Then
lim f(x,) = f(c) for each sequence {x,}° | of points in the interval J satisfying lim x, = c.

Theorem 32 (extrema of continuous functions). Let f be a function continuous on an interval [a, b]. Then f attains its maximum
and minimum on [a, b).

Corollary 33 (boundedness of a continuous function). Let f be a function continuous on an interval [a, b]. Then f is bounded
on [a,b].

Theorem 34 (continuity of an inverse function). Let f be a continuous function that is increasing (resp. decreasing) on an
interval J. Then the function ! is continuous and increasing (resp. decreasing) on the interval f(J).

IV.4. Elementary functions

Theorem 35 (logarithm). There exist a unique function (denoted by log and called the natural logarithm) with the following
properties:

(L1) Diog = (0, +00),
(L2) the function log is increasing on (0, 4+00),

(L3) Vx,y € (0,4+00): logxy = logx + log y,

. lo,
(L4) lim 225 = 1.
Properties of the logarithm

e logl =0,

Vx € (0,400): log(l/x) = —logx,

VneZ Vx € (0,400): logx™ = nlogx,

lim logx = +o00, lim logx = —oo0,
xX——+00 x—0+

the function log is continuous on (0, +00),

Rlog =R,

there exists a unique number e € (0, +o00) satisfying loge = 1.

11



Definition. The exponential function (denoted by exp) is defined as an inverse function to the function log.
Properties of the exponential function
o Doy =R, Reyp = (0, +00),
o the function exp is continuous and increasing on R,
e exp0=1l,expl =e,
o Vx,y € R: exp(x + y) = exp(x) exp(y),
e Vx e R: exp(—x) = 1/expx,
e VneZVx eR: exp(nx) = (expx)”,

e lim expx = 400, lim expx =0,
x—>+o00 X—>—00

e lim
x—0

o VreQ: expr=e’.
Definition. Leta,b € R, a > 0. The general power a? is defined by
ab = exp(bloga).
Definition. Leta,b € (0, 400), a # 1. The general logarithm to base a is defined by

_ logh

log, b =

“ loga’

Theorem 36 (the sine and the number 7). There exists a unique positive real number (denoted by 1) and a unique function sine
(denoted by sin) with the following properties:

(S1) Dsin =R,
(S2) sin is increasing on [—m /2,7 /2],
($3) sin0 = 0,
(S4) ¥x,y € R: sin(x + y) = sinx -sin(3 — y) + sin(F — x) - sin y,
im SinX —
(85) lim Sn = 1.
Definition. The function cosine is defined by cos x = sin(3 — x), x € R.
Properties of the sine and cosine

e The function cos is decreasing on [0, 7].

z T _ 2
2

e cos 7 =0,cos0 =sin7 = 1,sinm = 0,cosw = sin(—~7) = —1,sin % 7
e Vx e R: sin(x + n) = —sinx

e The function cos is even, the function sin is odd.

e The functions sin and cos are 2 -periodic.

2

e VxeR: sinx +cos?x =1

e Vx e R: [sinx| <1,|cosx| <1

e Vx,y € R: sinx —siny = 2sin (35%) cos (%)

e The functions sin and cos are continuous on R.

® Rin = Reos = [_1’ 1]

e The function sin is equal to zero exactly at the points of the set {kw; k € Z}, the function cos is equal to zero exactly et

the points of the set {7 + kn; k € Z}.
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Definition. The function tangent is denoted by tg and defined by

for every x € R for which the fraction is defined, i.e.

Dy={xeR; x#n/2+kn kecZ}

The function cotangent is denoted by cotg and defined on a set Doy = {x € R; x # kn, k € Z} by

COS X

cotgx = — .
sin x

Properties of the tangent and cotangent

tgh =cotgf =1

The functions tg and cotg are continuous at every point of their domains.

The functions tg and cotg are odd.

The functions tg and cotg are w-periodic.

The function tg is increasing on (—7/2, r/2), the function cotg is decreasing on (0, ).

lim tgx = 400, lim tgx =—o0, lim cotgx = +o00, lim cotgx = —o0
x—>Z%— x—>—5+ x—>0+ X—>T—

ng = Rcotg =R

Definition.

The function arcsine (denoted by arcsin) is an inverse function to the function sin |[_%,%].
The function arccosine (denoted by arccos) is an inverse function to the function cos |[g ]
The function arctangent (denoted by arctg) is an inverse function to the function tg |(_%,%).

The function arccotangent (denoted by arccotg) is an inverse function to the function cotg | (o ).

Properties of inverse trigonometric functions

Da.rcsin = Darccos = [_17 l]’ Da.rctg == Da.rccolg =R
The functions arcsin and arctg are odd.
The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

The functions arcsin, arccos, arctg, and arccotg are continuous on their domains.

— — T T
arctg0 = 0, arctg 1 = 7, arccotg0 = 5
lim arcsinx __ lim arctgx _ 1
x—0 x—>0 ¥

Vx € [-1,1]: arcsinx + arccosx = 7, Vx € R: arctgx + arccotgx = 7

lim arctgx = Z, lim arctgx = —Z lim arccotgx =0, lim arccotgx = 7
X—>+00 2’ x50 2 xX—>+00 X—>—00

IV.5. Derivatives

Definition. Let f be a function and a € R. Then

the derivative of the function f at the point a is defined by

f(a) = }}1_12) w’

the derivative of f at a from the right is defined by

, . +h) —
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e the derivative of f at a from the left is defined by

fla+h)— fla)
h :

@) = Jim.
if the respective limits exist.
Definition. Suppose that the function f has a finite derivative at a point a € R. The line
To={lx.y] €R* y = f(a) + f'(@)(x —a)}.
is called the tangent to the graph of f at the point [a, f(a)].

Theorem 37. Suppose that the function f has a finite derivative at a point a € R. Then f is continuous at a.

Theorem 38 (arithmetics of derivatives). Suppose that the functions f and g have finite derivatives at a € R and let o € R.
Then

(i) (f +8) (@) = f'(a) + g'(a),

(ii) (af)'(a) = a- f'(a),
(iii) (fg)'(a) = f'(a)g(a) + f(a)g'(a),
(iv) if g(a) # 0, then

N\ flag@) - fla)g' (@)
- (a) - 2 .

g g*(a)

Theorem 39 (derivative of a compound function). Suppose that the function f has a finite derivative at yo € R, the function g
has a finite derivative at xg € R, and yg = g(xo). Then

(f 28)'(x0) = f'(yo) - &' (x0).

Theorem 40 (derivative of an inverse function). Let f be a function continuous and strictly monotone on an interval (a, b) and
suppose that it has a finite and non-zero derivative f'(xo) at xo € (a,b). Then the function f~! has a derivative at yo = f(x¢)

and
1

—1y/ _ 1 —
Y00 =50 = TG0

Derivatives of elementary functions

(const.)’ = 0,

x"Y =nx""!"xeR,neN;x e R\{0},neZ,n <0,

(logx) = % for x € (0, +00),

(expx)' = expx for x € R,

(x*) = ax* ! forx € (0, 4+00),a € R,

(a*) =a*logaforx e R,a e R,a >0,

(sinx)’ = cos x for x € R,

e (cosx) = —sinx for x € R,

o (tgx) = cos12x for x € Dy,

e (cotgx) = _sinl2x for x € Doy,

e (arcsinx) = \/11_7 forx € (—1,1),
e (arccos x) = _«/# for x € (—1,1),
e (arctgx) = H—% forx € R,

e (arccotg x)' = —ﬁ for x € R.

Theorem 41 (necessary condition for a local extremum). Suppose that a function f has a local extremum at xo € R. If f'(x¢)
exists, then f'(xq) = 0.
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IV.6. Deeper theorems on derivatives

Theorem 42 (Rolle). Suppose thata,b € R, a < b, and a function f has the following properties:
(i) it is continuous on the interval [a, b],

(ii) it has a derivative (finite or infinite) at every point of the open interval (a, b),

(iii) f(a) = f(b).

Then there exists & € (a, b) satisfying (&) = 0.

Theorem 43 (Lagrange, mean value theorem). Suppose that a,b € R, a < b, a function f is continuous on an interval [a, b]
and has a derivative (finite or infinite) at every point of the interval (a, b). Then there is £ € (a, D) satisfying

S(b)— f(a)
b—a

Theorem 44 (sign of the derivative and monotonicity). Let J C R be a non-degenerate interval. Suppose that a function f is
continuous on J and it has a derivative at every inner point of J (the set of all inner points of J is denoted by Int J ).

1€ =

(i) If f'(x) > Oforall x € IntJ, then f is increasing on J.

(ii) If f'(x) < 0 forall x € IntJ, then f is decreasing on J.
(iii) If f'(x) > O forall x € IntJ, then f in non-decreasing on J.
(iv) If f'(x) <0 forall x € IntJ, then f is non-increasing on J.

Theorem 45 (computation of a one-sided derivative). Suppose that a function f is continuous from the right at a € R and the
limit lim f'(x) exists. Then the derivative f| (a) exists and
x—>a+

fi@ = lim f'(x).

Theorem 46 (I’Hospital’s rule). Suppose that functions f and g have finite derivatives on some punctured neighbourhood of
a € R* and the limit lim g/((;c)) exist. Suppose further that one of the following conditions hold:
xX—a

(i) lim f(x) = lim g(x) =0,
(ii) lim [g(x)] = +oc.

Then the limit lim % exists and
X—a

o fx) L fl()
lim = lim .
x—a g(x)  x—a g'(x)
IV.7. Convex and concave functions
Definition. We say that a function f is

e convex on an interval I if
SOAx1+ (1 =2A)x2) < Af(x1) + (1 = 24) f(x2),
for each x1,x, € I and each A € [0, 1];

e concave on an interval [ if
SOxi+ (1= 2A)x2) = Af(x1) + (1 = 1) f(x2),
for each x1,x, € I and each A € [0, 1];

e strictly convex on an interval [ if
SAx1 4+ 0 =M)x2) <Af(x1) + (1 =2) f(x2),
for each x1,x, € I, x; # xp andeach A € (0, 1);
e strictly concave on an interval [ if
SAxr + (1 =Mxz) > Af(x1) + (1 = A) f(x2).

for each x1,x, € I, x; 7# x5 and each A € (0, 1).
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Lemma 47. A function f is convex on an interval I if and only if

Sf(x2) = f(x1) _ fx3) = fx2)

X2 — X1 X3 — X2

for each three points x1,Xx2,x3 € I, X1 < X3 < X3.

Definition. Suppose that a function f has a finite derivative on some neighbourhood of a € R. The second derivative of f ata

is defined by Flat B — @)
a — fl(a
h

f"(a) = lim
h—0
if the limit exists.

Let n € N and suppose that f has a finite nth derivative (denoted by ) on some neighbourhood of @ € R. Then the
(n + 1)th derivative of f at a is defined by

f®@+h) — f™(a)
h

£ (@) = lim
h—0
if the limit exists.

Theorem 48 (second derivative and convexity). Let a,b € R*, a < b, and suppose that a function f has a finite second
derivative on the interval (a, b).

(i) If f"(x) > 0 for each x € (a,b), then f is strictly convex on (a, b).
(ii) If f"(x) < O foreach x € (a,b), then f is strictly concave on (a,b).
(iii) If f"(x) = 0 for each x € (a,b), then f is convex on (a, b).

(iv) If f"(x) <0 foreach x € (a,b), then f is concave on (a, b).

Definition. Suppose that a function f has a finite derivative at ¢ € R and let T, denote the tangent to the graph of f at [a, f(a)].
We say that the point [x, f(x)] lies below the tangent T, if

fx) < fla)+ f'@) - (x —a).
We say that the point [x, f(x)] lies above the tangent T, if the opposite inequality holds.

Definition. Suppose that a function f has a finite derivative at a € R and let 7, denote the tangent to the graph of f at [a, f(a)].
We say that a is an inflection point of f if there is A > 0 such that

(1) Vx € (a— A,a): [x, f(x)] lies below the tangent T,

(i) Vx € (a,a + A): [x, f(x)] lies above the tangent T,
or

(i) Vx € (a— A,a): [x, f(x)] lies above the tangent T,

(i) Vx € (a,a + A): [x, f(x)] lies below the tangent 7.

Theorem 49 (necessary condition for inflection). Let a € R be an inflection point of a function f. Then [ (a) either does not
exist or equals zero.

Theorem 50 (sufficient condition for inflection). Suppose that a function f has a continuous first derivative on an interval (a, b)
and z € (a, b). Suppose further that

e Vx e (a,z): f"(x) >0,
e Vx e (z,b): f"(x) <0.

Then z is an inflection point of f.

IV.8. Investigation of functions

Definition. The line which is a graph of an affine function x — kx + ¢, k,gq € R, is called an asymptote of the function f at
400 (resp. v —o0) if
lim (f(x)—kx—¢q)=0, (resp. lim (f(x)—kx—q)=0).
x—>+00 X—>—00

Proposition 51. A function f has an asymptote at +00 given by the affine function x — kx + q if and only if

)
m ——-

x—>+o0o X

=keR and lim (f(x)—kx)=gq €R.
X—>+00
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Investigation of a function

1. Determine the domain and discuss the continuity of the function.

2. Find out symmetries: oddness, evenness, periodicity.

3. Find the limits at the “endpoints of the domain”.

4. Investigate the first derivative, find the intervals of monotonicity and local and global extrema. Determine the range.

5. Find the second derivative and determine the intervals where the function is concave or convex. Find the inflection points.
6. Find the asymptotes of the function.

7. Draw the graph of the function.
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