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V.1. Rn as a linear and metric space

V.1. Rn as a linear and metric space

Definition
The set Rn, n ∈ N, is the set of all ordered n-tuples of real
numbers, i.e.

Rn = {[x1, . . . , xn] : x1, . . . , xn ∈ R}.

For x = [x1, . . . , xn] ∈ Rn, y = [y1, . . . , yn] ∈ Rn and α ∈ R
we set

x + y = [x1 + y1, . . . , xn + yn], αx = [αx1, . . . , αxn].

Further, we denote o = [0, . . . ,0] – the origin.
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V.1. Rn as a linear and metric space

Definition
The Euclidean metric (distance) on Rn is the function
ρ : Rn × Rn → [0,+∞) defined by

ρ(x ,y) =

√√√√ n∑
i=1

(xi − yi)2.

The number ρ(x ,y) is called the distance of the point x
from the point y .
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V.1. Rn as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric ρ has the following properties:

(i) ∀x ,y ∈ Rn : ρ(x ,y) = 0⇔ x = y ,

(ii) ∀x ,y ∈ Rn : ρ(x ,y) = ρ(y ,x), (symmetry)
(iii) ∀x ,y , z ∈ Rn : ρ(x ,y) ≤ ρ(x , z) + ρ(z ,y),

(triangle inequality)
(iv) ∀x ,y ∈ Rn, ∀λ ∈ R : ρ(λx , λy) = |λ|ρ(x ,y),

(homogeneity)
(v) ∀x ,y , z ∈ Rn : ρ(x + z ,y + z) = ρ(x ,y).

(translation invariance)
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V.1. Rn as a linear and metric space

Definition
Let x ∈ Rn, r ∈ R, r > 0. The set B(x , r) defined by

B(x , r) = {y ∈ Rn; ρ(x ,y) < r}

is called an open ball with radius r centred at x or the
neighbourhood of x .
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V.1. Rn as a linear and metric space

Definition
Let M ⊂ Rn. We say that x ∈ Rn is an interior point of M, if
there exists r > 0 such that B(x , r) ⊂ M.

The set of all interior points of M is called the interior of M
and is denoted by Int M.

The set M ⊂ Rn is open in Rn, if each point of M is an
interior point of M, i.e. if M = Int M.
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V.1. Rn as a linear and metric space

Theorem 2 (properties of open sets)

(i) The empty set and Rn are open in Rn.

(ii) Let Gα ⊂ Rn, α ∈ A 6= ∅, be open in Rn. Then⋃
α∈A Gα is open in Rn.

(iii) Let Gi ⊂ Rn, i = 1, . . . ,m, be open in Rn. Then⋂m
i=1 Gi is open in Rn.

Remark

(ii) A union of an arbitrary system of open sets is an open
set.
(iii) An intersection of a finitely many open sets is an open
set.
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V.1. Rn as a linear and metric space

Definition
Let M ⊂ Rn and x ∈ Rn. We say that x is a boundary
point of M if for each r > 0

B(x , r) ∩M 6= ∅ and B(x , r) ∩ (Rn \M) 6= ∅.

The boundary of M is the set of all boundary points of M
(notation bd M).

The closure of M is the set M ∪ bd M (notation M).

A set M ⊂ Rn is said to be closed in Rn if it contains all its
boundary points, i.e. if bd M ⊂ M, or in other words if
M = M.
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V.1. Rn as a linear and metric space

Definition
Let x j ∈ Rn for each j ∈ N and x ∈ Rn. We say that a
sequence {x j}∞j=1 converges to x , if

lim
j→∞

ρ(x ,x j) = 0.

The vector x is called the limit of the sequence {x j}∞j=1.

The sequence {y j}∞j=1 of points in Rn is called convergent
if there exists y ∈ Rn such that {y j}∞j=1 converges to y .

Remark
The sequence {x j}∞j=1 converges to x ∈ Rn if and only if

∀ε ∈ R, ε > 0 ∃j0 ∈ N ∀j ∈ N, j ≥ j0 : x j ∈ B(x , ε).
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V.1. Rn as a linear and metric space

Theorem 3 (convergence is coordinatewise)
Let x j ∈ Rn for each j ∈ N and let x ∈ Rn. The sequence
{x j}∞j=1 converges to x if and only if for each i ∈ {1, . . . ,n}
the sequence of real numbers {x j

i }∞j=1 converges to the
real number xi .

Remark
Theorem 3 says that the convergence in the space Rn is
the same as the “coordinatewise” convergence. It follows
that a sequence {x j}∞j=1 has at most one limit. If it exists,
then we denote it by limj→∞ x j . Sometimes we also write
simply x j → x instead of limj→∞ x j = x .
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V.1. Rn as a linear and metric space

Theorem 4 (characterisation of closed sets)
Let M ⊂ Rn. Then the following statements are equivalent:

(i) M is closed in Rn.
(ii) Rn \M is open in Rn.
(iii) Any x ∈ Rn which is a limit of a sequence from M

belongs to M.
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V.1. Rn as a linear and metric space

Theorem 5 (properties of closed sets)

(i) The empty set and the whole space Rn are closed
in Rn.

(ii) Let Fα ⊂ Rn, α ∈ A 6= ∅, be closed in Rn. Then⋂
α∈A Fα is closed in Rn.

(iii) Let Fi ⊂ Rn, i = 1, . . . ,m, be closed in Rn. Then⋃m
i=1 Fi is closed in Rn.

Remark

(ii) An intersection of an arbitrary system of closed sets is
closed.
(iii) A union of finitely many closed sets is closed.
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V.1. Rn as a linear and metric space

Theorem 6
Let M ⊂ Rn. Then the following holds:

(i) The set M is closed in Rn.
(ii) The set Int M is open in Rn.
(iii) The set M is open in Rn if and only if M = Int M.

Remark
The set Int M is the largest open set contained in M in the
following sense: If G is a set open in Rn and satisfying
G ⊂ M, then G ⊂ Int M. Similarly M is the smallest closed
set containing M.
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V.1. Rn as a linear and metric space

Definition
We say that the set M ⊂ Rn is bounded if there exists
r > 0 such that M ⊂ B(o, r).

A sequence of points in Rn is
bounded if the set of its members is bounded.

Theorem 7
A set M ⊂ Rn is bounded if and only if its closure M is
bounded.
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V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and f : M → R. We say that f is
continuous at x with respect to M, if we

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ)∩M : f (y) ∈ B(f (x), ε).

We say that f is continuous at the point x if it is
continuous at x with respect to a neighbourhood of x , i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ) : f (y) ∈ B(f (x), ε).

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and f : M → R. We say that f is
continuous at x with respect to M, if we

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ)∩M : f (y) ∈ B(f (x), ε).

We say that f is continuous at the point x if it is
continuous at x with respect to a neighbourhood of x , i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ) : f (y) ∈ B(f (x), ε).

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and f : M → R. We say that f is
continuous at x with respect to M, if we

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ)∩M : f (y) ∈ B(f (x), ε).

We say that f is continuous at the point x if it is
continuous at x with respect to a neighbourhood of x , i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x , δ) : f (y) ∈ B(f (x), ε).

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Theorem 8
Let M ⊂ Rn, x ∈ M, f : M → R, g : M → R, and c ∈ R. If f
and g are continuous at the point x with respect to M,
then the functions cf , f + g a fg are continuous at x with
respect to M. If the function g is nonzero at x , then also
the function f/g is continuous at x with respect to M.
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V.2. Continuous functions of several variables

Theorem 9
Let r , s ∈ N, M ⊂ Rs, L ⊂ Rr , and y ∈ M. Let ϕ1, . . . , ϕr be
functions defined on M, which are continuous at y with
respect to M and [ϕ1(x), . . . , ϕr (x)] ∈ L for each x ∈ M.
Let f : L→ R be continuous at the point [ϕ1(y), . . . , ϕr (y)]
with respect to L. Then the compound function F : M → R
defined by

F (x) = f
(
ϕ1(x), . . . , ϕr (x)

)
, x ∈ M,

is continuous at y with respect to M.
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V.2. Continuous functions of several variables

Theorem 10 (Heine)
Let M ⊂ Rn, x ∈ M, and f : M → R. Then the following are
equivalent.

(i) The function f is continuous at x with respect to M.
(ii) lim

j→∞
f (x j) = f (x) for each sequence {x j}∞j=1 such that

x j ∈ M for j ∈ N and lim
j→∞

x j = x .
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V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn and f : M → R. We say that f is continuous
on M if it is continuous at each point x ∈ M with respect
to M.

Remark
The functions πj : Rn → R, πj(x) = xj , 1 ≤ j ≤ n, are
continuous on Rn. They are called coordinate projections.
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V.2. Continuous functions of several variables

Theorem 11
Let f be a continuous function on Rn and c ∈ R. Then the
following holds:

(i) The set {x ∈ Rn; f (x) < c} is open in Rn.
(ii) The set {x ∈ Rn; f (x) > c} is open in Rn.
(iii) The set {x ∈ Rn; f (x) ≤ c} is closed in Rn.
(iv) The set {x ∈ Rn; f (x) ≥ c} is closed in Rn.
(v) The set {x ∈ Rn; f (x) = c} is closed in Rn.
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V.2. Continuous functions of several variables

Definition
We say that a set M ⊂ Rn is compact if for each sequence
of elements of M there exists a convergent subsequence
with a limit in M.

Theorem 12 (characterisation of compact
subsets of Rn)
The set M ⊂ Rn is compact if and only if M is bounded
and closed.

Lemma 13
Let {x j}∞j=1 be a bounded sequence in Rn. Then it has a
convergent subsequence.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
We say that a set M ⊂ Rn is compact if for each sequence
of elements of M there exists a convergent subsequence
with a limit in M.

Theorem 12 (characterisation of compact
subsets of Rn)
The set M ⊂ Rn is compact if and only if M is bounded
and closed.

Lemma 13
Let {x j}∞j=1 be a bounded sequence in Rn. Then it has a
convergent subsequence.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
We say that a set M ⊂ Rn is compact if for each sequence
of elements of M there exists a convergent subsequence
with a limit in M.

Theorem 12 (characterisation of compact
subsets of Rn)
The set M ⊂ Rn is compact if and only if M is bounded
and closed.

Lemma 13
Let {x j}∞j=1 be a bounded sequence in Rn. Then it has a
convergent subsequence.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and let f be a function defined at least
on M (i.e. M ⊂ Df ). We say that f attains at the point x its

maximum on M if f (y) ≤ f (x) for every y ∈ M,

local maximum with respect to M if there exists δ > 0
such that f (y) ≤ f (x) for every y ∈ B(x , δ) ∩M,
strict local maximum with respect to M if there exists
δ > 0 such that f (y) < f (x) for every
y ∈

(
B(x , δ) \ {x}

)
∩M.

The notions of a minimum, a local minimum, and a strict
local minimum with respect to M are defined in analogous
way.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and let f be a function defined at least
on M (i.e. M ⊂ Df ). We say that f attains at the point x its

maximum on M if f (y) ≤ f (x) for every y ∈ M,
local maximum with respect to M if there exists δ > 0
such that f (y) ≤ f (x) for every y ∈ B(x , δ) ∩M,

strict local maximum with respect to M if there exists
δ > 0 such that f (y) < f (x) for every
y ∈

(
B(x , δ) \ {x}

)
∩M.

The notions of a minimum, a local minimum, and a strict
local minimum with respect to M are defined in analogous
way.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and let f be a function defined at least
on M (i.e. M ⊂ Df ). We say that f attains at the point x its

maximum on M if f (y) ≤ f (x) for every y ∈ M,
local maximum with respect to M if there exists δ > 0
such that f (y) ≤ f (x) for every y ∈ B(x , δ) ∩M,
strict local maximum with respect to M if there exists
δ > 0 such that f (y) < f (x) for every
y ∈

(
B(x , δ) \ {x}

)
∩M.

The notions of a minimum, a local minimum, and a strict
local minimum with respect to M are defined in analogous
way.

Mathematics II V. Functions of several variables



V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and let f be a function defined at least
on M (i.e. M ⊂ Df ). We say that f attains at the point x its

maximum on M if f (y) ≤ f (x) for every y ∈ M,
local maximum with respect to M if there exists δ > 0
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The notions of a minimum, a local minimum, and a strict
local minimum with respect to M are defined in analogous
way.
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V.2. Continuous functions of several variables

Definition
We say that a function f attains a local maximum at a
point x ∈ Rn if x is a local maximum with respect to some
neighbourhood of x .

Similarly we define local minimum, strict local maximum
and strict local minimum.
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Definition
We say that a function f attains a local maximum at a
point x ∈ Rn if x is a local maximum with respect to some
neighbourhood of x .
Similarly we define local minimum, strict local maximum
and strict local minimum.
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V.2. Continuous functions of several variables

Theorem 14 (attaining extrema)
Let M ⊂ Rn be a non-empty compact set and f : M → R a
function continuous on M. Then f attains its maximum
and minimum on M.

Corollary
Let M ⊂ Rn be a non-empty compact set and f : M → R a
continuous function on M. Then f is bounded on M.
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V.2. Continuous functions of several variables

Definition
We say that a function f of n variables has a limit at a
point a ∈ Rn equal to A ∈ R∗ if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ B(a, δ)\{a} : f (x) ∈ B(A, ε).

Remark

Each function has at a given point at most one limit.
We write limx→a f (x) = A.
The function f is continuous at a if and only if
limx→a f (x) = f (a).
For limits of functions of several variables one can
prove similar theorems as for limits of functions of
one variable (arithmetics, the sandwich theorem, . . . ).
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V.2. Continuous functions of several variables

Theorem 15
Let r , s ∈ N, a ∈ Rs, and let ϕ1, . . . , ϕr be functions of s
variables such that limx→a ϕj(x) = bj , j = 1, . . . , r . Set
b = [b1, . . . ,br ]. Let f be a function of r variables which is
continuous at the point b. If we define a compound
function F of s variables by

F (x) = f (ϕ1(x), ϕ2(x), . . . , ϕr (x)),

then limx→a F (x) = f (b).
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V.3. Partial derivatives and tangent hyperplane

Set ej = [0, . . . ,0, 1
j th coordinate

,0, . . . ,0].

Definition
Let f be a function of n variables, j ∈ {1, . . . ,n}, a ∈ Rn.
Then the number

∂f
∂xj

(a) = lim
t→0

f (a + tej)− f (a)
t

= lim
t→0

f (a1, . . . ,aj−1,aj + t ,aj+1, . . . ,an)− f (a1, . . . ,an)

t

is called the partial derivative (of first order) of function f
according to j th variable at the point a (if the limit exists).

Mathematics II V. Functions of several variables



V.3. Partial derivatives and tangent hyperplane

Set ej = [0, . . . ,0, 1
j th coordinate

,0, . . . ,0].

Definition
Let f be a function of n variables, j ∈ {1, . . . ,n}, a ∈ Rn.
Then the number

∂f
∂xj

(a) = lim
t→0

f (a + tej)− f (a)
t

= lim
t→0

f (a1, . . . ,aj−1,aj + t ,aj+1, . . . ,an)− f (a1, . . . ,an)

t

is called the partial derivative (of first order) of function f
according to j th variable at the point a (if the limit exists).

Mathematics II V. Functions of several variables



V.3. Partial derivatives and tangent hyperplane

Set ej = [0, . . . ,0, 1
j th coordinate

,0, . . . ,0].

Definition
Let f be a function of n variables, j ∈ {1, . . . ,n}, a ∈ Rn.
Then the number

∂f
∂xj

(a) = lim
t→0

f (a + tej)− f (a)
t

= lim
t→0

f (a1, . . . ,aj−1,aj + t ,aj+1, . . . ,an)− f (a1, . . . ,an)

t

is called the partial derivative (of first order) of function f
according to j th variable at the point a (if the limit exists).

Mathematics II V. Functions of several variables



V.3. Partial derivatives and tangent hyperplane

Theorem 16 (necessary condition of the
existence of local extremum)
Let G ⊂ Rn be an open set, a ∈ G, and suppose that a
function f : G→ R has a local extremum (i.e. a local
maximum or a local minimum) at the point a. Then for
each j ∈ {1, . . . ,n} the following holds:

The partial derivative
∂f
∂xj

(a) either does not exist or it is

equal to zero.
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V.3. Partial derivatives and tangent hyperplane

Definition
Let G ⊂ Rn be a non-empty open set. If a function
f : G→ R has all partial derivatives continuous at each
point of the set G (i.e. the function x 7→ ∂f

∂xj
(x) is

continuous on G for each j ∈ {1, . . . ,n}), then we say that
f is of the class C1 on G. The set of all of these functions
is denoted by C1(G).

Remark
If G ⊂ Rn is a non-empty open set and and f ,g ∈ C1(G),
then f + g ∈ C1(G), f − g ∈ C1(G), and fg ∈ C1(G). If
moreover g(x) 6= 0 for each x ∈ G, then f/g ∈ C1(G).
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V.3. Partial derivatives and tangent hyperplane

Proposition 17 (weak Lagrange theorem)
Let n ∈ N, I1, . . . , In ⊂ R be open intervals,
I = I1 × I2 × · · · × In, f ∈ C1(I), and a,b ∈ I. Then there
exist points ξ1, . . . , ξn ∈ I with ξ i

j ∈ [aj ,bj ] for each
i , j ∈ {1, . . . ,n}, such that

f (b)− f (a) =
n∑

i=1

∂f
∂xi

(ξi)(bi − ai).
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V.3. Partial derivatives and tangent hyperplane

Definition
Let G ⊂ Rn be an open set, a ∈ G, and f ∈ C1(G). Then
the graph of the function

T : x 7→ f (a) +
∂f
∂x1

(a)(x1 − a1) +
∂f
∂x2

(a)(x2 − a2)

+ · · ·+ ∂f
∂xn

(a)(xn − an), x ∈ Rn,

is called the tangent hyperplane to the graph of the
function f at the point [a, f (a)].
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V.3. Partial derivatives and tangent hyperplane

Theorem 18 (tangent hyperplane)
Let G ⊂ Rn be an open set, a ∈ G, f ∈ C1(G), and let T
be a function whose graph is the tangent hyperplane of
the function f at the point [a, f (a)]. Then

lim
x→a

f (x)− T (x)
ρ(x ,a)

= 0.

Theorem 19
Let G ⊂ Rn be an open non-empty set and f ∈ C1(G).
Then f is continuous on G.
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be a function whose graph is the tangent hyperplane of
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Theorem 19
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V.3. Partial derivatives and tangent hyperplane

Theorem 20 (derivative of a compound function;
chain rule)
Let r , s ∈ N and let G ⊂ Rs, H ⊂ Rr be open sets. Let
ϕ1, . . . , ϕr ∈ C1(G), f ∈ C1(H) and [ϕ1(x), . . . , ϕr (x)] ∈ H
for each x ∈ G. Then the compound function F : G→ R
defined by

F (x) = f
(
ϕ1(x), ϕ2(x), . . . , ϕr (x)

)
, x ∈ G,

is of the class C1 on G. Let a ∈ G and
b = [ϕ1(a), . . . , ϕr (a)]. Then for each j ∈ {1, . . . , s} we
have

∂F
∂xj

(a) =
r∑

i=1

∂f
∂yi

(b)
∂ϕi

∂xj
(a).
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V.3. Partial derivatives and tangent hyperplane

Definition
Let G ⊂ Rn be an open set, a ∈ G, and f ∈ C1(G). The
gradient of f at the point a is the vector

∇f (a) =
[
∂f
∂x1

(a),
∂f
∂x2

(a), . . . ,
∂f
∂xn

(a)
]
.
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V.3. Partial derivatives and tangent hyperplane

Definition
Let G ⊂ Rn be an open set, a ∈ G, f ∈ C1(G), and
∇f (a) = o. Then the point a is called a stationary (or
critical) point of the function f .
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Definition
Let G ⊂ Rn be an open set, f : G→ R, i , j ∈ {1, . . . ,n},
and suppose that ∂f

∂xi
(x) exists finite for each x ∈ G. Then

the partial derivative of the second order of the function f
according to i th and j th variable at a point a ∈ G is
defined by

∂2f
∂xi∂xj

(a) =
∂
(
∂f
∂xi

)
∂xj

(a)

If i = j then we use the notation ∂2f
∂x2

i
(a).

Similarly we define higher order partial derivatives.
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Remark
In general it is not true that ∂2f

∂xi∂xj
(a) = ∂2f

∂xj∂xi
(a).

Theorem 21 (interchanging of partial
derivatives)
Let i , j ∈ {1, . . . ,n} and suppose that a function f has both
partial derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj∂xi
on a neighbourhood of a

point a ∈ Rn and that these functions are continuous at a.
Then

∂2f
∂xi∂xj

(a) =
∂2f
∂xj∂xi

(a).
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Definition
Let G ⊂ Rn be an open set and k ∈ N. We say that a
function f is of the class Ck on G, if all partial derivatives
of f of all orders up to k are continuous on G. The set of
all of these functions is denoted by Ck(G).

We say that a function f is of the class C∞ on G, if all
partial derivatives of all orders of f are continuous on G.
The set of all of these functions is denoted by C∞(G).
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V.4. Implicit function theorem

Theorem 22 (implicit function)
Let G ⊂ Rn+1 be an open set, F : G→ R, and x̃ ∈ Rn,
ỹ ∈ R such that [x̃ , ỹ ] ∈ G. Suppose that

(i) F ∈ C1(G),
(ii) F (x̃ , ỹ) = 0,

(iii)
∂F
∂y

(x̃ , ỹ) 6= 0.

Then there exist a neighbourhood U ⊂ Rn of the point x̃
and a neighbourhood V ⊂ R of the point ỹ such that for
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ỹ ∈ R such that [x̃ , ỹ ] ∈ G. Suppose that
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Mathematics II V. Functions of several variables



V.4. Implicit function theorem

-1

0

1

x

-1

0

1

y

-2

0

2

4

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

η -
 0
x η +

 0
x 

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables



V.4. Implicit function theorem

 0

 0

y 

x 

η -
 0
y 

η +
 0
y 

θ -
 0
x θ +

 0
x 

Mathematics II V. Functions of several variables
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Theorem 23 (implicit functions)
Let m,n ∈ N, k ∈ N ∪ {∞}, G ⊂ Rn+m an open set,
Fj : G→ R for j = 1, . . . ,m, x̃ ∈ Rn, ỹ ∈ Rm, [x̃ , ỹ ] ∈ G.
Suppose that

(i) Fj ∈ Ck(G) for all j ∈ {1, . . . ,m},
(ii) Fj(x̃ , ỹ) = 0 for all j ∈ {1, . . . ,m},

(iii)

∣∣∣∣∣∣∣
∂F1
∂y1

(x̃ , ỹ) . . . ∂F1
∂ym

(x̃ , ỹ)
...

. . .
...

∂Fm
∂y1

(x̃ , ỹ) . . . ∂Fm
∂ym

(x̃ , ỹ)

∣∣∣∣∣∣∣ 6= 0.

Then there are a neighbourhood U ⊂ Rn of x̃ and a
neighbourhood V ⊂ Rm of ỹ such that for each x ∈ U
there exists a unique y ∈ V satisfying Fj(x ,y) = 0 for
each j ∈ {1, . . . ,m}. If we denote the coordinates of this y
by ϕj(x), then the resulting functions ϕj are in Ck(U).
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Suppose that

(i) Fj ∈ Ck(G) for all j ∈ {1, . . . ,m},
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∣∣∣∣∣∣∣ 6= 0.

Then there are a neighbourhood U ⊂ Rn of x̃ and a
neighbourhood V ⊂ Rm of ỹ such that for each x ∈ U
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Suppose that

(i) Fj ∈ Ck(G) for all j ∈ {1, . . . ,m},
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V.4. Implicit function theorem

Remark
The symbol in the condition (iii) of Theorem 23 is called a
determinant. The general definition will be given later.

For m = 1 we have
∣∣a∣∣ = a, a ∈ R. In particular, in this

case the condition (iii) in Theorem 23 is the same as the
condition (iii) in Theorem 22.

For m = 2 we have
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc, a,b, c,d ∈ R.
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V.5. Lagrange multipliers theorem

Theorem 24 (Lagrange multiplier theorem)
Let G ⊂ R2 be an open set, f ,g ∈ C1(G),
M = {[x , y ] ∈ G; g(x , y) = 0} and let [x̃ , ỹ ] ∈ M be a point
of local extremum of f with respect to M. Then at least
one of the following conditions holds:

(I) ∇g(x̃ , ỹ) = o,
(II) there exists λ ∈ R satisfying

∂f
∂x

(x̃ , ỹ) + λ
∂g
∂x

(x̃ , ỹ) = 0,

∂f
∂y

(x̃ , ỹ) + λ
∂g
∂y

(x̃ , ỹ) = 0.

Mathematics II V. Functions of several variables



V.5. Lagrange multipliers theorem

V.5. Lagrange multipliers theorem

Theorem 24 (Lagrange multiplier theorem)
Let G ⊂ R2 be an open set, f ,g ∈ C1(G),
M = {[x , y ] ∈ G; g(x , y) = 0} and let [x̃ , ỹ ] ∈ M be a point
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(II) there exists λ ∈ R satisfying

∂f
∂x

(x̃ , ỹ) + λ
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Theorem 25 (Lagrange multipliers theorem)
Let m,n ∈ N, m < n, G ⊂ Rn an open set,
f ,g1, . . . ,gm ∈ C1(G),

M = {z ∈ G; g1(z) = 0,g2(z) = 0, . . . ,gm(z) = 0}

and let z̃ ∈ M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

(I) the vectors

∇g1(z̃),∇g2(z̃), . . . ,∇gm(z̃)
are linearly dependent,

(II) there exist numbers λ1, λ2, . . . , λm ∈ R satisfying

∇f (z̃) + λ1∇g1(z̃) + λ2∇g2(z̃) + · · ·+ λm∇gm(z̃) = o.
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M = {z ∈ G; g1(z) = 0,g2(z) = 0, . . . ,gm(z) = 0}

and let z̃ ∈ M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

(I) the vectors

∇g1(z̃),∇g2(z̃), . . . ,∇gm(z̃)
are linearly dependent,

(II) there exist numbers λ1, λ2, . . . , λm ∈ R satisfying

∇f (z̃) + λ1∇g1(z̃) + λ2∇g2(z̃) + · · ·+ λm∇gm(z̃) = o.
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V.5. Lagrange multipliers theorem

Remark
The notion of linearly dependent vectors will be
defined later.

For m = 1: One vector is linearly dependent if it is the
zero vector.
For m = 2: Two vectors are linearly dependent if one
of them is a multiple of the other one.
The numbers λ1, . . . , λm are called the Lagrange
multipliers.
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V.6. Concave and quasiconcave functions

 b

 a
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V.6. Concave and quasiconcave functions

 b

 a

a = 1 · a + 0 · b = a + 0 · (b − a)
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V.6. Concave and quasiconcave functions

 b

 a

b = 0 · a + 1 · b = a + 1 · (b − a)
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V.6. Concave and quasiconcave functions

 b

 a

3
4
· a +

1
4
· b = a +

1
4
· (b − a)
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V.6. Concave and quasiconcave functions
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1
2
· a +
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2
· b = a +

1
2
· (b − a)
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V.6. Concave and quasiconcave functions

 b

 a

t · a + (1− t) · b = a + (1− t) · (b − a)
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V.6. Concave and quasiconcave functions

Definition
Let M ⊂ Rn. We say that M is convex if

∀x ,y ∈ M ∀t ∈ [0,1] : tx + (1− t)y ∈ M.
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V.6. Concave and quasiconcave functions

Definition
Let M ⊂ Rn be a convex set and f a function defined
on M. We say that f is

concave on M if

∀a,b ∈ M ∀t ∈ [0,1] : f (ta+(1−t)b) ≥ tf (a)+(1−t)f (b),

strictly concave on M if

∀a,b ∈ M,a 6= b ∀t ∈ (0,1) :
f (ta + (1− t)b) > tf (a) + (1− t)f (b).

Remark
By changing the inequalities to the opposite we obtain a
definition of a convex and a strictly convex function.
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definition of a convex and a strictly convex function.

Mathematics II V. Functions of several variables



V.6. Concave and quasiconcave functions

Remark
A function f is convex (strictly convex) if and only if the
function −f is concave (strictly concave).
All the theorems in this section are formulated for concave
and strictly concave functions. They have obvious
analogies that hold for convex and strictly convex
functions.

Mathematics II V. Functions of several variables



V.6. Concave and quasiconcave functions

Remark
If a function f is strictly concave on M, then it is
concave on M.

Let f be a concave function on M. Then f is strictly
concave on M if and only if the graph of f “does not
contain a segment”, i.e.

¬
(
∃a,b ∈ M,a 6= b, ∀t ∈ [0,1] :

f (ta + (1− t)b) = tf (a) + (1− t)f (b)
)
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V.6. Concave and quasiconcave functions

Theorem 26
Let f be a function concave on an open convex set
G ⊂ Rn. Then f is continuous on G.

Theorem 27
Let f be a function concave on a convex set M ⊂ Rn. Then
for each α ∈ R the set Qα = {x ∈ M; f (x) ≥ α} is convex.
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V.6. Concave and quasiconcave functions

Theorem 28 (characterisation of concave
functions of the class C1)
Let G ⊂ Rn be a convex open set and f ∈ C1(G). Then
the function f is concave on G if and only if

∀x ,y ∈ G : f (y) ≤ f (x) +
n∑

i=1

∂f
∂xi

(x)(yi − xi).
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V.6. Concave and quasiconcave functions

Corollary 29
Let G ⊂ Rn be a convex open set and let f ∈ C1(G) be
concave on G. If a point a ∈ G is a critical point of f (i.e.
∇f (a) = o), then a is a point of maximum of f on G.

Mathematics II V. Functions of several variables



V.6. Concave and quasiconcave functions

Theorem 30 (characterisation of strictly concave
functions of the class C1)
Let G ⊂ Rn be a convex open set and f ∈ C1(G). Then
the function f is strictly concave on G if and only if

∀x ,y ∈ G,x 6= y : f (y) < f (x) +
n∑

i=1

∂f
∂xi

(x)(yi − xi).
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V.6. Concave and quasiconcave functions

Definition
Let M ⊂ Rn be a convex set and let f be a function
defined on M. We say that f is

quasiconcave na M if

∀a,b ∈ M ∀t ∈ [0,1] : f (ta+(1−t)b) ≥ min{f (a), f (b)},

strictly quasiconcave on M if

∀a,b ∈ M,a 6= b, ∀t ∈ (0,1) :
f (ta + (1− t)b) > min{f (a), f (b)}.

Remark
By changing the inequalities to the opposite and changing
the minimum to a maximum we obtain a definition of a
quasiconvex and a strictly quasiconvex function.
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V.6. Concave and quasiconcave functions

Remark
A function f is quasiconvex (strictly quasiconvex) if and
only if the function −f is quasiconcave (strictly
quasiconcave).
All the theorems in this section are formulated for
quasiconcave and strictly quasiconcave functions. They
have obvious analogies that hold for quasiconvex and
strictly quasiconvex functions.
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V.6. Concave and quasiconcave functions

Remark
If a function f is strictly quasiconcave on M, then it is
quasiconcave on M.

Let f be a quasiconcave function on M. Then f is
strictly quasiconcave on M if and only if the graph of f
“does not contain a horizontal segment”, i.e.

¬
(
∃a,b ∈ M,a 6= b, ∀t ∈ [0,1] : f (ta+(1−t)b) = f (a)

)
.
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V.6. Concave and quasiconcave functions

Remark
Let M ⊂ Rn be a convex set and f a function defined
on M.

If f is concave on M, then f is quasiconcave on M.
If f is strictly concave on M, then f is strictly
quasiconcave on M.
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V.6. Concave and quasiconcave functions

Remark
Let M ⊂ Rn be a convex set and f a function defined
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V.6. Concave and quasiconcave functions

Theorem 31 (a uniqueness of an extremum)
Let f be a strictly quasiconcave function on a convex set
M ⊂ Rn. Then there exists at most one point of maximum
of f .

Corollary
Let M ⊂ Rn be a convex, closed, bounded and nonempty
set and f a continuous and strictly quasiconcave function
on M. Then f attains its maximum at exactly one point.
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M ⊂ Rn. Then there exists at most one point of maximum
of f .

Corollary
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V.6. Concave and quasiconcave functions

Theorem 32 (characterization of quasiconcave
functions using level sets)
Let M ⊂ Rn be a convex set and f a function defined
on M. Then f is quasiconcave on M if and only if for each
α ∈ R the set Qα = {x ∈ M; f (x) ≥ α} is convex.
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VI.1. Basic operations with matrices

VI.1. Basic operations with matrices

Definition
A table of numbers

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,

where aij ∈ R, i = 1, . . . ,m, j = 1, . . . ,n, is called a matrix
of type m × n (shortly, an m-by-n matrix). We also write
(aij)i=1..m

j=1..n
for short.

An n-by-n matrix is called a square matrix of order n.
The set of all m-by-n matrices is denoted by M(m × n).
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VI.1. Basic operations with matrices

Definition
Let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

The n-tuple (ai1,ai2, . . . ,ain), where i ∈ {1,2, . . . ,m}, is
called the i th row of the matrix A.

The m-tuple

( a1j
a2j
...

amj

)
, where j ∈ {1,2, . . . , n}, is called the

j th column of the matrix A.
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VI.1. Basic operations with matrices

Definition
We say that two matrices are equal, if they are of the
same type and the corresponding elements are equal, i.e.
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Definition
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j=1..n
, B = (bij)i=1..m

j=1..n
, λ ∈ R.
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...
. . .
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VI.1. Basic operations with matrices

Proposition 33 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
∀A,B,C ∈ M(m × n) : A + (B + C) = (A + B) + C,
(associativity)

∀A,B ∈ M(m × n) : A + B = B + A, (commutativity)
∃!O ∈ M(m × n) ∀A ∈ M(m × n) : A + O = A,
(existence of a zero element)
∀A ∈ M(m × n) ∃CA ∈ M(m × n) : A + CA = O,
(existence of an opposite element)
∀A ∈ M(m × n) ∀λ, µ ∈ R : (λµ)A = λ(µA),
∀A ∈ M(m × n) : 1 · A = A,
∀A ∈ M(m × n) ∀λ, µ ∈ R : (λ+ µ)A = λA + µA,
∀A,B ∈ M(m × n) ∀λ ∈ R : λ(A + B) = λA + λB.
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VI.1. Basic operations with matrices

Remark
The matrix O from the previous proposition is called a
zero matrix and all its elements are all zeros.

The matrix CA from the previous proposition is called
a matrix opposite to A. It is determined uniquely, it is
denoted by −A, and it satisfies −A = (−aij)i=1..m

j=1..n
and

−A = −1 · A.
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VI.1. Basic operations with matrices

Definition
Let A ∈ M(m × n), A = (ais)i=1..m

s=1..n
, B ∈ M(n × k),

B = (bsj)s=1..n
j=1..k

. Then the product of matrices A and B is

defined as a matrix AB ∈ M(m × k), AB = (cij)i=1..m
j=1..k

,

where

cij =
n∑

s=1

aisbsj .
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VI.1. Basic operations with matrices

Matrix multiplication


a11 a12

a21 a22

a31 a32

a41 a42

 · (b11 b12 b13

b21 b22 b23

)

=


a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b33

a41b11 + a42b21 a41b12 + a42b22 a41b13 + a42b23


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VI.1. Basic operations with matrices

Theorem 34 (properties of the matrix
multiplication)
Let m,n, k , l ∈ N. Then:

(i) ∀A ∈ M(m × n) ∀B ∈ M(n × k) ∀C ∈ M(k × l) :
A(BC) = (AB)C, (associativity of multiplication)

(ii) ∀A ∈ M(m × n) ∀B,C ∈ M(n × k) :
A(B + C) = AB + AC, (distributivity from the left)

(iii) ∀A,B ∈ M(m × n) ∀C ∈ M(n × k) :
(A + B)C = AC + BC, (distributivity from the right)

(iv) ∃!I ∈ M(n × n) ∀A ∈ M(n × n) : IA = AI = A.
(existence and uniqueness of an identity matrix I)

Remark
Warning! The matrix multiplication is not commutative.
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VI.1. Basic operations with matrices

Definition
A transpose of a matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn


is the matrix

AT =


a11 a21 . . . am1

a12 a22 . . . am2

a13 a23 . . . am3
...

...
. . .

...
a1n a2n . . . amn

 ,

i.e. if A = (aij)i=1..m
j=1..n

, then AT = (buv)u=1..n
v=1..m

, where buv = avu

for each u ∈ {1, . . . ,n}, v ∈ {1,2, . . . ,m}.
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for each u ∈ {1, . . . ,n}, v ∈ {1,2, . . . ,m}.
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VI.1. Basic operations with matrices

Theorem 35 (properties of the transpose of a
matrix)
Platí:

(i) ∀A ∈ M(m × n) :
(
AT)T

= A,

(ii) ∀A,B ∈ M(m × n) : (A + B)T = AT + BT ,
(iii) ∀A ∈ M(m × n) ∀B ∈ M(n × k) : (AB)T = BT AT .
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VI.2. Invertible matrices

VI.2. Invertible matrices

Definition
Let A ∈ M(n × n). We say that A is an invertible matrix if
there exist B ∈ M(n × n) such that

AB = BA = I .

Definition
We say that the matrix B ∈ M(n × n) is an inverse of a
matrix A ∈ M(n × n) if AB = BA = I .

Remark
A matrix A ∈ M(n × n) is invertible if and only if it has an
inverse.
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VI.2. Invertible matrices

Remark
If A ∈ M(n × n) is invertible, then it has exactly one
inverse, which is denoted by A−1.

If some matrices A,B ∈ M(n × n) satisfy AB = I ,
then also BA = I .

Theorem 36 (operations with invertible matrices)
Let A,B ∈ M(n × n) be invertible matrices. Then

(i) A−1 is invertible and
(
A−1)−1

= A,

(ii) AT is invertible and
(
AT)−1

=
(
A−1)T ,

(iii) AB is invertible and (AB)−1 = B−1A−1.
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(
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=
(
A−1)T ,

(iii) AB is invertible and (AB)−1 = B−1A−1.
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VI.2. Invertible matrices

Definition
Let k ,n ∈ N and v1, . . . ,v k ∈ Rn. We say that a vector
u ∈ Rn is a linear combination of the vectors v1, . . . ,v k

with coefficients λ1, . . . , λk ∈ R if

u = λ1v1 + · · ·+ λkvk .

By a trivial linear combination of vectors v1, . . . ,v k we
mean the linear combination 0 · v1 + · · ·+ 0 · vk . Linear
combination which is not trivial is called non-trivial.
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combination which is not trivial is called non-trivial.
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VI.2. Invertible matrices

Definition
We say that vectors v1, . . . ,vk ∈ Rn are linearly
dependent if there exists their non-trivial linear
combination which is equal to the zero vector.

We say that
vectors v1, . . . ,vk ∈ Rn are linearly independent if they
are not linearly dependent, i.e. if whenever λ1, . . . , λk ∈ R
satisfy λ1v1 + · · ·+ λkv k = o, then λ1 = λ2 = · · · = λk = 0.

Remark
Vectors v1, . . . ,vk are linearly dependent if and only if one
of them can be expressed as a linear combination of the
others.
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VI.2. Invertible matrices

Definition
Let A ∈ M(m × n). The rank of the matrix A is the
maximal number of linearly independent row vectors of A,
i.e. the rank is equal to k ∈ N if

(i) there is k linearly independent row vectors of A and
(ii) each l-tuple of row vectors of A, where l > k , is

linearly dependent.

The rank of the zero matrix is zero. Rank of A is denoted
by rank(A).
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VI.2. Invertible matrices

Definition
We say that a matrix A ∈ M(m × n) is in a row echelon
form if for each i ∈ {2, . . . ,m} the i th row of A is either a
zero vector or it has more zeros at the beginning than the
(i − 1)th row.

Remark
The rank of a row echelon matrix is equal to the number
of its non-zero rows.
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VI.2. Invertible matrices

Definition
The elementary row operations on the matrix A are:

(i) interchange of two rows,

(ii) multiplication of a row by a non-zero real number,
(iii) addition of a multiple of a row to another row.

Definition
A matrix transformation is a finite sequence of elementary
row operations. If a matrix B ∈ M(m × n) results from the
matrix A ∈ M(m × n) by applying a transformation T on
the matrix A, then this fact is denoted by A T

 B.
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VI.2. Invertible matrices

Theorem 37 (properties of matrix
transformations)

(i) Let A ∈ M(m× n). Then there exists a transformation
transforming A to a row echelon matrix.

(ii) Let T1 be a transformation applicable to m-by-n
matrices. Then there exists a transformation T2

applicable to m-by-n matrices such that for any two
matrices A,B ∈ M(m× n) we have A T1 B if and only
if B T2 A.

(iii) Let A,B ∈ M(m × n) and there exist a transformation
T such that A T

 B. Then rank(A) = rank(B).
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VI.2. Invertible matrices

Transformation to a row echelon form


• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •


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VI.2. Invertible matrices

Transformation to a row echelon form
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VI.2. Invertible matrices

Remark
Similarly as the elementary row operations one can define
also elementary column operations. It can be shown that
the elementary column operations do not change the rank
of the matrix.

Remark
It can be shown that rank(A) = rank(AT ) for any
A ∈ M(m × n).
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VI.2. Invertible matrices

Theorem 38 (multiplication and transformation)
Let A ∈ M(m × k), B ∈ M(k × n), C ∈ M(m × n) and
AB = C. Let T be a transformation and A T

 A′ and
C T
 C ′. Then A′B = C ′.

Lemma 39
Let A ∈ M(n × n) and rank(A) = n. Then there exists a
transformation transforming A to I .

Theorem 40
Let A ∈ M(n × n). Then A is invertible if and only if
rank(A) = n.
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VI.3. Determinants

VI.3. Determinants

Definition
Let A ∈ M(n × n). The symbol Aij denotes the
(n − 1)-by-(n − 1) matrix which is created from A by
omitting the i th row and the j th column.

Mathematics II VI. Matrix calculus



VI.3. Determinants

VI.3. Determinants

Definition
Let A ∈ M(n × n). The symbol Aij denotes the
(n − 1)-by-(n − 1) matrix which is created from A by
omitting the i th row and the j th column.

Mathematics II VI. Matrix calculus



VI.3. Determinants

VI.3. Determinants

Definition
Let A ∈ M(n × n). The symbol Aij denotes the
(n − 1)-by-(n − 1) matrix which is created from A by
omitting the i th row and the j th column.

A =



a1,1 . . . a1,j−1 a1,j a1,j+1 . . . a1,n
...

. . .
...

...
...

. . .
...

ai−1,1 . . . ai−1,j−1 ai−1,j ai−1,j+1 . . . ai−1,n

ai,1 . . . ai,j−1 ai,j ai,j+1 . . . ai,n

ai+1,1 . . . ai+1,j−1 ai+1,j ai+1,j+1 . . . ai+1,n
...

. . .
...

...
...

. . .
...

an,1 . . . an,j−1 an,j an,j+1 . . . an,n


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VI.3. Determinants

Definition
Let A = (aij)i,j=1..n. The determinant of the matrix A is
defined by

det A =

{
a11 if n = 1,∑n

i=1(−1)i+1ai1 det Ai1 if n > 1.

For det A we will also use the symbol∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
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VI.3. Determinants

Theorem 41
Let j ,n ∈ N, j ≤ n, and the matrices A,B,C ∈ M(n × n)
coincide at each row except for the jth row. Let the jth row
of A be equal to the sum of the jth rows of B and C. Then
det A = det B + det C.

∣∣∣∣∣∣∣∣∣
a11 ... a1n
...

. . .
...

aj−1,1 ... aj−1,n
u1+v1 ... un+vn
aj+1,1 ... aj+1,n
...

. . .
...

an1 ... ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

a11 ... a1n
...

. . .
...

aj−1,1 ... aj−1,n
u1 ... un

aj+1,1 ... aj+1,n
...

. . .
...

an1 ... ann

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

a11 ... a1n
...

. . .
...

aj−1,1 ... aj−1,n
v1 ... vn

aj+1,1 ... aj+1,n
...

. . .
...

an1 ... ann

∣∣∣∣∣∣∣∣∣
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VI.3. Determinants

Theorem 42 (determinant and transformations)
Let A,A′ ∈ M(n × n).

(i) If the matrix A′ is created from the matrix A by
multiplying one row in A by a real number µ, then
det A′ = µdet A.

(ii) If the matrix A′ is created from A by interchanging
two rows in A (i.e. by applying the elementary row
operation of the first type), then det A′ = −det A.

(iii) If the matrix A′ is created from A by adding a
µ-multiple of a row in A to another row in A (i.e. by
applying the elementary row operation of the third
type), then det A′ = det A.

(iv) If A′ is created from A by applying a transformation,
then det A 6= 0 if and only if det A′ 6= 0.
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VI.3. Determinants

Remark
The determinant of a matrix with a zero row is equal to
zero.

The determinant of a matrix with two identical rows
is also equal to zero.
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VI.3. Determinants

Definition
Let A = (aij)i,j=1..n. We say that A is an upper triangular
matrix if aij = 0 for i > j , i , j ∈ {1, . . . ,n}.

We say that A is
a lower triangular matrix if aij = 0 for i < j , i , j ∈ {1, . . . ,n}.

Theorem 43 (determinant of a triangular matrix)
Let A = (aij)i,j=1..n be an upper or lower triangular matrix.
Then

det A = a11 · a22 · · · · · ann.
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VI.3. Determinants

Theorem 44 (determinant and invertibility)
Let A ∈ M(n × n). Then A is invertible if and only if
det A 6= 0.
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VI.3. Determinants

Theorem 45 (determinant of a product)
Let A,B ∈ M(n × n). Then det AB = det A · det B.

Theorem 46 (determinant of a transpose)
Let A ∈ M(n × n). Then det AT = det A.

Mathematics II VI. Matrix calculus



VI.3. Determinants

Theorem 45 (determinant of a product)
Let A,B ∈ M(n × n). Then det AB = det A · det B.

Theorem 46 (determinant of a transpose)
Let A ∈ M(n × n). Then det AT = det A.

Mathematics II VI. Matrix calculus



VI.3. Determinants

Theorem 47 (cofactor expansion)
Let A = (aij)i,j=1..n, k ∈ {1, . . . ,n}. Then

det A =
n∑

i=1

(−1)i+kaik det Aik (expansion along kth column),

det A =
n∑

j=1

(−1)k+jakj det Akj (expansion along kth row).
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VI.4. Systems of linear equations

A system of m equations in n unknowns x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm,

(S)

where aij ∈ R, bi ∈ R, i = 1, . . . ,m, j = 1, . . . ,n.

The
matrix form is

Ax = b,

where A =

( a11 ... a1n
...

. . .
...

am1 ... amn

)
∈ M(m × n), is called the

coefficient matrix, b =

( b1
...

bm

)
∈ M(m × 1) is called the

vector of the right-hand side and x =

( x1
...

xn

)
∈ M(n × 1) is

the vector of unknowns.
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VI.4. Systems of linear equations

Definition
The matrix

(A|b) =

a11 . . . a1n
...

. . .
...

am1 . . . amn

∣∣∣∣∣∣∣
b1
...

bm


is called the augmented matrix of the system (S).
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VI.4. Systems of linear equations

Proposition 48
Let A ∈ M(m × n), b ∈ M(m × 1) and let T be a
transformation of matrices with m rows. Denote A T

 A′,
b T
 b′. Then for any y ∈ M(n× 1) we have Ay = b if and

only if A′y = b′, i.e. the systems Ax = b and A′x = b′

have the same set of solutions.
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VI.4. Systems of linear equations

Theorem 49 (Rouché-Fontené)
The system (S) has a solution if and only if its coefficient
matrix has the same rank as its augmented matrix.
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VI.4. Systems of linear equations

Systems of n equations in n variables

Theorem 50
Let A ∈ M(n × n). Then the following statements are
equivalent:

(i) the matrix A is invertible,
(ii) for each b ∈ M(n × 1) the system (S) has a unique

solution,
(iii) for each b ∈ M(n × 1) the system (S) has at least

one solution.
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VI.4. Systems of linear equations

Theorem 51 (Cramer’s rule)
Let A ∈ M(n × n) be an invertible matrix, b ∈ M(n × 1),
x ∈ M(n × 1), and Ax = b. Then

xj =

∣∣∣∣∣∣∣
a11 . . . a1,j−1 b1 a1,j+1 . . . a1n
...

...
...

an1 . . . an,j−1 bn an,j+1 . . . ann

∣∣∣∣∣∣∣
det A

for j = 1, . . . ,n.
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VI.5. Matrices and linear mappings

VI.5. Matrices and linear mappings

Definition
We say that a mapping f : Rn → Rm is linear if

(i) ∀u,v ∈ Rn : f (u + v) = f (u) + f (v),
(ii) ∀λ ∈ R ∀u ∈ Rn : f (λu) = λf (u).
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VI.5. Matrices and linear mappings

Definition
Let i ∈ {1, . . . ,n}. The vector with n coordinates

ei =


0
...
0
1
0
...
0

 . . . i th coordinate

is called the i th canonical basis vector of the space Rn.

The set {e1, . . . ,en} of all canonical basis vectors in Rn is
called the canonical basis of the space Rn.
Properties of the canonical basis:

(i) ∀x ∈ Rn : x = x1 · e1 + · · ·+ xn · en,
(ii) the vectors e1, . . . ,en are linearly independent.
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VI.5. Matrices and linear mappings

Theorem 52 (representation of linear mappings)
The mapping f : Rn → Rm is linear if and only if there
exists a matrix A ∈ M(m × n) such that

∀u ∈ Rn : f (u) = Au.

Remark
The matrix A from the previous theorem is uniquely
determined and is called the representing matrix of the
linear mapping f .
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VI.5. Matrices and linear mappings

Theorem 53
Let f : Rn → Rn be a linear mapping. Then the following
statements are equivalent:

(i) f is a bijection (i.e. f is a one-to-one mapping of Rn

onto Rn),
(ii) f is a one-to-one mapping,
(iii) f is a mapping of Rn onto Rn.

Theorem 54 (composition of linear mappings)
Let f : Rn → Rm be a linear mapping represented by a
matrix A ∈ M(m × n) and g : Rm → Rk a linear mapping
represented by a matrix B ∈ M(k ×m). Then the
composed mapping g ◦ f : Rn → Rk is linear and is
represented by the matrix BA.
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VII.1. Antiderivatives

VII.1. Antiderivatives

Definition
Let f be a function defined on an open interval I. We say
that a function F : I → R is an antiderivative of f on I if for
each x ∈ I the derivative F ′(x) exists and F ′(x) = f (x).

Remark
An antiderivative of f is sometimes called a function
primitive to f .
If F is an antiderivative of f on I, then F is continuous on I.

Theorem 55
Let F and G be antiderivatives of f on an open interval I.
Then there exists c ∈ R such that F (x) = G(x) + c for
each x ∈ I.
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Remark
The set of all antiderivatives of f on an open interval I is
denoted by ∫

f (x) dx .

The fact that F is an antiderivative of f on I is expressed
by ∫

f (x) dx c
= F (x), x ∈ I.

Mathematics II VII. Antiderivatives and Riemann integral



VII.1. Antiderivatives

Remark
The set of all antiderivatives of f on an open interval I is
denoted by ∫

f (x) dx .

The fact that F is an antiderivative of f on I is expressed
by ∫

f (x) dx c
= F (x), x ∈ I.

Mathematics II VII. Antiderivatives and Riemann integral



VII.1. Antiderivatives

Table of basic antiderivatives

∫
xn dx c

=
xn+1

n + 1
on R for n ∈ N ∪ {0}; on (−∞,0)

and on (0,∞) for n ∈ Z, n < −1,∫
xα dx c

=
xα+1

α + 1
on (0,+∞) for α ∈ R \ {−1},∫

1
x

dx c
= log|x | on (0,+∞) and on (−∞,0),∫

ex dx c
= ex on R,∫

sin x dx c
= − cos x on R,∫

cos x dx c
= sin x on R,
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∫
1

cos2 x
dx c

= tg x on each of the intervals

(−π
2 + kπ, π2 + kπ), k ∈ Z,

∫
1

sin2 x
dx c

= − cotg x on each of the intervals

(kπ, π + kπ), k ∈ Z,∫
1

1 + x2 dx c
= arctg x on R,∫

1√
1− x2

dx c
= arcsin x on (−1,1),∫

− 1√
1− x2

dx c
= arccos x on (−1,1).
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VII.1. Antiderivatives

Theorem 56
Let f be a continuous function on an open interval I. Then
f has an antiderivative on I.
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Theorem 57
Suppose that f has an antiderivative F on an open
interval I, g has an antiderivative G on I, and let α, β ∈ R.
Then the function αF + βG is an antiderivative of αf + βg
on I.
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Theorem 58 (substitution)
(i) Let F be an antiderivative of f on (a,b). Let

ϕ : (α, β)→ (a,b) have a finite derivative at each
point of (α, β). Then∫

f
(
ϕ(x)

)
ϕ′(x) dx c

= F
(
ϕ(x)

)
on (α, β).

(ii) Let ϕ be a function with a finite derivative in each
point of (α, β) such that the derivative is either
everywhere positive or everywhere negative, and
such that ϕ

(
(α, β)

)
= (a,b). Let f be a function

defined on (a,b) and suppose that∫
f
(
ϕ(t)

)
ϕ′(t) dt c

= G(t) on (α, β).
Then ∫

f (x) dx c
= G

(
ϕ−1(x)

)
on (a,b).
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Theorem 59 (integration by parts)
Let I be an open interval and let the functions f and g be
continuous on I. Let F be an antiderivative of f on I and G
an antiderivative of g on I. Then∫

f (x)G(x) dx = F (x)G(x)−
∫

F (x)g(x) dx on I.
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Example
Denote In =

∫
1

(1 + x2)n dx , n ∈ N. Then

In+1 =
x

2n(1 + x2)n +
2n − 1

2n
In, x ∈ R, n ∈ N,

I1
c
= arctg x , x ∈ R.
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VII.1. Antiderivatives

Definition
A rational function is a ratio of two polynomials, where the
polynomial in the denominator is not a zero polynomial.

Theorem (“fundamental theorem of algebra”)
Let n ∈ N, a0, . . . ,an ∈ C, an 6= 0. Then the equation

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0

has at least one solution z ∈ C.
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VII.1. Antiderivatives

Lemma 60 (polynomial division)
Let P and Q be polynomials (with complex coefficients)
such that Q is not a zero polynomial. Then there are
uniquely determined polynomials R and Z satisfying:

deg Z < deg Q,
P(x) = R(x)Q(x) + Z (x) for all x ∈ C.

If P and Q have real coefficients then so have R and Z .

Corollary
If P is a polynomials and λ ∈ C its root (i.e. P(λ) = 0),
then there is a polynomial R satisfying
P(x) = (x − λ)R(x) for all x ∈ C.
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Theorem 61 (factorisation into monomials)
Let P(x) = anxn + · · ·+a1x +a0 be a polynomial of degree
n ∈ N. Then there are numbers x1, . . . , xn ∈ C such that

P(x) = an(x − x1) · · · (x − xn), x ∈ C.

Definition
Let P be a polynomial that is not zero, λ ∈ C, and k ∈ N.
We say that λ is a root of multiplicity k of the polynomial P
if there is a polynomial R satisfying R(λ) 6= 0 and
P(x) = (x − λ)kR(x) for all x ∈ C.
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Theorem 62 (roots of a polynomial with real
coefficients)
Let P be a polynomial with real coefficients and λ ∈ C a
root of P of multiplicity k ∈ N. Then the also the conjugate
number λ is a root of P of multiplicity k.
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Theorem 63 (factorisation of a polynomial with
real coefficients)
Let P(x) = anxn + · · ·+ a1x + a0 be a polynomial of
degree n with real coefficients. Then there exist real
numbers x1, . . . , xk , α1, . . . , αl , β1, . . . , βl and natural
numbers p1, . . . ,pk , q1, . . . ,ql such that

P(x) = an(x − x1)
p1 · · · (x − xk)

pk (x2 + α1x + β1)
q1

· · · (x2 + αlx + βl)
ql ,

no two polynomials from x − x1, x − x2, . . . , x − xk ,
x2 + α1x + β1, . . . , x2 + αlx + βl have a common root,
the polynomials x2 + α1x + β1, . . . , x2 + αlx + βl have
no real root.
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Theorem 64 (decomposition to partial fractions)
Let P,Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = an(x−x1)
p1 · · · (x−xk)

pk (x2+α1x+β1)
q1 · · · (x2+αlx+βl)

ql

be a factorisation of from Theorem 63. Then there exist
unique real numbers A1

1, . . . ,A
1
p1
, . . . ,Ak

1, . . . ,A
k
pk

,
B1

1 ,C
1
1 , . . . ,B

1
q1
,C1

q1
, . . . ,B l

1,C
l
1, . . . ,B

l
ql
,C l

ql
such that

P(x)
Q(x) =

A1
1

(x−x1)
+ · · ·+ A1

p1
(x−x1)

p1 + · · ·+ Ak
1

(x−xk )
+ · · ·+ Ak

pk
(x−xk )

pk +

+
B1

1x+C1
1

(x2+α1x+β1)
+ · · ·+ B1

q1
x+C1

q1
(x2+α1x+β1)

q1 + · · ·+

+
Bl

1x+C l
1

(x2+αl x+βl )
+ · · ·+ Bl

ql
x+C l

ql
(x2+αl x+βl )

ql , x ∈ R \ {x1, . . . , xk}.
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p1 + · · ·+ Ak
1

(x−xk )
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VII.2. Riemann integral

Definition
A finite sequence {xj}n

j=0 is called a partition of the
interval [a,b] if

a = x0 < x1 < · · · < xn = b.

The points x0, . . . , xn are called the partition points.

We say that a partition D′ of an interval [a,b] is a
refinement of the partition D of [a,b] if each partition point
of D is also a partition point of D′.
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Definition
Suppose that a,b ∈ R, a < b, the function f is bounded on
[a,b], and D = {xj}n

j=0 is a partition of [a,b]. Denote

S(f ,D) =
n∑

j=1

Mj(xj − xj−1), where Mj = sup{f (x); x ∈ [xj−1, xj ]},

S(f ,D) =
n∑

j=1

mj(xj − xj−1), where mj = inf{f (x); x ∈ [xj−1, xj ]},

∫ b

a
f = inf

{
S(f ,D); D is a partition of [a,b]

}
,∫ b

a
f = sup

{
S(f ,D); D is a partition of [a,b]

}
.
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Definition
We say that a function f has the Riemann integral over
the interval [a,b] if

∫ b
a f =

∫ b
a f .

The value of the integral of
f over [a,b] is then equal to the common value of∫ b

a f =
∫ b

a f . We denote it by
∫ b

a
f . If a > b, then we define∫ b

a
f = −

∫ a

b
f , and in case that a = b we put

∫ b

a
f = 0.
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Remark
Let D,D′ be partitions of [a,b], D′ refines D, and let f be a
bounded function on [a,b]. Then

S(f ,D) ≤ S(f ,D′) ≤ S(f ,D′) ≤ S(f ,D).
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Remark
Let D,D′ be partitions of [a,b], D′ refines D, and let f be a
bounded function on [a,b]. Then

S(f ,D) ≤ S(f ,D′) ≤ S(f ,D′) ≤ S(f ,D).

Suppose that D1,D2 are partitions of [a,b] and a partition
D′ refines both D1 and D2. Then

S(f ,D1) ≤ S(f ,D′) ≤ S(f ,D′) ≤ S(f ,D2).

It easily follows that
∫ b

a f ≤
∫ b

a f .
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Lemma 65 (criterion for the existence of the
Riemann integral)
Let f be a function bounded on an interval [a,b].

(a)
∫ b

a f = I ∈ R if and only if for each ε ∈ R, ε > 0 there
exists a partition D of [a,b] such that

I − ε < S(f ,D) ≤ S(f ,D) < I + ε.

(b) f has the Riemann integral over [a,b] if and only if for
each ε ∈ R, ε > 0 there exists a partition D of [a,b]
such that

S(f ,D)− S(f ,D) < ε.
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Theorem 66
(i) Suppose that f has the Riemann integral over [a,b]

and let [c,d ] ⊂ [a,b]. Then f has the Riemann
integral also over [c,d ].

(ii) Suppose that c ∈ (a,b) and f has the Riemann
integral over the intervals [a, c] and [c,b]. Then f has
the Riemann integral over [a,b] and∫ b

a
f =

∫ c

a
f +

∫ b

c
f . (1)

Remark
The formula (1) holds for all a,b, c ∈ R if the integral of f
exists over the interval

[
min{a,b, c},max{a,b, c}

]
.
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Theorem 67 (linearity of the Riemann integral)
Let f and g be functions with Riemann integral over [a,b]
and let α ∈ R. Then

(i) the function αf has the Riemann integral over [a,b]
and ∫ b

a
αf = α

∫ b

a
f ,

(ii) the function f + g has the Riemann integral over [a,b]
and ∫ b

a
f + g =

∫ b

a
f +

∫ b

a
g.
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Theorem 68
Let a,b ∈ R, a < b, and let f and g be functions with
Riemann integral over [a,b]. Then:

(i) If f (x) ≤ g(x) for each x ∈ [a,b], then∫ b

a
f ≤

∫ b

a
g.

(ii) The function |f | has the Riemann integral over [a,b]
and ∣∣∣∣∫ b

a
f
∣∣∣∣ ≤ ∫ b

a
|f |.
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Definition
We say that a function f is uniformly continuous on an
interval I if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0
∀x , y ∈ I, |x − y | < δ : |f (x)− f (y)| < ε.

Theorem 69
If f is continuous on a closed bounded interval [a,b], then
it is uniformly continuous on [a,b].
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Theorem 70
Let f be a function continuous on an interval [a,b],
a,b ∈ R. Then f has the Riemann integral on [a,b].
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Theorem 71
Let f be a function continuous on an interval (a,b) and let

c ∈ (a,b). If we denote F (x) =
∫ x

c
f (t) dt for x ∈ (a,b),

then F ′(x) = f (x) for each x ∈ (a,b). In other words, F is
an antiderivative of f on (a,b).
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Theorem 72 (Newton-Leibniz formula)
Let f be a function continuous on an interval [a,b],
a,b ∈ R, a < b, and let F be an antiderivative of f on
(a,b). Then the limits limx→a+ F (x), limx→b− F (x) exist,
are finite, and∫ b

a
f (x) dx = lim

x→b−
F (x)− lim

x→a+
F (x).
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Remark
Let us denote

[F ]ba =

{
limx→b− F (x)− limx→a+ F (x) for a < b,
limx→b+ F (x)− limx→a− F (x) for b < a.

Then the Newton-Leibniz formula can be written as∫ b

a
f = [F ]ba,

even for b < a.
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Theorem 73 (integration by parts)
Suppose that the functions f , g, f ′ a g′ are continuous on
an interval [a,b]. Then∫ b

a
f ′g = [fg]ba −

∫ b

a
fg′.

Theorem 74 (substitution)
Let the function f be continuous on an interval [a,b].
Suppose that the function ϕ has a continuous derivative
on [α, β] and ϕ maps [α, β] into the interval [a,b]. Then∫ β

α

f
(
ϕ(x)

)
ϕ′(x) dx =

∫ ϕ(β)

ϕ(α)

f (t) dt .
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Theorem (logarithm)
There exist a unique function log with the following
properties:
(L1) Dlog = (0,+∞),
(L2) the function log is increasing on (0,+∞),
(L3) ∀x , y ∈ (0,+∞) : log xy = log x + log y,
(L4) lim

x→1

log x
x−1 = 1.
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