
THE WHITEHEAD PROBLEM AND BEYOND

(LECTURE NOTES FOR NMAG565)

JAN TRLIFAJ

Abstract. These notes present a significant milestone of modern algebra due
to Saharon Shelah: the independence (of ZFC + GCH) of the existence of

non-free Whitehead groups, i.e., the undecidability of the Whitehead problem.

The independence is proved by employing combinatorial properties of infinite
cardinals, notably Shelah’s Uniformization Principle (SUP) and the diamond

prediction principles.

First, we prove in ZFC that all countable Whitehead groups are free. SUP
is then employed to construct arbitrarily large non-free Whitehead groups.

Finally, we show that it is consistent with ZFC + GCH that all Whitehead

groups W are free: the proof is by induction on the cardinality, κ, of W , using
the Weak Diamond Principle Φ when κ is a regular uncountable cardinal, and

Shelah’s Singular Compactness in the case when κ is singular.

Though undecidability of the Whitehead problem for groups is the main
topic here, most of the results are proved in more general settings, and hence

provide tools for further applications of set-theoretic methods in homological
algebra and representation theory.
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1. The Whitead problem

In the late 1940s, Whitehead asked whether each (abelian) group A such that
Ext1Z(A,Z) = 0 is free. This question became known as the Whitehead Problem.
Stein [29] provided a positive answer for A countable, but it was only in 1974 that
Shelah [25] proved that the answer is independent of ZFC for groups of cardinality
ℵ1. Soon after, making use of his celebrated Singular Compactness Theorem [26],
Shelah proved undecidability of the Whitehead problem for all groups A. This
result, and the related more recent general works in the setting of modules over
non-perfect rings, are the main topics of the present notes.

Shelah’s solution to the Whitehead Problem was the starting point of a new
branch of algebra dealing with applications of set-theoretic methods in representa-
tion and module theory. Let us stress that these applications are not restricted to
independence results. They provide powerful techniques making it possible to work
in ZFC with large representations/modules expressed as unions of chains, or direct
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limits of direct systems, of smaller modules. Besides the original applications to
the study of almost free modules [8], more recent applications include the struc-
ture of infinite dimensional tilting and Mittag-Leffler modules [13, Vol. 1], [2], [20],
properties of indecomposable modules [13, Vol. 2], [19], approximations of modules
[13, Vol. 1], [3], [21], relative homological algebra [11], [22], [32], and abstract model
theory [24].

The solution of the Whitehead problem and the related problems studied in these
notes employ only basic properties of the Ext functor in module categories. For the
convenience of the reader, these properties are briefly recalled in the Appendix.

Definition 1.1. Let R be a ring. A module M ∈ Mod–R is Whitehead provided
that Ext1R(M,R) = 0.

Remark 1.2. Clearly, any projective, and hence any free, module over any ring R
is Whitehead. But the answer to the (generalized) Whitehead question of whether
all Whitehead modules are projective depends on the ring R in case.

For example, if R is right self-injective then all modules are Whitehead, and if
R is a cotorsion Dedekind domain, then all torsion-free modules are Whitehead.
However, we will see below that the answer to the Whitehead question for R = Z
(and more in general, for non-cotorsion PID’s of cardinality ≤ ω1) is independent
of ZFC + GCH.

Lemma 1.3. (1) Let R be a right hereditary ring. Then all submodules of
Whitehead modules are Whitehead.

(2) Let R be a Dedekind domain. Then all Whitehead modules are torsion-free.

Proof. 1. If N ⊆ M and M is Whitehead, then applying the long exact sequence
(5.c) from the Appendix for A = N , B = M , and C = M/N , we obtain the exact
sequence 0 = Ext1R(M,R) → Ext1R(N,R) → Ext2R(M/N,R) = 0 where the latter
Ext-group is zero, because R is right hereditary.

2. Let I be any proper ideal of R. Since R is a Dedekind domain, I is projective
and finitely generated, hence I⊕ I ′ ∼= Rn for some module I ′ and 0 < n < ω. Since

R is a domain, the short exact sequence 0 → I
⊆→ R → R/I → 0 does not split,

whence Ext1R(R/I, I) 6= 0 by Lemma 5.2. By Lemma 5.1(3), also Ext1R(R/I,R) 6= 0.
Since R is hereditary, part 1. yields that if M is a Whitehead module, then R/I
does not embed into M . That is, M is torsion-free. �

For countable abelian groups, the following lemma (known as Pontryagins’ Cri-
terion) will be useful:

Lemma 1.4. The following are equivalent for an abelian group A:

(1) A is ω1-free (i.e., each countable subgroup of A is free),
(2) A is torsion-free, and each finite rank pure subgroup of A is free.

Proof. Since finite rank torsion-free groups are countable, we are left to prove that
2. implies 1. Assume 2. and let B be a countable subgroup of A, generated by
{bn | n < ω}. By induction on n < ω, we can define a chain of pure subgroups
Bn ⊆∗ A such that

∑
m<n bmZ E Bn (see e.g. [8, IV.2.1]). Since each Bn is of finite

rank and pure in A, it is free (and finitely generated) by the assumption. As Bn is
pure in Bn+1, the group Bn+1/Bn is finitely generated and torsion-free, and hence
free. So Bn is a direct summand in Bn+1, and

⋃
n<ω Bn is a free group containing

B. Thus B is free, too. �

We now arrive at the classic result by Stein [29]. Its proof presented below follows
[12, §99]. But first we recall the definition and basic properties of Prüfer groups:
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Let p be a prime number. Let Zp∞ denote the Prüfer p-group, that is, Zp∞ =

F/G where F = Z(ω) is the free group with the canonical basis {1i | i < ω}, and G
is the subgroup of F generated by the elements 10.p, and 1i − 1i+1.p for all i < ω.

Lemma 1.5. Let p be a prime number. Then Zp∞ is isomorphic to the p-torsion
part of the torsion group Q/Z, and Q/Z ∼=

⊕
p∈P Zp∞ , where P is the set of all

prime numbers.
Moreover, Zp∞ is a uniserial group, its only proper subgroups being (Zn+G)/G ∼=

Zpn (0 < n < ω), and EndZp∞ ∼= Jp is the ring of all p-adic integers.

Proof. By [12, §3 and §43, Ex. 3]. �

Theorem 1.6. Let A be a Whitehead group. Then A is ω1-free.
In particular, each countable Whitehead group is free.

Proof. In view of Lemma 1.3, it suffices to prove the second claim. Since finitely
generated torsion-free groups are free, Lemma 1.4 implies that we only have to
prove that if W is a Whitehead group of finite rank, then W is finitely generated.

Assume this is not the case. Let n be the rank of W , so Zn EW E Qn. Applying
HomZ(−,Z) to the short exact sequence 0→ Zn →W → T → 0 where T = W/Zn,
we obtain by (5.c) the exact sequence

· · · → H = HomZ(Zn,Z)→ E = Ext1Z(T,Z)→ Ext1Z(W,Z) = 0.

As W is not finitely generated, T is a torsion group of cardinality ω. Clearly,
H ∼= Zn is countable, hence so is its homomorphic image E.

Let S be the socle of T . If S is not finitely generated, then S is an infinite direct
sum of finite groups of prime order. By Lemma 5.1(3), F = Ext1Z(S,Z) is an infinite
direct product of the non-zero groups Ext1Z(Zp,Z) for some primes p. In particular,
F is uncountable. Since S ⊆ T and Z is a hereditary ring, F is a homomorphic
image of E by (5.c). Hence E is uncountable, too, a contradiction.

If S is finitely generated, then S E T E D, where D is the injective (= divisible)
hull of T . So D is a finite direct sum (say of 0 < m < ω copies) of the Prüfer
p-groups Zp∞ for some primes p. By induction on m we will show that T contains
a copy of a Prüfer group. By Lemma 1.5, all proper subgroups of Zp∞ are finite,
but T is infinite, so the assertion is clear for m = 1.

For the inductive step, we have T ⊆ D = D′⊕Zp∞ and T * D′, for some prime
p. If T ∩D′ is infinite, then it contains a copy of the Prüfer group by the inductive
premise, and so does T . If T ∩D′ is finite, then T/(T ∩D′) ∼= (T + D′)/D′ is an
infinite subgroup of D/D′ ∼= Zp∞ , whence T/(T ∩D′) ∼= Zp∞ . Let n < ω be such
that pn(T ∩ D′) = 0. Then multiplication by pn is an endomorphism of T whose
kernel contains T ∩D′, so its non-zero image is a homomorphic image of, and hence
isomorphic to, Zp∞ .

Thus T contains a direct summand isomorphic to Zp∞ . By Lemmas 1.5 and
5.1(3), E has a direct summand isomorphic to

Ext1Z(Zp∞ ,Z) ∼= HomZ(Zp∞ ,Q/Z) ∼= HomZ(Zp∞ ,Zp∞) ∼= Jp.
As Jp is uncountable, so is E, a contradiction. �

Remark 1.7. The freeness of Whitehead groups can be proved in ZFC even within
certain classes of groups – called the Baer classes – that are much larger than the
class of all countable groups:

Let Γ0 denote the class of all countable groups, and for each ordinal α > 0, let Γα
be the class of all torsion-free groups G containing a pure subgroup of finite rank,
H, such that G/H is a direct sum of groups each of which belongs to a class Γβ
for some β < α. In [17], Theorem 1.6 was extended as follows: if G is a Whitehead
group such that G ∈ Γα for an ordinal α, then G is free.
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2. Shelah’s Uniformization Principle and the vanishing of Ext

Let R be a non-right perfect ring, that is, R is a ring containing a sequence of
elements (ai | i < ω) such that

(∗) Ra0 ) Ra1a0 ) . . . Ran...a0 ) Ran+1an...a0 ) . . .

is a strictly decreasing chain of principal left ideals of R.
For example, R = Z is non-right perfect; in fact, so is any right noetherian

ring which is not right artinian (by [1, 15.20, 15.22, and 28.4]). In particular,
commutative noetherian rings are non-right perfect, iff their Krull dimension is at
least 1 (by [11, 2.4.27]).

A distinctive feature of non-right perfect rings is the existence of Bass modules,
i.e., countably presented flat modules of projective dimension 1:

Lemma 2.1. Let R be non-right perfect and (ai | i < ω) a sequence of elements of
R such that the chain (∗) is strictly decreasing. Let (1i | i < ω) be the canonical
free basis of the free module R(ω). Consider the short exact sequence

0→ R(ω) ν→ R(ω) → B → 0

where ν is defined by ν(1i) = 1i−1i+1.ai for each i < ω. Then B is a Bass module.

Proof. The short exact sequence does not split by [1, 28.2], whence proj.dimB = 1.
However, it is easy to see that ν(R(n)) is a direct summand in R(ω) for each n < ω,
so B ∼= R(ω)/

⋃
n<ω ν(R(n)) is a direct limit of the countable direct system of

projective modules (R(ω)/ν(R(n)) | n < ω), whence B is flat. �

Throughout this section, we will assume that R is a non-right perfect ring. We
will fix a sequence (ai | i < ω) of elements of R such that the chain (∗) is strictly
decreasing, as well as the corresponding Bass module B from Lemma 2.1. We will
use this data to define particular large non-projective modules M such that the
functor Ext1R(M,−) vanishes at all small modules.

Our set-theoretic setting for this section will be as follows:

κ will denote a singular cardinal of cofinality ω such that κ ≥ card(R), and E a
subset of the (stationary) subset E0 of κ+, where E0 = {α < κ+ | cf(α) = ω}.

For each α ∈ E, the term ladder (for α) will denote a strictly increasing chain
of ordinals `α = {`α(i) | i < ω} such that α = supi<ω `α(i). So the ladder `α
witnesses that α has cofinality ω; the ordinal `α(i) will be called the ith rung of
the ladder `α.

A set of ladders ` = {`α | α ∈ E} will be called a ladder system for E. Notice
that a particular ordinal can appear as a rung in many different ladders from `, but
any two distinct ladders in ` have only finitely many rungs in common.

Given a ladder system ` = {`α | α ∈ E}, we will define a module M = F/G as
follows.
F will denote the free module of rank κ+ defined by F =

⊕
α<κ+ Rα⊕

⊕
α∈E Sα,

where Rα = R for each α < κ+ and Sα = R(ω) for each α ∈ E. The canonical free
generator of Rα will be denoted by 1α, and the canonical free generators of Sα by
1α,i (i < ω).
G will be the submodule in F defined byG =

∑
α∈E Gα, whereGα =

∑
i<ω gα,iR

and gα,i = 1`α(i)
− 1α,i + 1α,i+1ai. Then Ann(gα,i) = 0, and since the rungs of the

ladder `α are strictly increasing, Gα =
⊕

i<ω gα,iR
∼= R(ω). Since {ν(1i) | i < ω} is

an R-independent set of elements of R(ω), we infer that G =
⊕

α∈E Gα. It follows
that G := {gα,i | α ∈ E, i < ω} is a free basis of the (free) module G.

Thus M has projective dimension ≤ 1.
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A chain M = (Mα | α < κ+) consisting of ≤ κ-generated submodules of M is
a called a κ+-filtration of the module M provided that M0 = 0, Mα ⊆ Mα+1 for
each α < κ+ (i.e., the chain is increasing), Mα =

⋃
β<αMβ for each limit ordinal

α < κ+ (i.e., the chain is continuous), and M =
⋃
α<κ+ Mα.

For example, N = (Nα | α < κ+) where Nα = (
⊕

γ<αRγ⊕
⊕

γ∈E,γ<α Sγ+G)/G

for each α < κ+, is a κ+-filtration of M . We will call it the canonical filtration of
M . Notice that the chain N is strictly increasing, so card(M) = κ+.

Since κ+ is a regular uncountable cardinal, it is easy to see that given any two
κ+-filtrations, M = (Mα | α < κ+) and M′ = (M ′α | α < κ+) of M , the set
{α < κ+ |Mα = M ′α} is a club (= a closed and unbounded subset) in κ+.

Lemma 2.2. Assume E is a stationary subset of κ+. Then M is not projective,
so proj.dimM = 1.

Proof. Assume M is projective. By Kaplansky’s Theorem [1, 26.2], M is a direct
sum of countably generated projective modules, M =

⊕
α<κ+ Qα. For each α < κ+,

let Pα =
⊕

β<αQβ . Then P = (Pα | α < κ+) is a κ+-filtration of M such that

Pβ/Pα is projective for all α < β < κ+. Let N = (Nα | α < κ+) be the canonical
filtration of M .

Then the set C = {α < κ+ | Pα = Nα} is a club in κ+. Since E is stationary
in κ+, there exist α ∈ C ∩ E and β ∈ C ∩ E such that α < β. In particular,
Nβ/Nα = Pβ/Pα is a projective module.

Consider the following submodules of the free module F :

X =
⊕

α≤γ<β

Rγ ⊕
⊕

γ∈E,α<γ<β

Sγ , Y = (
⊕
γ<α

Rγ ⊕
⊕

γ∈E,γ<α
Sγ) +G, Z = Y + Sα.

Notice that Nα = Y/G and Nβ = (X + Z)/G.
We claim that X ∩Z ⊆ Y . Assume there exists x = x0 + x1 ∈ (X ∩Z) \ Y with

x0 ∈
⊕

α≤γ<β Rγ and x1 ∈ X1 =
⊕

γ∈E,α<γ<β Sγ . Then x1 ∈
⊕

γ∈E,α<γ<β ν(Sγ).
Let π denote the projection of F on to X1. Then there are finitely many elements
g1, . . . , gm ∈ G such that x1 = π(x) is generated by the π(g1), . . . , π(gm), that is,
x1 =

∑
i≤m π(gi).ri for some r0, . . . , rm ∈ R. If i ≤ m is such that gi − π(gi) ∈⊕

γ<αRγ , then we let g′i = π(gi), otherwise g′i = gi. Then x′ = x −
∑
i≤m g

′
i.ri ∈⊕

α≤γ<β Rγ . Since G ⊆ Y , also g′i ∈ Y for each i ≤ m, whence x′ ∈ (X ∩ Z) \ Y .

However, (
⊕

α≤γ<β Rγ)∩Z = 0, so x′ = 0, a contradiction. This proves our claim.

Since X ∩ Z ⊆ Y , we have (X + Y ) ∩ Z = Y . Thus

Nβ/Nα ∼= (X + Z)/Y = (X + Y )/Y ⊕ Z/Y.
Notice that Sα ∩ Y = ν(Sα), whence Z/Y ∼= Sα/(Sα ∩ Y ) = Sα/ν(Sα) ∼= B.

Thus the non-projective Bass module B from Lemma 2.1 is isomorphic to a direct
summand in the projective module Nβ/Nα, a contradiction. �

Next, we recall Shelah’s Uniformization Principle (SUP), which is consistent
with ZFC + GCH, see [9], and also [8, XIII.1.5]. (An illustrative picture for (SUP)
appears at the next page.)

SUP For each singular cardinal κ of cofinality ω, the following holds:

SUPκ There exist a subset E ⊆ E0 which is stationary in κ+ and a ladder
system `, such that for each λ < κ (‘set of λ colors’) and each set of functions
{hα : `α → λ | α ∈ E} (‘local colorings’ of the rungs of the ladders by λ colors)
there exists f : κ+ → λ (‘global coloring’ of all ordinals < κ+ by λ colors) such
that for each α ∈ E, f(`α(i)) = hα(`α(i)) for almost all i < ω. That is, for each
α ∈ E, the global (uniform) coloring f coincides with the local coloring hα at all
but finitely many rungs of the ladder `α.
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Our main consistency result on vanishing of the Ext functor reads as follows:

Theorem 2.3. Assume SUP . Let κ be a singular cardinal of cofinality ω such
that κ ≥ card(R), and E ⊆ E0 be the stationary subset of κ+, and ` the ladder
system, provided by (SUPκ). Let M = F/G be the module constructed above for
this setting. Let N be any module of cardinality < κ. Then Ext1R(M,N) = 0.

Proof. Since F is a free module, Ext1R(M,N) = 0, iff each x ∈ HomR(G,N) extends
to some y ∈ HomR(F,N) (cf. Lemma 5.1(1)).

Let λ = card(N). Then we can w.l.o.g assume that λ = N and use x to define
the local colorings hα (α ∈ E) as follows: for each i < ω, hα(`α(i)) = x(gα,i).

Let f : κ+ → λ be the global coloring provided by (SUPκ). For each α ∈ E,
take iα < ω such that f(`α(i)) = hα(`α(i)) for all i > iα.

We will define y ∈ HomR(F,N) at the canonical free generators 1α of the Rα
(α < κ+) and the canonical free generators 1α,i of the Sα (α ∈ E, i < ω) as follows:

If α < κ+ and there exist β ∈ E and i > iβ such that α = `β(i), then we put
y(1α) = f(α). Otherwise, we let y(1α) = 0.

Assume α ∈ E. If i > iα, then we put y(1α,i) = 0. For 0 ≤ i ≤ iα, we define
y(1α,i) by downward induction, distinguishing two cases, as follows:

Case I: there exist β ∈ E and j > iβ such that `β(j) = `α(i). Then we put
y(1α,i) = f(`α(i))− x(gα,i) + y(1α,i+1).ai.

Case II: there are no such β ∈ E and j > iβ . Then we let y(1α,i) = −x(gα,i) +
y(1α,i+1).ai.

It remains to verify that x(gα,i) = y(1`α(i))−y(1α,i)+y(1α,i+1).ai(= y(gα,i)) for
all α ∈ E and i < ω.

First, if i > iα, then y(1`α(i)) = f(`α(i)) = hα(`α(i)) = x(gα,i), while y(1α,i) =
y(1α,i+1) = 0, whence x(gα,i) = y(gα,i).

If 0 ≤ i ≤ iα, but there exist β ∈ E and j > iβ such that `β(j) = `α(i), then
we are in Case I, whence y(1`α(i)) = f(`α(i)), while y(1α,i) = f(`α(i)) − x(gα,i) +
y(1α,i+1).ai. So x(gα,i) = y(gα,i).

If 0 ≤ i ≤ iα, but there are no such β ∈ E and j > iβ , then we are in Case II,
whence y(1`α(i)) = 0, while y(1α,i) = −x(gα,i) + y(1α,i+1).ai. So again, x(gα,i) =
y(gα,i). �
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Corollary 2.4. Assume SUP . Then for each cardinal τ > 0 there exists a non-free
abelian group Mτ such that Ext1Z(Mτ ,Z(τ)) = 0. In particular, Mτ is a Whitehead
group.

Remark 2.5. There is no analog of Theorem 2.3 for right perfect rings. For those
rings, one can test for projectivity in ZFC: by [13, 8.8], if R is right perfect and
M ∈ Mod–R, then M is projective, iff Ext1R(M,N) = 0 for each simple module
N . So if simp–R denotes a representative set (up to isomorphism) of the class
of all simple modules and N ′ =

⊕
N∈simp–RN , then for each module M , M is

projective, iff Ext1R(M,N ′) = 0.

3. Diamond, weak diamond, and the non-vanishing of Ext

Now, we turn to a famous combinatorial principle discovered by Jensen in [16],
the Diamond Principle ♦. We will formulate it in the following way which is more
adapted to our applications, as a principle that predicts functions between κ-filtered
sets:

♦ For each regular uncountable cardinal κ and each stationary subset E of κ,
the following holds:

♦κ(E) Let A be a set of cardinality κ and B a set of cardinality ≤ κ. Let
(Aγ | γ < κ) be a κ-filtration of the set A, and (Bγ | γ < κ) a κ-filtration of the set
B. Then there exists a sequence of functions (fγ | γ ∈ E) such that for each γ ∈ E,
fγ ∈ AγBγ , and for each function f : A→ B, the set D(f) = {γ ∈ E | f � Aγ = fγ}
is stationary in κ.

In fact, we will employ only a weaker version of ♦ called the Weak Diamond
Principle Φ. That principle only predicts colors of functions between κ-filtered sets
given by 2-colorings:

Φ For each regular uncountable cardinal κ and each stationary subset E of κ,
the following holds:

Φκ(E) Let A be a set of cardinality κ and B a set of cardinality ≤ κ. Let
(Aγ | γ < κ) be a κ-filtration of the set A, and (Bγ | γ < κ) a κ-filtration of the
set B. For each γ ∈ E, let cγ : AγBγ → 2. Then there exists a function c : E → 2,
such that for each f ∈ AB, the set C(f) = {γ ∈ E | f � Aγ ∈ AγBγ and c(γ) =
cγ(f � Aγ)} is stationary in κ.

By a classic result of Gödel, the Axiom of Constructibility (V = L) is consistent
with ZFC + GCH; Jensen [16] proved that ♦ is a consequences of V = L (see also
[8, VII.§1 and §3]):

Theorem 3.1. Assume V = L. Then ♦ holds.

We also recall the following easy facts:

Lemma 3.2. (1) Assume that ♦κ(κ) holds for κ = λ+. Then 2λ = λ+.
(2) ♦ implies the GCH.

Proof. 1. Let Aγ = γ and Bγ = 2 for all γ < κ, so A = κ and B = 2. Let
(fγ | γ < κ) be the sequence of functions provided by ♦κ(κ). Let X be a subset of
λ and f : A→ 2 be the characteristic function of X, where X is viewed as a subset
of κ, i.e., f(γ) = 1, iff γ ∈ X for each γ < κ.

By ♦κ(κ), the set {γ < κ | f � γ = fγ} is stationary in κ, so it contains some
δ ≥ λ. Then {γ < λ | fδ(γ) = 1} = X. Thus for each X ⊆ λ there exists δ < κ
such that fδ � λ is the characteristic function of X. It follows that 2λ ≤ κ = λ+.

2. By part 1. �
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Lemma 3.3. Let κ be regular uncountable cardinal and E be a stationary subset
of κ. Assume ♦κ(E). Then Φκ(E) holds, too.

Proof. Let A be a set of cardinality κ and B a set of cardinality ≤ κ. Let (Aγ |
γ < κ) be a κ-filtration of the set A, and (Bγ | γ < κ) a κ-filtration of the set B.
For each γ ∈ E, let cγ : AγBγ → 2. Let (fγ | γ ∈ E) be the sequence of functions
provided by ♦κ(E).

Define a function c : E → 2 by c(γ) = cγ(fγ) for each γ ∈ E. Let f ∈ AB.
By ♦κ(E), the set D(f) = {γ ∈ E | f � Aγ = fγ} is stationary in κ. However, if
γ ∈ D(f), then c(γ) = cγ(fγ) = cγ(f � Aγ), so D(f) ⊆ C(f) = {γ ∈ E | f � Aγ ∈
AγBγ and c(γ) = cγ(f � Aγ)}, and C(f) is stationary in κ, too. �

By Lemma 3.2(1), ♦ω1
(ω1) implies CH. However, this is not true of Φω1

(ω1): by
a result of Devlin and Shelah [6], Φω1

(ω1) is equivalent to 2ω < 2ω1 (see also [8,
VI.1.9]).

The consequences of Φ that we are going to prove contradict the consequences
of SUP proved in Section 2. This is not surprising in view of the following lemma:

Lemma 3.4. Let κ be a singular cardinal of cofinality ω. Assume Φκ+(E) holds
for each stationary subset E of κ+ such that E ⊆ {α < κ+ | cf(α) = ω}. Then
SUPκ fails.

Proof. Let E be any stationary subset of κ+ such that E ⊆ {α < κ+ | cf(α) = ω}
and ` = {`α | α ∈ E} be an arbitrary ladder system for E. Let λ = 2. Let Aγ = γ
and Bγ = 2 for all γ < κ+, so A = κ+ and B = 2.

For each α ∈ E, we define cα : α2 → 2 by cα(x) = 1, if the set S(x) = {i <
ω | x(`α(i)) = 0} is infinite, while cα(x) = 0 otherwise. By Φκ+(E), there exists a

function c : E → 2, such that for each f ∈ κ+

2, the set C(f) = {α ∈ E | c(α) =
cα(f � α)} is stationary in κ+.

We will define the local colorings, {hα : `α → 2 | α ∈ E}, of the rungs of the
ladders in ` as the constant functions: hα(`α(i)) = c(α) for each i < ω.

Assume there exists a global coloring f : κ+ → 2 such that for each α ∈ E,
f(`α(i)) = hα(`α(i)) for almost all i < ω.

Take α ∈ C(f). Assume f(`α(i)) = 0 for infinitely many i < ω. Then c(α) = 0,
whence cα(f � α) = 0, and S(f � α) is finite, a contradiction. If f(`α(i)) = 0 only
for finitely many i < ω, then c(α) = 1 = cα(f � α), so S(f � α) is infinite, which is
also a contradiction.

This proves that SUPκ fails. �

In particular, if SUPκ holds, then ♦κ+(E) fails for some stationary subset E
of κ+ with E ⊆ {α < κ+ | cf(α) = ω}. However, the validity of ♦κ+(E) for
other stationary subsets of κ+ is a rather weak statement - it follows already from
2κ = κ+. The general result is due to Shelah [27] (see also [18] and [13, 18.15]):

Lemma 3.5. Let λ be a cardinal such that 2λ = λ+. Then ♦λ+(E) holds for each
stationary subset E of λ+ such that E ⊆ {α < λ+ | cf(α) 6= cf(λ)}.

Remark 3.6. The notion of a ladder `α can easily be extended to witness cofinality
of ordinals α of cofinality > ω. Also SUP can be extended accordingly: by [8,
XIII.3.11], it is consistent with ZFC + GCH that for every successor cardinal κ = µ+

there is a stationary subset E of κ consisting of ordinals of cofinality cf(µ) and a
ladder system ` on E which has λ-uniformization for each λ < µ. As in Lemma
3.4, one can prove that this extension of SUP is inconsistent with Φ. Thus, Lemma
3.5 gives a rather tight restriction on uniformization under GCH.
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We will use Φ to prove the following recent result from [23], guaranteeing con-
sistency of non-vanishing of Ext for arbitrary rings R:

Theorem 3.7. Let R be a ring. Let κ be a regular uncountable cardinal. Let A and
B be modules such that card(B) ≤ κ, and A has a κ-filtration A = (Aα | α < κ)
such that Ext1R(Aα, B) = 0 for each α < κ. Assume that the set S = {α < κ |
Ext1R(Aα+1/Aα, B) 6= 0} is stationary in κ, and Φκ(S) holds. Then Ext1R(A,B) 6=
0.

Before proving Theorem 3.7, we note some of its immediate consequences:

Corollary 3.8. (1) Let R be a right hereditary ring. Let κ be a regular un-
countable cardinal and assume that Φκ(E) holds for each stationary subset
of κ. Let A and B be modules such that A is κ-generated, Ext1R(A,B) = 0,
and card(B) ≤ κ.

Then A has a κ-filtration (Aα | α < κ) such that Ext1R(Aα+1/Aα, B) = 0
for all α < κ.

(2) Let κ be a regular uncountable cardinal and assume that Φκ(E) holds for
each stationary subset E of κ. Assume moreover that each Whitehead group
of cardinality < κ is free. Then each Whitehead group of cardinality κ is
free, too.

Proof. 1. Since the module A is κ-generated, it has a κ-filtration (A′α | α < κ)
(we can simply take a minimal set of generators, {xα | α < κ}, of A and let
A′α =

∑
β<α xβR for each α < κ). Possibly skipping some of the terms of this

filtration, we can w.l.o.g. assume that if α < κ is such that there exists α < β < κ
with Ext1R(A′β/A

′
α, B) 6= 0, then already Ext1R(A′α+1/A

′
α, B) 6= 0.

AsR is right hereditary, Ext2 vanishes, so Ext1R(A,B) = 0 implies Ext1R(A′α, B) =
0 for each α < κ. By Theorem 3.7, the set S = {α < κ | Ext1R(A′α+1/A

′
α, B) 6= 0}

is not stationary in κ. So there is a club C ⊆ κ such that E ∩ C = ∅ and 0 ∈ C.
Let z : κ → C be a strictly increasing continuous function whose image is C, and
let Aα = A′z(α) for each α < κ. Then (Aα | α < κ) is a κ-filtration of A such that

Ext1R(Aα+1/Aα, B) = 0 for all α < κ.
2. This follows from part 1. by taking R = Z, B = Z, and A= a Whitehead group

of cardinality κ. The point is that the κ-filtration (Aα | α < κ) of A constructed
in 1. has the property that for each α < κ, Aα+1/Aα is a Whitehead group of
cardinality < κ. Hence Aα+1/Aα is free by the assumption, so Aα+1 = Aα ⊕ Cα
for a free group Cα, whence A ∼=

⊕
α<κ Cα is free. �

Proof. of Theorem 3.7:
First, using an analog of the Horseshoe Lemma (cf. [13, 7.1]), we can extend

the κ-filtration A into a continuous well-ordered system of short exact sequences

Eα : 0 → Kα
⊆→ Fα

πα→ Aα → 0 where Fα is a free module of rank < κ and the
three components of connecting maps εα : Eα → Eα+1 are the inclusion of Kα into
Kα+1, the split inclusion να : Fα ↪→ Fα+1, and the inclusion µα : Aα ↪→ Aα+1,
respectively.

Then lim−→α<κ
Eα is the short exact sequence 0 → K

⊆→ F → A → 0 where F is

free of rank κ. We can also choose a κ-filtration (Vα | α < κ) of a set V of free
generators of F , such that Vα is a set of free generators of Fα for each α < κ.

Since Ext1R(Aα, B) = 0 for α < κ, using Lemma 5.1(1), for each homomorphism
f : Kα → B we can fix an extension fe ∈ HomR(Fα, B) with fe � Kα = f .
Furthermore, for each α ∈ S, Ext1R(Aα+1/Aα, B) 6= 0, so we can choose kα ∈
HomR(Aα, B) that cannot be extended to Aα+1.
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Consider any κ-filtration (Bα | α < κ) of the set B. For each α ∈ S, we define a
2-coloring cα : VαBα → 2 as follows: For each x ∈ VαBα, we let x′ ∈ HomR(Fα, B)
be the (unique) extension of x to Fα, and put y = (x′ � Kα)e. Then y − x′ is zero
on Kα, hence it defines a (unique) homomorphism from Aα to B. We let cα(x) = 1,
iff this homomorphism can be extended to Aα+1.

Now, Φκ(S) yields a c : S → 2 for our choice of the 2-colorings cα (α ∈ S). In
order to show that Ext1R(A,B) 6= 0, we will recursively construct a homomorphism
f : K → B which cannot be extended to an element of HomR(F,B) (cf. Lemma
5.1(1)).

First, f0 : K0 → B is the zero map. Assume fα : Kα → B is already constructed
for some α < κ. We define fα+1 : Kα+1 → B as follows:

We let f ′α = feα if α 6∈ S or c(α) = 0; otherwise, we let f ′α = feα + kαπα. In both
cases, we extend f ′α arbitrarily to a homomorphism f+α : Fα+1 → B, and define
fα+1 as f+α � Kα+1. Since πα � Kα = 0, in both cases

fα+1 � Kα = f+α � Kα = f ′α � Kα = feα � Kα = fα.

If α ≤ κ is a limit ordinal, we put fα =
⋃
β<α fβ . Finally, we let f = fκ : K → B.

Assume there exists g ∈ HomR(F,B) such that g � K = f . By Φκ(S), there is a
δ ∈ S such that g � Vδ maps to Bδ and cδ(g � Vδ) = c(δ).

Notice that f+δ − g � Fδ+1 is zero on Kδ+1. Thus, there is a (unique) h ∈
HomR(Aδ+1, B) such that f+δ − g � Fδ+1 = hπδ+1. Let k = hµδ ∈ HomR(Aδ, B).
Then

kπδ = hµδπδ = hπδ+1νδ = (f+δ − g � Fδ+1) � Fδ = f ′δ − g � Fδ.
If c(δ) = 0, then (g � Kδ)

e − g � Fδ = feδ − g � Fδ = f ′δ − g � Fδ = kπδ. Thus k
is the (unique) homomorphism from Aδ to B such that (g � Kδ)

e − g � Fδ = kπδ.
As h is an extension of k to Aδ+1, we infer that cδ(g � Vδ) = 1. However, δ ∈ S, so
cδ(g � Vδ) = c(δ) = 0, a contradiction.

If c(δ) = 1, then kπδ = f ′δ − g � Fδ = feδ + kδπδ − g � Fδ. So in this case
(g � Kδ)

e − g � Fδ = feδ − g � Fδ = (k − kδ)πδ. As cδ(g � Vδ) = c(δ) = 1, k − kδ can
be extended to Aδ+1. Since k = hµδ, the same holds for k, and hence for kδ. This
contradicts our choice of kδ. �

We finish this section by showing that the converse of Corollary 3.8(1) holds in
ZFC in the following strong form, called the Eklof Lemma [13, 6.2]:

Lemma 3.9. Let R be any ring and B any class of modules. Let A ∈ Mod–R be the
union of any increasing continuous chain (Aα | α < σ) of its submodules (where σ
is any ordinal), such that Ext1R(Aα+1/Aα, B) = 0 for each α < σ and each B ∈ B.
Then Ext1R(A,B) = 0 for all B ∈ B.

Proof. Clearly, it suffices to prove the claim in the case when B is a singleton, that
is, B = {B} for some B ∈ Mod–R. Let Aσ = A. By induction on α ≤ σ, we will
prove that Ext1R(Aα, B) = 0. The claim is then the case of α = σ.

There is nothing to prove for α = 0, as A0 = 0. The induction step follows
from the exactness of the sequence 0 = Ext1R(Aα+1/Aα, B) → Ext1R(Aα+1, B) →
Ext1R(Aα, B) = 0.

Let α ≤ σ be a limit ordinal. Let 0 → B → I
π→ I/B → 0 be a short exact

sequence in Mod–R such that I is an injective module. In order to prove that
Ext1R(Aα, B) = 0, we have to show that for each f ∈ HomR(Aα, I/B) there exists
g ∈ HomR(Aα, I) such that f = πg (see Lemma 5.1(2)).

By induction on β < α, we will construct a sequence of homomorphisms gβ ∈
HomR(Aβ , I) such that gβ+1 � Aβ = gβ and πgβ = f � Aβ for each β < α. Then
πg = f will hold for g =

⋃
β<α gβ .
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First, g0 = 0. For the induction step, we first use the injectivity of I for extending
gβ to some η ∈ HomR(Aβ+1, I). Let δ = f � Aβ+1− πη. By the induction premise,
δ � Aβ = πgβ − π(η � Aβ) = 0. So there exists ε ∈ HomR(Aβ+1/Aβ , I/B) such that
δ = επβ where πβ : Aβ+1 → Aβ+1/Aβ is the canonical projection.

Since Ext1R(Aβ+1/Aβ , B) = 0, there also exists θ ∈ HomR(Aβ+1/Aβ , I) such that
ε = πθ. Let gβ+1 = η + θπβ . Then gβ+1 � Aβ = η � Aβ = gβ . Moreover,

πgβ+1 = πη + πθπβ = πη + επβ = πη + δ = f � Aβ+1.

If β < α is a limit ordinal, we let gβ =
⋃
γ<β gγ . This completes our construction.

�

4. Singular compactness

In this section, we will prove the following:

Theorem 4.1. Let R be a right hereditary ring, λ be a singular cardinal, and M
a λ-generated module such that each < λ-generated submodule of M is projective.
Then M is projective.

Before proving Theorem 4.1, we derive its corollary that proves consistency of a
positive solution to the (generalized) Whitehead problem:

Corollary 4.2. Assume Φ.

(1) Let R be a right hereditary ring of cardinality ≤ ℵ1 such that each countably
generated Whitehead module is projective. Then each Whitehead module is
projective.

(2) Each Whitehead group is free.

Proof. 1. Let M be a Whitehead module and κ be the minimal number of genera-
tors of M . By induction on κ, we will show that M is projective. This is true for
κ ≤ ℵ0 by the assumption on R.

For κ regular uncountable, Corollary 3.8(1) for B = R yields a κ-filtration (Mα |
α < κ) of the moduleM such thatMα+1/Mα is a Whitehead module for each α < κ.
By the inductive premise, Mα+1/Mα is projective, so Mα is a direct summand in
Mα+1, and M is projective, too.

If κ is a singular cardinal, then the projectivity of M follows directly from the
inductive premise by Lemma 1.3 and Theorem 4.1.

2. This follows by part 1 and Theorem 1.6. �

Remark 4.3. 1. Part 1. of Corollary 4.2 applies to other hereditary rings besides Z,
e.g., to all non-cotorsion PID’s of cardinality ≤ ℵ1 [8, XII.1.11], and to all simple
countable von Neumann regular rings that are not completely reducible [31, 3.19].

However, in [10], a non-cotorsion PID of cardinality 2ω1 was constructed (in
ZFC) such that there exist non-free Whitehead modules – in fact, such that each
ω1-free module is Whitehead. So part 1. does not apply to all non-cotorsion PID’s.

2. Recently, Clausen and Scholze have developed condensed mathematics in
order to overcome the problem that categories of topological objects of various
kinds are not abelian. In particular, for topological groups, this approach results
in considering the abelian category, CA, of condensed abelian groups which is an
enrichment of the category Mod–Z. Denote the enrichment of a group A ∈ Mod–Z
(equipped with discrete topology) by Ā. If Whitehead groups are defined using the
internal Ext functor on CA (that is, A ∈ Mod–Z is Whitehead, if Ext1CA(Ā, Z̄) = 0),
then all Whitehead groups are free in ZFC, see [5, Session 8].

Theorem 4.1 is a consequence of a still more general result, the Singular Com-
pactness Theorem by Shelah [26] in the setting of modules. The latter says that
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given a suitable notion of a “free” module, for each singular cardinal λ, a ≤ λ-
generated module M is “free”, provided that M is κ-“free” for sufficiently many
regular cardinals κ < λ.

The suitability of the notion of “free” is defined by a list of required properties,
following the approach of [7] (see also [13, §7.4]):

First, a module M is “free” provided that there exists at least one “basis” X
of M , which is a set of subsets of M . A non-empty set B(M) of “bases” of M is
attached to each “free” module M .

A submodule N of a “free” module M is called a “free” factor of M , provided
that N is generated by some member of a “basis” of M ; that is, N = 〈X〉 for some
X ∈ B(M) and X ∈ X .

Assume N is a “free” factor of a “free” module M . Then N is required to
be “free”, and a non-empty set B(M,N) is given, such that B(M,N) consists of
pairs of “bases” of M and N respectively. We will write Y = X � N in case
(X ,Y) ∈ B(M,N).

Let µ be an infinite cardinal. The list of the required properties reads as follows:

Properties 4.4. For each “free” module M , and each “basis” X of M , the following
properties hold:

(P1) (closedness) ∅ ∈ X , and X is closed under arbitrary unions.
(P2) (µ-Löwenheim-Skolem property) If X ∈ X and a ∈ M , then there exists

Y ∈ X , such that X ⊆ Y , a ∈ 〈Y 〉, and card(Y ) ≤ card(X) + µ.
(P3) (compatibility) If Y,X ∈ X and Y ⊆ X, then there exists Y ∈ B(〈X〉),

such that Y ∈ Y. In particular, 〈Y 〉 is a “free” factor of 〈X〉.
(P4) (basis extension) If N is a “free” factor of M and Y ∈ B(N), then there

exists X ∈ B(M), such that Y = X � N .
(P5) (free filtrations) If (Dδ | δ < ρ) is a continuous chain of “free” modules,

such that for each δ < ρ, Dδ is a “free” factor of Dδ+1, then
⋃
δ<ρDδ is

“free”.
(P6) (basis extension links) If (Dn | n < ω) is a chain of “free” modules, such

that for each n < ω, Dn is a “free” factor of Dn+1, and Xn ∈ B(Dn) are
such that Xn = Xn+1 � Dn for each n < ω, then

⋃
n<ω Xn is contained in

some “basis” of
⋃
n<ωDn.

In order to prove Theorem 4.1, we will make use of the following particular
instance of the notions of “free”, “basis”, “free” factor, and B(M,N):

Definition 4.5. Let R be a ring. A module M is “free”, if it is projective. By
Kaplansky’s Theorem [1, 26.2], M is then a direct sum of countably generated
projective submodules, that is, M =

⊕
i∈I〈Gi〉 where Gi is a countable set of

elements of M and 〈Gi〉 is a projective submodule of M for each i ∈ I. Let
X = {

⋃
j∈J Gj | J ⊆ I}. Then X is “basis” of M , and each “basis” of M is

obtained in this way from some direct sum decomposition of M into a direct sum
of countably generated projective modules.

A submodule N of M is a “free” factor of M , provided that N is generated by
some member of a “basis” of M , that is, provided that N is a direct summand
in M . The set B(M,N) is defined as the set of all pairs (X ,Y) such that X is a
“basis” of M , Y is a “basis” of N , and Y = {X ∈ X | X ⊆ N}.

In other words, Y = X � N , iff X = {
⋃
j∈J Gj | J ⊆ I} where Gi is a countable

set of elements of M such that 〈Gi〉 is a projective submodule of M for each
i ∈ I, M =

⊕
i∈I〈Gi〉, there is a subset K ⊆ I such that N =

⊕
k∈K〈Gk〉, and

Y = {
⋃
l∈LGl | L ⊆ K}.
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Notice that (X ,Y) ∈ B(M,N) implies Y ⊆ X , but the converse need not hold
in general.

Using elementary properties of direct sum decompositions, one easily verifies the
following

Lemma 4.6. For any ring R, the particular instances of the notions of “free”,
“basis”, “free” factor, and B(M,N) from Definition 4.5 satisfy Properties (P1)-
(P6) from 4.4 for µ = ω.

In order to state the general version of the Singular Compactness Theorem for
modules, it remains to define the notion of a κ-“free” module:

Definition 4.7. Let κ be a regular uncountable cardinal and M be a module.

(1) M is κ-“free”, provided there exists a set S consisting of < κ-generated
“free” submodules of M , such that 0 ∈ S, each subset of M of cardinality
< κ is contained in an element of S, and S is closed under unions of well-
ordered chains of length < κ.

(2) M is strongly κ-“free”, provided there exists a set T consisting of < κ-
generated “free” submodules of M , such that 0 ∈ T , and for each N ∈ T
and each subset X ⊆ M of cardinality < κ, there exists N ′ ∈ T such that
N ∪X ⊆ N ′ and N is a “free” factor of N ′.

The sets S and T are said to witness the κ-“freeness” and strong κ-“freeness” of
M , respectively.

Example 4.8. Let κ be a regular uncountable cardinal > µ. Then each “free”
module M is both κ-“free” and strongly κ-“free”.

Indeed, if X is any “basis” of M , then the set of all submodules N of M of the
form N = 〈X〉, where X ∈ X and card(X) < κ, witnesses both the κ-“freeness”
and the strong κ-“freeness” of M , by properties (P1), (P2), and (P3).

Let’s have a closer look at these notions in the particular setting of Definition
4.5. Since in this setting, “free” means projective, the standard terminology for
κ-“free” is κ-projective, and for strongly κ-“free”, it is strongly κ-projective.
ω1-projective modules over any ring can equivalently be characterized as the

flat Mittag-Leffler modules by [13, 3.19]. In the hereditary setting, we have the
following characterization:

Lemma 4.9. Let κ be a regular uncountable cardinal and R be a right hereditary
ring. Let M ∈ Mod–R.

(1) M is κ-projective, if and only if all < κ-generated submodules of M are
projective.

(2) If M is strongly κ-projective, then M is κ-projective.
(3) M is strongly κ-projective, iff M is κ-projective, and for each subset X of

M of cardinality < κ there exists a < κ-generated projective submodule P
of M containing X, such that Q/P is projective for each < κ-generated
submodule Q of M containing P .

Proof. 1. The only-if claim is clear, since over a right hereditary ring, the class of
all projective modules is closed under submodules. For the if-claim, it suffices to
let S be the set of all < κ-generated submodules of M .

2. Since T consists of < κ-generated projective modules, and each subset X ⊆M
of cardinality < κ is contained in an element of T , each < κ-generated submodule
of M is projective, and part 1. applies.

3. Let T be a set witnessing the strong κ-projectivity of M . Let X be a subset
of M of cardinality < κ. Since 0 ∈ T , there exists P ∈ T such that X ⊆ P . Let
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Q be any < κ-generated submodule M containing P and Y be a set of cardinality
< κ such that Q = 〈Y 〉. Then there exists N ′ ∈ T such that Y ⊆ N ′ and N ′/P is
projective. Since R is right hereditary, also Q/P is projective. The κ-projectivity
of M follows by part 2.

In order to prove the converse, let T be the set of all < κ-generated submodules
P of M such that Q/P is projective for each < κ-generated submodule Q of M
containing P . By part 1., T consists of projective modules and 0 ∈ T . Let N ∈ T ,
let Y be a set of generators of N of cardinality < κ, and X be any subset of M of
cardinality < κ. Then there exists a < κ-generated projective submodule P of M
containing X ∪ Y , such that Q/P is projective for each < κ-generated submodule
Q of M containing P . Let N ′ = P . Then N ′ ∈ T . Since N ∈ T , the module N ′/N
is projective. Thus T witnesses the strong κ-projectivity of M . �

By part (1) of Lemma 4.9, in our original setting of groups, the notions of an
ω1-projective module and an ω1-free group from Lemma 1.4(1) coincide. The best
known example of an ω1-free group which is not strongly ω1-projective is the Baer-
Specker group Zω, [28]:

Lemma 4.10. Let R = Z and λ be any infinite cardinal. Then the group Zλ is
ω1-free, but not strongly ω1-projective (and hence not free).

Proof. For a subset J ⊆ λ, we will denote by ZJ the direct summand in Zλ con-
sisting of all the (xα | α < λ) ∈ Zλ such that xα = 0 for all α ∈ λ \ J .

By Lemma 1.4, in order to show that Zλ is ω1-free, it suffices to prove the
(stronger) claim that each finite rank pure subgroup A of Zλ is a free direct sum-
mand in Zλ.

First, we prove that each x = (xα | α < λ) ∈ Zλ is contained in a cyclic direct
summand of Zλ. Let 1 ≤ m < ω be the greatest common divisor of all the xα
(α < λ). Let I be a finite subset of λ such that m is also the greatest common
divisor of the xi (i ∈ I). Let y = m−1x ∈ Zλ.

For each z ∈ Zλ, let z′ be the restriction of z to I, that is, z′ ∈ ZI is such that
z′i = zi for each i ∈ I. Since the greatest common divisor of the y′i ∈ Z (i ∈ I) is
1, the group ZI/y′Z is torsion-free and finitely generated, hence it is free. So y′Z
is a free direct summand in ZI . Let x1, . . . , xk ∈ Zλ be such that {y′, x′1, . . . , x′k}
is a free basis of ZI . Then yZ⊕ (

⊕k
i=1 xiZ)⊕ (Zλ\I) = Zλ, whence yZ is a direct

summand in Zλ containing x.
Now, let A be any pure subgroup of Zλ of finite rank. By induction on its rank,

n, we will prove that A is a free direct summand in Zλ. There is nothing to prove
for n = 0. Let 0 6= x ∈ A and let y = m−1x be as above. Since A is pure in Zλ and
Zλ is torsion-free, necessarily y ∈ A. Also Zλ = yZ ⊕ C for some C ⊆ Zλ by the
above. Then A = yZ ⊕ (A ∩ C), where A ∩ C has rank n − 1, and being a direct
summand of the pure subgroup A, A ∩ C is also a pure subgroup in Zλ. So A ∩ C
is a free direct summand in Zλ by the inductive hypothesis. Hence A is free, and
C = (A ∩ C)⊕D for some D ⊆ Zλ, so Zλ = A⊕D.

In order to prove that Zλ is not strongly ω1-projective, we will show that for each
countable subgroup Z(ω) ⊆ H ⊆ Zω ⊆ Zλ there exists a countable group G such
that H ⊆ G ⊆ Zω and G/H is not free. This will suffice: since we have already
proved that Zλ is ω1-free, by Lemma 4.9(1) and (3), we only have to show that
there exists a countable subgroup X of Zλ such that for each countable subgroup
P of Zλ containing X there exists a countable subgroup Q of Zλ containing P such
that Q/P is not free. However, we just let X = Z(ω), and for H = P ∩Zω we find a
corresponding G ⊆ Zω. Then putting Q = P +G, we see that Q/P ∼= G/(P ∩G) =
G/H is not a free group.
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Finally, let p be a prime integer. Since the group
∏
n<ω p

nZ ⊆ Zω is uncountable,
there exists x = (xn | n < ω) ∈ Zω \ H such that xn ∈ pnZ for each n < ω. Let
G be a countable pure subgroup of Zω containing H ∪ {x}. Since Z(ω) ⊆ H, the
element 0 6= x + H ∈ G/H is divisible by pn for each n < ω. Thus, G/H is not a
free group. �

Remark 4.11. 1. If R is not right hereditary, then our terminology may be mis-
leading, as the implication from Lemma 4.9(2) need not hold in general: for each
regular cardinal κ > ω1, there exists a ring Rκ and a module Mκ such that Mκ is
strongly κ-projective, but not κ-projective, [30].

2. For arbitrary rings R, Chase [4] proved that if RR is a projective module,
then R is a right perfect and left coherent ring, whence the classes of all projective
and flat modules coincide, and they are closed under direct products. In particular,
R is a right noetherian ring such that RR is a projective module then R is right
artinian.

3. The question of the existence of a κ-projective, but not free, group of cardi-
nality κ for a given regular uncountable cardinal can be translated (in ZFC) into
a combinatorial statement, called NPT(κ), concerning existence of tranversals for
families of size κ consisting of countable sets, cf. [8, VII.3.13]. NPT(κ) is known
to fail for all (regular) weakly compact cardinals, [8, IV.3.2]. In view of Lemma
4.10, it may come as a surprise that NPT(κ) can be used to show in ZFC for each
regular uncountable cardinal κ, that the existence of a κ-projective, but not free,
group of cardinality κ implies also the existence of a strongly κ-projective, but not
free, group of the same cardinality, [8, VII.3A].

4. The properties of the groups Zλ proved in Lemma 4.10 are the same for each
infinite cardinal λ. This contrasts with the properties of the groups Zλ = Zλ/Z<λ,
where Z<λ denotes the subgroup of Zλ consisting of all the sequences x = (xα |
α < λ) whose support supp(x) = {α < λ | xα 6= 0} has cardinality < λ.

By [8, IX.3.5], Zλ is ω1-free for each infinite cardinal λ of uncountable cofinality
(in particular, for all λ = ℵn where 1 ≤ n < ω).

However, Zω = Zω/Z(ω) is not ω1-free: Zω is a pure-injective torsion-free group
by [8, V.1.16]. In fact, Zω ∼= Q2ω⊕

∏
p∈PAp where Ap denotes the p-adic completion

of the group J(2
ω)

p , Jp the group of all p-adic integers, and P the set of all prime
integers (cf. [8, Ex. V.4]).

The version of Shelah’s Singular Compactness Theorem that we are going to
prove here is

Theorem 4.12. Let R be a ring, µ be an infinite cardinal, λ a singular cardinal
> µ, and M be a ≤ λ-generated module. Assume that M is κ-“free” for each regular
cardinal µ < κ < λ, and the notion of “free”, “basis”, “free” factor, and B(M,N)
satisfy Properties (P1)-(P6). Then M is “free”.

Notice that in view of Lemma 4.6, Theorem 4.12 implies Theorem 4.1.

The proof of Theorem 4.12 will proceed in two steps, following [7] and [8, §IV.3]
(which in turn was inspired by [15]). For the first step, we need a set-theoretic fact:

Lemma 4.13. Let κ be an infinite cardinal. Then there is a bijection ψ : κ→ κ×κ
such that for all ν < κ, if ψ(ν) = (α, τ) then α ≤ ν.

Proof. Since card(κ) = card(κ× κ), it suffices to prove that an arbitrary bijection
φ : κ→ κ× κ can be modified to a bijection ψ as in 4.13.

By induction on β ≤ κ, we define a sequence of bijections ψβ : κ→ κ×κ (β < κ),
and a continuous chain (Sβ | β ≤ κ) of subsets Sβ ⊆ κ such that β ⊆ Sβ for each
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β ≤ κ, card(Sβ) < κ for each β < κ, and the following four conditions are satisfied
for each β < κ:

(1β) If ψβ(ν) = (α, τ) and ν ∈ Sβ , then α ≤ ν (4.13 restricted to Sβ),
(2β) ψβ(µ) = ψν(µ) for each ν < β and µ ∈ Sν (compatibility of the sequence),
(3β) ψβ(ν) = φ(ν) for all ν /∈ Sβ (pointwise equality outside Sβ), and
(4β) ψβ(Sβ) = φ(Sβ) (the same image of Sβ).
First, ψ0 = φ and S0 = ∅. In the inductive step for β < κ, we distinguish two

cases:
Case 1: ψβ(β) = (γ, ρ) for some γ ≤ β and ρ < κ. Then we define ψβ+1 = ψβ

and Sβ+1 = Sβ ∪ {β}.
Case 2: ψβ(β) = (γ, ρ) for some γ > β and ρ < κ. Then β /∈ Sβ . Moreover, ψβ

is a bijection, whence the set Tβ consisting of all δ < κ such that ψβ(δ) = (0, τ) for
some τ < κ has cardinality κ. Since card(Sβ) < κ, there exists δβ ∈ Tβ such that
δβ ≥ γ and δβ /∈ Sβ . Let Sβ+1 = Sβ ∪ {β, δβ}, and define ψβ+1 as ψβ , but with
swapped values at β and δβ . That is, ψβ+1(µ) = ψβ(µ) for all µ < κ+ different
from β and δβ , ψβ+1(β) = ψβ(δβ), and ψβ+1(δβ) = ψβ(β).

In either case, ψβ+1 is clearly a bijection, and conditions (1β+1)-(4β+1) hold by
the inductive premise and by our construction of the ψβ+1.

If β ≤ κ is a limit ordinal, we define Sβ =
⋃
γ<β Sγ(⊇ β). For δ /∈ Sβ , we let

ψβ(δ) = φ(δ), so (3β) holds. For δ ∈ Sβ , let γ < β be the least (non-limit) ordinal
such that δ ∈ Sγ . We define ψβ(δ) = ψγ(δ). Since δ /∈ Sγ−1, either δ = γ − 1
or δ = δγ−1. So (1β) follows from (1γ) for γ < β. Moreover, in the case when
δ = γ− 1, ψβ(γ− 1) = ψγ(γ− 1), whence (2β) follows from (2γ) for γ < β. Finally,
φ(Sβ) =

⋃
γ<β φ(Sγ) =

⋃
γ<β ψγ(Sγ) =

⋃
γ<β ψβ(Sγ) = ψβ(Sβ) by (4γ) for γ < β,

and by (2β). Thus (4β) holds. By (2β), ψβ is monic at Sβ , and (3β) implies that
ψβ is monic at κ \ Sβ . By (3β) and (4β), ψβ is surjective.

Finally, let ψ = ψκ. Then ψ is a bijection, and since Sκ = κ, condition (1κ) is
just the claim of 4.13. �

Now, we can make the first step:

Lemma 4.14. Let R be a ring, µ be an infinite cardinal, κ be a regular cardinal
> µ, and M be a κ+-“free” module. Then M is strongly κ-“free”.

Proof. For any < κ-generated “free” submodule N of M , we define the N -Shelah
game for two players, I and II, with moves indexed by natural numbers, as follows:
In the nth move, player I plays a subset Xn of M of cardinality < κ, and player II
replies with a < κ-generated submodule Nn of M containing N . Player II wins, in
case for each n < ω, Nn is a “free” module containing Nn−1 ∪Xn such that Nn−1
is a “free” factor of Nn (where N−1 = N); otherwise, player I wins.

A winning strategy for player I the N -Shelah game is a function sN that gives the
0th move X0 = sN (N) of player I, and then his nth move Xn = sN (N0, . . . , Nn−1)
for each 0 < n < ω, so that player I wins, that is, after some move Xn of player I,
there exists no “free” submodule Nn of M containing Nn−1 ∪Xn such that Nn−1
is a “free” factor of Nn.

We claim that player I does not have a winning strategy in the 0-Shelah game.
If so, then we can define T as the set of all < κ-generated “free” submodules N of
M such that player I does not have a winning strategy in the N -Shelah game.

By our claim, 0 ∈ T . Let N ∈ T and X be a subset of M of cardinality < κ.
Consider the N -Shelah game where the 0th move of player I is X0 = X. Let N0 be
the 0th move of player II; it is available because N ∈ T . In particular, N ∪X ⊆ N0,
and N is a “free” factor of N0. Notice that player I cannot have a winning strategy
in the N0-Shelah game (otherwise, he would also have a winning strategy in the
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N -Shelah game). Thus N0 ∈ T . Hence T witnesses that M is a strongly κ-“free”
module.

It remains to prove our claim. We will do it by contradiction. Assume s = s0 is
a winning strategy for player I in the 0-Shelah game. Let S be the set witnessing
that M is a κ+-“free” module. By Lemma 4.13, there is a bijection ψ : κ→ κ× κ
such that for all ν < κ, if ψ(ν) = (α, τ) then α ≤ ν.

By induction on ν < κ we will define a continuous chain (Nν | ν < κ) consisting
of < κ-generated submodules of M , and select from S a continuous chain of ≤ κ-
generated “free” modules (Fν | ν < κ) together with sets of generators, {gτν | τ < κ}
of Fν so that Nν ⊆ Fν for each ν < κ as follows: First, let N0 = 0, and let F0 ∈ S
be arbitrary.

If ν < κ is a non-limit ordinal, we take Nν so that gτα ∈ Nν , where ψ(ν −
1) = (α, τ). This is possible since α < ν, so gτα is already defined. Moreover,
we can also assume that Nν contains s(0) and s(Nα1 , . . . , Nαk) whenever k ≥ 1,
α1 < · · · < αk < ν and s(Nα1

, . . . , Nαk) is defined. This is possible since there are
< κ such sequences of ordinals < ν. Since S witnesses the κ+-“freeness” of M , we
can select Fν ∈ S such that Nν ∪Fν−1 ⊆ Fν and take a generating set {gτν | τ < κ}
for Fν .

If ν < κ is a limit ordinal, we let Nν =
⋃
σ<ν Nσ, Fν =

⋃
σ<ν Fσ ∈ S, and

{gτν | τ < κ} =
⋃
σ<ν{gτσ | τ < κ}.

Let F =
⋃
ν<κNν . Clearly, F ⊆

⋃
ν<κ Fν , and the opposite inclusion holds

because ψ is a bijection: by construction, if µ < κ is such that ψ(µ) = (α, τ), then
gτα ∈ Nµ+1. Thus F =

⋃
ν<κ Fν ∈ S, because S witnesses that M is a κ+-“free”

module. Let X be a “basis” of F .
Let C = {α < κ | Nα = 〈Xα〉 for some Xα ∈ X such that card(Xα) < κ}. We

claim that C is unbounded in κ: Indeed, if ν < κ, then by induction on n < ω,
we can define a strictly increasing chain of ordinals < κ, ν = ν0 < ν1 < . . . ,
and a chain of elements of X , X0 ⊆ X1 ⊆ . . . , so that Xn has cardinality < κ,
and Nνn ⊆ 〈Xn〉 ⊆ Nνn+1 for each n < ω. This is possible since µ < κ, by the
properties (P1) and (P2) of X from 4.4. Let α = supn<ω νn. Then Nα = 〈X〉
where X =

⋃
n<ωXn ∈ X by property (P1), so α ∈ C, and ν < α.

Finally, we show how player II can defeat the strategy s: for each n < ω, he
plays Nαn for some αn ∈ C so that α0 < α1 < . . . as follows: first, since C is
unbounded, there is α0 ∈ C such that s(0) ⊆ Nα0 = 〈Xα0〉. Similarly, in the
(n + 1)th move, player II takes αn+1 ∈ C such that αn < αn+1, Xαn ⊆ Xαn+1 ,
and s(Nα0

, . . . , Nαn−1
) ⊆ Nαn+1

= 〈Xαn+1
〉. Since Xαn ⊆ Xαn+1

, Nαn is a a “free”
factor of Nαn+1

by property (P3). �

Lemma 4.9(3) yields a much simpler proof of Lemma 4.14 in the particular setting
of Definition 4.5 for right hereditary rings:

Lemma 4.15. Let R be a right hereditary ring, κ a regular uncountable cardinal
> µ, and M a κ+-projective module. Then M is strongly κ-projective.

Proof. By Lemma 4.9(1), M is κ-projective. AssumeM is not strongly κ-projective.
Then by Lemma 4.9(3), there exists a subset X of M of cardinality < κ such
that for each < κ-generated projective submodule P of M containing X, there
exists a < κ-generated submodule Q of M containing P such that Q/P is not
projective. This makes it possible to construct, by induction on α < κ, a κ-filtration
N = (Nα | α < κ) such that N0 = 0, N1 = 〈X〉, and Nα+1/Nα is not projective for
each 0 < α < κ. Let N =

⋃
α<κNα. Then N is ≤ κ-generated, but not projective,

in contradiction with the assumption that M is κ+-projective. Indeed, if N were
projective, then the κ-filtration N of N would have to coincide on a club C in κ
with the κ-filtration induced by the direct sum decomposition of N into a direct
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sum of countably generated projective modules. Since R is right hereditary, this
would contradict the fact that consecutive factors of N are not projective. �

In view of Lemma 4.14, the proof of Theorem 4.12 will be complete once we
prove

Lemma 4.16. Let R be a ring, µ an infinite cardinal, λ > µ a singular cardinal,
and M a λ-generated module, such that M is strongly κ+-“free” for all cardinals
µ < κ < λ. Then M is “free”.

Proof. Let τ = cf(λ). Then τ < λ by assumption, and there exists an increasing
continuous sequence of cardinals, (κν | ν < τ), whose supremum is λ, and such that
κ0 > µ and κ0 > τ . Since M λ-generated, we can choose a generating subset G of
M of cardinality λ, and an increasing continuous chain of subsets of G, (Gν | ν < τ),
such that card(Gν) = κν for each ν < τ and G =

⋃
ν<τ Gν .

By induction on n < ω, we will construct, for all ν < τ , the following objects: a
subset Cnν of M of cardinality ≤ κν , a ≤ κν-generated “free” submodule Fnν of M ,
a “basis” Xnν of Fnν , and an element Xn

ν ∈ Xnν+1 of cardinality ≤ κν .
We will require that these objects satisfy, for all n < ω and ν < τ , the following

conditions:

(C1) Gν ⊆ Fnν ⊆ 〈Cnν 〉 ⊆ Fn+1
ν ;

(C2) Fnν is a “free” factor of Fn+1
ν , and Xnν = Xn+1

ν � Fnν ;
(C3) Cn−1ρ ⊆ Cnν for each ρ ≤ ν;

(C4) 〈Xn
ν 〉 ⊆ 〈Xn+1

ν 〉 and Xn
ν ⊆ Cnν ;

(C5) Cn−1ν ⊆ 〈Xn+1
ν 〉.

Moreover, we will require the following condition:

(C6) (Cν | ν < τ) is a continuous chain of submodules of M , where Cν :=⋃
n<ω〈Cnν 〉 for each ν < τ .

Assume that the construction above is possible. Then, by (C1), Cν =
⋃
n<ω F

n
ν

and
⋃
ν<τ Cν = M . By (C2), and the properties (P5) and (P6), Cν is “free”, and⋃

n<ω Xnν is contained in a “basis” of Cν , say Xν . Moreover, by (C4) and (C5),
Cν is generated by Xν =

⋃
n<ωX

n
ν , and Xν ∈ Xν+1 by property (P1). So Cν is a

“free” factor of Cν+1. Finally, (C6) and property (P5) yield that M is “free”.

For the construction, we first fix, for each ν < τ a set Tν witnessing the strong
κ+ν -“freeness” of M . At the nth stage of the construction, we will define for all ν < τ
the modules Fnν ∈ Tν , the “bases” Xnν of Fnν , subsets Cn−1ν of M of cardinality ≤ κν ,
Xn
ν ∈ Xnν+1 of cardinality ≤ κν , and sets {unν,α | α < κν} of generators of Fnν as

follows:
For n = 0, we choose F 0

ν ∈ Tν so that Gν ⊆ F 0
ν , X 0

ν ∈ B(F 0
ν ), and let C−1ν =

X0
ν = ∅.
In the inductive step, we first define Cnν = Xn

µ ∪
⋃
ρ≤ν C

n−1
ρ ∪ {unρ,α | ρ < τ, α <

κν}. Since Cnν contains {unν,α | α < κν}, by the inductive premise Fnν ⊆ 〈Cnν 〉. So

we can take Fn+1
ν ∈ Tν so that Cnν ⊆ Fn+1

ν and Fnν is a “free” factor of Fn+1
ν . By

property (P4), we can choose Xn+1
ν ∈ B(Fn+1

ν ) so that Xnν = Xn+1
ν � Fnν . Then

clearly conditions (C1)-(C3) hold true for n.
Next, we take Xn+1

ν ∈ Xn+1
ν+1 of cardinality ≤ κν so that 〈Xn

ν 〉 ⊆ 〈Xn+1
ν 〉 and

Cnν ∩ Fn+1
ν+1 ⊆ 〈Xn+1

ν 〉. This is possible by properties (P1) and (P2). Thus (C4)
holds for n.

Since Cn−1ν ⊆ Cnν , and Cn−1ν ⊆ Cnν+1 ⊆ Fn+1
ν+1 by (C1), we have Cn−1ν ⊆ Cnν ∩

Fn+1
ν+1 ⊆ 〈Xn+1

ν 〉, and (C5) holds for n.
It remains to prove condition (C6). First, (Cν | ν < τ) is a chain of submodules of

M by (C3), so we only have to verify its continuity: Let γ < τ be a limit ordinal. By
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(C1), Cγ =
⋃
n<ω F

n
γ =

⋃
n<ω〈{unγ,α | α < κγ}〉 =

⋃
n<ω

⋃
ν<γ〈{unγ,α | α < κν}〉,

where the latter equality holds because κγ = supν<γ κν . Note that Cnν contains unρ,α
for all ρ < τ and α < κν , so the latter union is contained in

⋃
n<ω

⋃
ν<γ〈Cnν 〉. As

Cν =
⋃
n<ω〈Cnν 〉, we infer that Cγ ⊆

⋃
ν<γ Cν . The opposite inclusion is obvious,

so we conclude that Cγ =
⋃
ν<γ Cν , q.e.d. �

Remark 4.17. 1. The particular setting of Definition 4.5 can be generalized as
follows: we take any set C consisting of ≤ µ generated modules and call a module
M “free”, if it is isomorphic to a direct sum of modules from C. Then the notions
of a “basis”, “free” factor, and B(M,N) can be adapted so that properties (P1)-
(P6) from 4.4 hold for µ, and Theorem 4.12 extends to this generalized setting
(see [7, §2.II] for more details). The particular setting of projective modules from
Definition 4.5 is just the case when µ = ω and C = a representative set of all
countably generated projective modules.

The general form of 4.4 even makes it possible to consider settings far beyond pro-
jectivity or decomposition into direct sums of modules from a given set C. Instead
of direct sums (= possibly infinitely iterated, but split, extensions), one considers
infinitely iterated, but not necessarily split, extensions of modules from C. Then a
module M is “free”, if M is a transfinite extension of modules from C. For more
details on this setting, we refer to [7, 2.III] and [13, 7.4]; its applications are far
reaching: one can prove structure results for Baer modules [13, §14.3], a finite type
theorem for infinitely generated tilting modules [13, 13.46], etc.

2. In all the settings mentioned in 1., the relation B(M,N) satisfies (X ,Y) ∈
B(M,N), iff Y = {X ∈ X | X ⊆ N}. Hence Y = X � N implies Y ⊆ X . In
particular, the sets Xn

ν (n < ω) constructed in the proof of Lemma 4.16 can be
chosen to form a chain. Thus, in order to prove Theorem 4.12 in these settings, it
suffices to verify property (P1) of the “bases” X in the weaker form of continuity:

(P1′) (continuity) ∅ ∈ X , and X is closed under unions of arbitrary chains.

5. Appendix

In this appendix, we recall the basic properties of Ext functors in module cat-
egories employed above. For space reasons, we skip most proofs as well as related
results not directly needed here. For full proofs and more details, we refer to stan-
dard texts on homological algebra, such as [14, Chaps. 3-4] or [33, Chaps. 1-3] (see
also [11, §1.4 and §8.1-8.3]).

Let R be a ring, and M , N be modules. Then there are two representable
additive functors from Mod–R to Mod–Z, the covariant one, E0 = HomR(M,−)
and the contravariant one, E0 = HomR(−, N). Both are well-known to be left
exact. That is, for each short exact sequence of modules

(5.a) 0→ A
µ→ B

π→ C → 0,

the induced sequences 0 → E0(A) → E0(B) → E0(C) and 0 → E0(C) →
E0(B) → E0(A) of abelian groups are exact. Moreover, the sequences 0 →
E0(A) → E0(B) → E0(C) → 0 (0 → E0(C) → E0(B) → E0(A) → 0) are
short exact for all short exact sequences (*), iff the module M is projective (N is
injective).

The covariant (contravariant) right derived functors of the representable func-
tors, denoted for n ≥ 1 by En = ExtnR(M,−) and En = ExtnR(−, N), respectively,
measure the non-exactness of the representable functors. In more detail, for a mod-
ule P , the abelian group En(P ) = ExtnR(M,P ) is defined as the nth cohomology
group of the complex obtained by applying the covariant E0 functor to a deleted
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injective coresolution of the module P . Dually, En(P ) = ExtnR(P,N) is the nth co-
homology group of the complex obtained by applying the contravariant E0 functor
to a deleted projective resolution of the module P .

In particular, M is projective, iff Ext1R(M,P ) = 0 for each module P , iff
ExtnR(M,P ) = 0 for each module P and each n ≥ 1. Dually, N is injective, iff
Ext1R(P,N) = 0 for each module P , ExtnR(P,N) = 0 for each module P and each
n ≥ 1.

The definitions above provide two ways of computing the group ExtnR(M,N),
namely as En(N) and En(M). The fact that both these computations yield iso-
morphic groups is known as the balance of the bifunctor HomR(−,−).

The short exact sequence (*) induces long exact sequences of abelian groups

(5.b) 0→ E0(A)→ E0(B)→ E0(C)→ E1(A)→ E1(B)→ E1(C)→ . . .

· · · → En(A)→ En(B)→ En(C)→ En+1(A)→ En+1(B)→ En+1(C)→ . . .

and

(5.c) 0→ E0(C)→ E0(B)→ E0(A)→ E1(C)→ E1(B)→ E1(A)→ . . .

· · · → En(C)→ En(B)→ En(A)→ En+1(C)→ En+1(B)→ En+1(A)→ . . . .

Now, we can state and prove formulas for computation of the Ext groups:

Lemma 5.1. Let M and N be modules.

(1) Assume that the module B in (5.a) is projective. Then there is an abelian
group isomorphism

(5.d) Ext1R(C,N) ∼= HomR(A,N)/Im(HomR(µ,N))

where Im(HomR(µ,N)) denotes the subgroup of HomR(A,N) consisting of
all homomorphisms g ∈ HomR(A,N) of the form g = fµ for some f ∈
HomR(B,N).

In particular, Ext1R(C,N) = 0, iff the following factorization property
holds true: each homomorphism g ∈ HomR(A,N) is of the form g = fµ
for some f ∈ HomR(B,N).

Moreover, for each n ≥ 1, Extn+1
R (C,M) ∼= ExtnR(A,M).

(2) Assume that module B in (5.a) is injective. Then there is an abelian group
isomorphism

(5.e) Ext1R(M,A) ∼= HomR(M,C)/Im(HomR(M,π))

where Im(HomR(M,π)) denotes the subgroup of HomR(M,C) consisting
of all morphisms g ∈ HomR(M,C) of the form g = πf for some f ∈
HomR(M,B).

In particular, Ext1R(M,A) = 0, iff each homomorphism g ∈ HomR(M,C)
is of the form g = πf for some f ∈ HomR(M,B).

Moreover, for each n ≥ 1, Extn+1
R (M,A) ∼= ExtnR(M,C).

(3) Let (Mi | i ∈ I) and (Nj | j ∈ J) be any families of modules. Then for
each n ≥ 0, there are abelian group isomorphisms ExtnR(

⊕
i∈IMi, N) ∼=∏

i∈I ExtnR(Mi, N) and ExtnR(M,
∏
j∈J Nj)

∼=
∏
j∈J ExtnR(M,Nj).
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Proof. 1. By (5.c), the sequence 0 → E0(C) → E0(B)
HomR(µ,M)→ E0(A) →

E1(C)→ E1(B) = 0 is exact, and the first claim follows. In particular, E1(C) = 0,
iff HomR(µ,M) is surjective.

Moreover, since En(B) = 0 for all n ≥ 1, the exactness of (5.c) yields the
isomorphisms En+1(C) ∼= En(A) for all n ≥ 1.

2. The proof is similar, using (5.b) in place of (5.c).
3. These isomorphisms are well-known for n = 0; using the fact that direct sums

of projective modules are projective, and direct products of injective modules are
injective, they extend to all n > 0. �

The moreover parts of Lemma 5.1(1) and (2) make it possible to perform the
dimension shifting, that is, reduce the computation of the higher Ext groups to a
computation of the Ext1. The latter group is then computed via the formulas (5.d)
or (5.e).

Recall that a ring R is right hereditary in case all right ideals of R are projective.
Equivalently, submodules of projective modules are projective, or factor-modules
of injective modules are injective. In this case, by Lemma 5.1, all Extn groups for
n ≥ 2 vanish.

Finally, we mention a connection between the vanishing of Ext1R(C,A) and the
splitting of the short exact sequences of the form (5.a). Recall that (5.a) splits in
case there exists f ∈ HomR(B,A) such that fµ = 1A, or equivalently, there exists
g ∈ HomR(C,B) such that πg = 1C .

Lemma 5.2. Let A and C be modules. Then Ext1R(C,A) = 0, iff each short exact
sequence of the form (5.a) splits.

Proof. By Lemma 5.1(1) for N = A, Ext1R(C,A) = 0 implies the existence of an
f ∈ HomR(B,A) such that 1A = fµ.

Conversely, consider any short exact sequence 0 → K
ν→ F → C → 0 where

F is a free module. By Lemma 5.1(1), in order to prove that Ext1R(C,A) = 0, it
suffices to show that each homomorphism g ∈ HomR(K,A) is of the form g = fν
for some f ∈ HomR(F,A). However, for each g ∈ HomR(K,A), we can consider
the push-out of ν and g and obtain the following commutative diagram whose rows
are short exact sequences:

0 −−−−→ K
ν−−−−→ F −−−−→ C −−−−→ 0

g

y h

y ∥∥∥
0 −−−−→ A

µ−−−−→ E −−−−→ C −−−−→ 0
By assumption, the lower short exact sequence splits, so there is ρ ∈ HomR(E,A)

such that ρµ = 1A. As µg = hν, we conclude that g = fν where f = ρh. �
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[13] R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, 2nd rev. ext.

ed., Vols. 1 and 2, GEM 41, W. de Gruyter, Berlin 2012.
[14] P. J. Hilton, U. Stammbach, A Course in Homological Algebra, 2nd ed., GTM 4, Springer-

Verlag, New York 1997.

[15] W. Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis
12(1981), 205 – 220.

[16] R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4(1972), 229
– 308.

[17] L. Procházka, A note on free abelian groups, Comment. Math. Univ. Carolinae 10(1969),

567 – 569.
[18] A. Rinot, Surprizingly short, https://papers.assafrinot.com/short.pdf.
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