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1. Homological dimensions

From a course of homological algebra (see also [CE56] or [Rot09], or [ASS06,
§A4] for a quick overview), we know that for any ring A and n ≥ 0, there are
functors

ExtnA : (ModA)op ×ModA −→ Ab

such that:
• Ext0A is the usual Hom-functor (which sends a pair of modules (X,M) to

the abelian group HomA(X,M) and is contravariant in the first variable
and covariant in the second one), and

• given any short exact sequence of right modules

0 //L //M //N //0 ,

and a right A-module X, there are long exact sequences of abelian groups
of the form

0 // HomA(X,L) // HomA(X,M) // HomA(X,N)

// Ext1A(X,L) // Ext1A(X,M) // Ext1A(X,N)

// Ext2A(X,L) // Ext2A(X,M) // Ext2A(X,N) // · · ·

and

0 // HomA(N,X) // HomA(M,X) // HomA(L,X)

// Ext1A(N,X) // Ext1A(M,X) // Ext1A(L,X)

// Ext2A(N,X) // Ext2A(M,X) // Ext2A(L,X) // · · ·

Recall also that the groups ExtnA(X,M) can be computed in two (nontrivially!)
equivalent ways:
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• Starting from any projective resolution

(1) · · · d3 //P2
d2 //P1

d1 //P0
//X //0

of X, we can compute ExtnA(X,M) as the n-th cohomology Ker d∗n+1/ Im d∗n
of the complex of Hom-groups

· · · oo
d∗
3

HomA(P2,M) oo
d∗
2

HomA(P1,M) oo
d∗
1

HomA(P0,M) oo
d∗
0

0 .

Note that we have removed the module X from the resolution and the map
d∗0 is the zero map by convention.

• Dually, we can start with any injective resolution of M ,

(2) 0 //M //E0 d1
//E1 d2

//E2 d3
// · · ·

and compute ExtnA(X,M) is the n-th cohomology Ker dn+1
∗ / Im dn∗ of the

complex

0
d0
∗ //HomA(X,E0)

d1
∗ //HomA(X,E1)

d2
∗ //HomA(X,E2)

d3
∗ // · · · .

Remark 1.1. The group Ext1A(X,M) has a nice representation that explains the
notation for the Ext-functors—it classifies extensions of the A-module X by M .
More precisely, there is a natural bijection between the elements of Ext1A(X,M)
and equivalence classes [ 0 → M → E → X → 0 ]∼ of short exact sequences in
ModA. Here two short exact sequences 0 → M → E1 → X → 0 and 0 → M →
E2 → X → 0 are said to be equivalent if there exists a homomorphism f : E1 → E2

that fits into a commutative diagram of the form

0 // M // E1
//

f

��

X // 0

0 // M // E2
// X // 0.

Such an f is necessarily an isomorphism. The zero element of Ext1A(X,M) corre-
sponds to the equivalence class of split short exact sequences [ 0 → M → M⊕X →
X → 0 ]∼ and the group operation is realized through so-called Baer sums (we
will not discuss details here; see e.g. [Rot09, §7.2.1] or a short summary in [ASS06,
§A.5]).

If A happens to be a K-algebra over a field K, then all Hom-groups of modules
have a natural structure of K-vector spaces, and (by the construction of the Ext-
groups above), also ExtnA(M,X) is naturally a K-vector space for each X,M ∈
ModA and n ≥ 0. In fact, we have functors

(3) ExtnA : (ModA)op ×ModA −→ ModK

in this case.
If, moreover, dimK A < ∞ and M,X ∈ modA, then one can construct a pro-

jective resolution as in (1) with all the projective modules finitely generated, so
also finite dimensional. For example, the minimal projective resolution has this
property. Likewise, an injective resolution as in (2) can be taken in modA (e.g.,
take a minimal projective resolution of DM in modAop and apply the duality
D : (modAop)op → modA, see §2 below). All in all, since dimK HomA(L,N) ≤
(dimK L) · (dimK N) < ∞ for all L,N ∈ modA, the above computations of
Extn(X,M) reveal that also dimK Extn(X,M) < ∞ for all n ≥ 0, and that (3)
restricts to

ExtnA : (modA)op ×modA −→ modK.
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Here we will be interested in measuring how complicated algebras are from the
homological point of view. This leads to the notions of projective, injective and
global dimension. Typically, these concepts are defined a priori in categories of all
(possibly infinitely generated) modules. We will follow this path and explain how to
adapt the theory to categories of finitely generated modules over finite-dimensional
algebras later in §2.

Definition 1.2. The projective dimension of a module M ∈ ModA is defined as
the smallest integer n such that M has a projective resolution

0 → Pn → · · · → P0 → M → 0.

If no such finite projective resolution exists, we say that the projective dimension
of M is infinite.

Dually, the injective dimension of N ∈ ModA is the smallest n such that

0 → N → E0 → · · · → En → 0,

or is infinite if there is no finite injective resolution.

These dimensions are closely related to the Ext groups. It is well known that
a module P ∈ ModA is projective if and only if each exact sequence of the form
0 → M → E → P → 0 splits if and only if Ext1(M,−) ≡ 0 in ModA if and only if
Exti(M,−) ≡ 0 for all i > 0. The long exact sequences of Ext groups allow us to
show that

Proposition 1.3. The following are equivalent for any module M over any ring A:
(1) The projective dimension of M is at most n;
(2) ExtiA(M,−) ≡ 0 on ModA for all i > n;
(3) Extn+1

A (M,−) ≡ 0 on ModA;
(4) Given any exact sequence 0 → Y → Pn−1 → · · · → P0 → M → 0 with

P0, . . . , Pn−1 projective, then Y is projective as well.

Injective modules and modules of finite injective dimension allow for a completely
formally dual characterization.

Proposition 1.4. The following are equivalent for any module N over any ring A:
(1) The injective dimension of N is at most n;
(2) ExtiA(−, N) ≡ 0 on ModA for all i > n;
(3) Extn+1

A (−, N) ≡ 0 on ModA;
(4) Given any exact sequence 0 → N → E0 → · · · → En−1 → Z → 0 with

E0, . . . , En−1 injective, then Y is injective as well.

We will not spell out the arguments here, but rather refer to [Rot09] or [CE56]
for details. The version for injective dimension has the advantage that we do not
have to test the vanishing of Ext1A(−, N) on all modules, but only on cyclic modules.
If A is a finite-dimensional algebra (or, more generally, a right artinian ring), we
can do even better. The reason is that we have the Baer Criterion.

Lemma 1.5 (Baer Criterion). Let A be a ring and N ∈ ModA. Then the following
are equivalent:

(1) N is injective;
(2) For any right ideal IA ⊆ AA, each homomorphism f : I → N extends to a

homomorphism A → N ,

IA
⊆ //

∀f !!

AA

∃
��

NA;
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(3) Ext1A(A/I,N) = 0 for each right ideal IA ⊆ AA.

Proof. The equivalence (1) ⇔ (2) is classical; see [AF92, Lemma 18.3], [CE56,
Theorem I.3.2] or [Rot09, Theorem 3.30]. The fact that (2) ⇔ (3) follows from the
exact sequence of abelian groups

HomA(A,N) → HomA(I,N) → Ext1A(A/I) → Ext1A(A,N) = 0

obtained by applying Hom(−, N) to the short exact sequence 0 → I → A → A/I →
0. Here we also use that Ext1A(A,N) = 0 since AA is projective. □

This allows us to improve Proposition 1.4.

Proposition 1.6. Let A be a ring and N ∈ ModA. Then the following are equiv-
alent:

(1) The injective dimension of N is at most n;
(2) Extn+1

A (A/I,N) = 0 for each right ideal IA ⊆ AA.
If, moreover, A is a finite-dimensional algebra over a field (or, more generally, a
right artinian ring), these are further equivalent to

(3) Extn+1
A (S,N) ≡ 0 for each simple module SA.

Proof. To prove (1) ⇔ (2), choose an exact sequence 0 → N → E0 d1

→ E1 d2

→ · · · d
n−1

→
En−1 → Z → 0 with all Ei injective and a right ideal IA. Since ExtjA(A/I,Ei) = 0
for all i = 0, . . . , n−1 and j > 0, the standard dimension shifting trick tells us that

Extn+1
A (A/I,N) ∼= ExtnA(A/I, Im d1) ∼= · · · ∼= Ext2A(A/I, Im dn−1) ∼= Ext1A(A/I, Z).

So Extn+1
A (A/I,N) = 0 for each I if and only if Z is injective (by the Baer Criterion)

if and only if the injective dimension of N is at most n (by Proposition 1.4).
The implication (2) ⇒ (3) is clear, as simple modules are precisely those of the

form A/I where IA ⊆ AA is a maximal right ideal.
It remains to prove (3) ⇒ (2). Let IA ⊆ AA be an ideal. Since we assume that

A is a finite-dimensional algebra, the cyclic module A/I is of finite length, so has a
composition series

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fℓ = A/I

with Fi+1/Fi simple for each i = 0, . . . , ℓ − 1 (the same is true if A is only right
artinian by the Hopkins Theorem [AF92, Theorem 15.20 and Corollary 15.21]). We
will prove by induction that Extn+1

A (Fi, N) = 0 for all 0 ≤ i < ℓ. The case i = 0 is
trivial and for the inductive step it remains to notice that the short exact sequence
0 → Fi → Fi+1 → Fi+1/Fi → 0 induces an exact sequence

Extn+1(Fi+1/Fi, N) → Extn+1(Fi+1, N) → Extn+1(Fi, N).

Now the leftmost term vanishes by assumption (3) and the rightmost term by the
inductive hypothesis. □

At this point, we can define the global dimension of a ring. Strictly speaking, for
general rings we should distinguish between the left and right global dimensions,
depending on whether we choose left or right modules to define it. However, as we
will see in the next section, the two values are equal for finite-dimensional algebras.

Definition 1.7. Let A be a ring. The (right) global dimension of A is defined as
the supremum of the projective dimensions of modules M , where M runs over all
(not necessarily finitely generated) A-modules.

The following characterization of the global dimension is an immediate conse-
quence of Propositions 1.3 and 1.4.

Proposition 1.8. Let A be a ring and n ≥ 0. Then the following are equivalent:
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(1) The global dimension of A is at most n;
(2) Exti(−,−) ≡ 0 on ModA for all i > n;
(3) Extn+1(−,−) ≡ 0 on ModA;
(4) Each N ∈ ModA has injective dimension at most n.

Finally, with the Baer Criterion and Proposition 1.6, we obtain the following
important consequence. The second part is very convenient since we know that
there are only finitely many isomorphism classes of simple modules over a finite-
dimensional algebra over a field.

Corollary 1.9. (1) The global dimension of a ring A is equal to the supremum
of the projective dimensions of the cyclic right modules A/I (where IA ⊆ AA

runs over all right ideals).
(2) If A is a finite-dimensional algebra over a field (or just an right artinian

ring), then the global dimension of A equals the supremum of the projective
dimensions of simple right modules.

Proof. (1) By Proposition 1.6, all right modules have injective dimension at most n
if and only if Extn+1

A (A/I,−) ≡ 0 for each right ideal IA. It remains to apply Propo-
sition 1.3 to M = A/I.

(2) This follows by the same argument using the second part of Proposition 1.6.
□

2. Homological algebra and finite dimensional algebras

Throughout this section, let A be a finite-dimensional algebra over a field K.
In this case, we notice that the projectivity and injectivity of finitely generated
modules can be tested entirely within the category modA.

Lemma 2.1. (1) The following are equivalent for P ∈ modA:
(a) P is projective;
(b) Given any epimorphism p : M ↠ N in modA and a homomorphism

f : P → N , there exists g : P → M such that f = pg.
(c) Ext1A(P,−) ≡ 0 on modA.

(2) Dually, the following are equivalent for E ∈ modA:
(a) E is injective;
(b) Given any monomorphism i : L ↪→ M in modA and a homomorphism

f : L → E, there exists g : M → E such that f = gi.
(c) Ext1A(−, E) ≡ 0 on modA.

Proof. (1) The implication (a)⇒(c) is obvious. To prove (c)⇒(b), we apply the
functor HomA(P,−) to the short exact sequence 0 → Ker p → M

p→ N → 0. Then
we obtain an exact sequence

HomA(P,M)
p∗−→ HomA(P,N) −→ Ext1(P,Ker p) = 0.

It follows that p is surjective, which (upon unraveling) is precisely condition (b).
Finally, assuming (b), consider a short exact sequence 0 → L → An p→ P → 0. It
exists for some n since P is finitely generated and, by (b) applied to the identity
morphism f = 1P , there exists g : P → A such that 1P = pg. Hence An =
Im p⊕ Ker g and P is projective.

(2) Again, (a)⇒(c) is obvious and (c)⇒(b) follows by a similar argument as in
part (1) (apply HomA(−, E) to the short exact sequence 0 → L

i→ M → Coker i →
0). Finally, (a)⇔(b) follows from the Baer criterion (Lemma 1.5). □

Remark 2.2. The complicated route in this course—first discussing homological
algebra in ModA and then specializing to finite-dimensional algebras and finitely
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generated modules over them—was taken to clarify the relation to other courses.
In principle, one could alternatively take a shortcut and use Lemma 2.1(1)(b) and
(2)(b) as the definition of projective and injective modules in modA.

Recall the vector space duality D = HomK(−,K) from [ASS06, §I.2.9] and that
it induces duality between the categories of finitely generated left and right modules,
which we typically write as an equivalence

(4) D : (modA)op
≃−→ modAop.

One merit of having Lemma 2.1 is that it explains why the duality sends projec-
tive modules to injective modules and vice versa. This was left without proof in
[ASS06, Theorem I.5.13(b)]. Using the lemma, we can also extend the duality to
Ext functors.

Proposition 2.3. Let A be a finite-dimensional algebra, and X,M ∈ modA. Then
there is a natural isomorphism ExtnA(X,M) ∼= ExtnAop(DM,DX) for each n ≥ 0.

Proof. The equivalence (4) provides the isomorphims for n = 0 (i.e. HomA(M,N) ∼=
HomAop(DN,DM)). For general n, consider a projective resolution of X in modA
as in (1). Then

0 //D(X) //D(P0)
D(d1) //D(P1)

D(d2) //D(P2)
D(d3) // · · ·

is an injective resolution of D(X) by [ASS06, Theorem I.5.13] and we have the
following commutative diagram with isomorphisms in columns by (4):

0 // HomA(P0,M) //

∼=
��

HomA(P1,M) //

∼=
��

HomA(P2,M) //

∼=
��

· · ·

0 // HomAop(DM,D(P0)) // HomAop(DM,D(P1)) // HomAop(DM,D(P2)) // · · ·

This induces isomorphism of the cohomology of the rows, so that ExtnA(X,M) ∼=
ExtnAop(DM,DX). The fact that the latter isomorphism is natural in both X and
M follows by standard arguments, similar to those that prove that ExtnA is a functor
in the first place. We refer to [Rot09, CE56]. □

As a consequence, we obtain the equality between the left and right global di-
mensions.

Corollary 2.4. Let A be a finite-dimensional algebra, and n ≥ 0. Then the fol-
lowing are equivalent:

(1) The global dimension of A is at most n;
(2) ExtiA(−,−) ≡ 0 on modA for all i > n;
(3) Extn+1

A (−,−) ≡ 0 on modA;

Proof. (1) ⇒ (2) follows from Proposition 1.8 and (2) ⇒ (3) is trivial.
(3) ⇒ (1) Let S, T ∈ modA be simple modules. Then

Extn+1
A (S, T ) ∼= Extn+1

Aop (D(T ), D(S)) = 0,

so the module D(S) ∈ modAop has injective dimension at most n by Proposition 1.6
and we can choose an injective resolution 0 → D(S) → E0 → · · · → Em → 0 in
modAop with m ≤ n (note that injective envelopes of finitely generated modules
are again finitely generated by [ASS06, Corollary I.5.14]). By duality, we obtain
a projective resolution 0 → D(Em) → · · ·D(E0) → S → 0 of S, so all simple
modules in modA have projective dimension at most n. Consequently, the global
dimension of A is at most n by Corollary 1.9. □
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Corollary 2.5. If A is a finite-dimensional algebra, the global dimensions of A
and Aop are equal.

Proof. By Proposition 2.3, we have Extn+1
A (−,−) ≡ 0 on modA if and only if

Extn+1
Aop (−,−) ≡ 0 on modAop □

Remark 2.6. The left and right global dimensions are in fact equal much more
generally, in particular for each left and right notherian ring [Rot09, Corollary 8.28].

The last question which we will focus on in the section is how to compute the
global dimension of a given algebra or, else (in view of Corollary 1.9), how to
compute the projective dimension of simple modules. A finitely generated module
may have many projective resolutions, and as the name suggests, the minimal
projective resolution in the sense of [ASS06, Definition I.5.7] is also of minimal
length. The conceptual reason for that is that the projective cover of a module
M ∈ modA is a summand of any epimorphism Q ↠ M with Q projective (cf. [AF92,
Lemma 17.17]), and by induction one can prove that each term of a given projective
resolution of M has the corresponding term of the minimal resolution as a summand.

However, we will use another approach here to prove that will be technically
easier to work out here and we will use it later in the proof of [ASS06, Lemma
III.2.12].

Proposition 2.7. Let A be a finite-dimensional algebra,

· · · d3 //P2
d2 //P1

d1 //P0
//M //0

be a minimal projective resolution of M ∈ modA and let S ∈ modA be a simple
module. Then ExtnA(M,S) ∼= HomA(Pn, S) for each n ≥ 0.

Proof. Recall that the Ext groups are the cohomologies of the complex

· · · oo
d∗
3

HomA(P2, S) oo
d∗
2

HomA(P1, S) oo
d∗
1

HomA(P0, S) oo
d∗
0

0 ,

so it suffices to prove that d∗n = 0 for all n ≥ 1, where by definition d∗n(f) = f ◦ dn
for each f ∈ HomA(Pn−1, S). By the minimality of the projective resolution, the
epimorphism Pn−1 ↠ Im dn−1 (or P0 ↠ M if n = 0) is a projective cover, so

Ker(Pn−1 ↠ Im dn−1) = Ker dn−1 = Im dn ⊆ radPn−1

by the construction of projective covers in [ASS06, Theorem I.5.8]. Consider now
a homomorphism f : Pn−1 → S. Then

Im(f ◦ dn) = f(Im dn) ⊆ f(radPn−1) ⊆ radS = 0.

Here, the last inclusion follows from the functoriality of the radical [ASS06, Propo-
sition I.3.7(c)]. So d∗n(f) = 0 for each f , or in other words, d∗n = 0. □

As a consequence, we obtain the following.

Corollary 2.8. Let A be a finite-dimensional algebra and

· · · d3 //P2
d2 //P1

d1 //P0
//M //0

be a minimal projective resolution of a non-zero module M ∈ modA. Then the
projective dimension of M equals to minimal n ≥ 0 such that Pn+1 = 0, or is
infinite if no such n exists.

Proof. By the Baer Criterion (Proposition 1.6) and the duality (Proposition 2.3),
the projective dimension of M equals the minimal n ≥ 0 such that Extn+1

A (P, S) =

0 for all simple modules S. By Proposition 2.7, Extn+1
A (P, S) vanishes if and

only if HomA(Pn+1, S) does. However, we always have an epimorphism Pn+1 ↠
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Pn+1/ radPn+1 and the latter module is semisimple (since it is naturally a module
over the semisimple ring A/ radA). Hence HomA(Pn+1, S) = 0 for all simple mod-
ules S implies that Pn+1/ radPn+1 = 0, which in turn implies that Pn+1 = 0 by
the Nakayama Lemma [ASS06, Lemma I.2.2]. □

3. Hereditary algebras

A natural question to ask is what we can say about rings of low global dimensions.
The case global dimension zero conincides with semisimple rings.

Proposition 3.1. Let A be a ring. Then the following are equivalent:
(1) The ring is semisimple.
(2) Each short exact sequence of A-modules 0 → N → E → M → 0 splits.
(3) Ext1A(−,−) ≡ 0 on ModA.
(4) Each A-module is projective.
(5) Each A-module is injective.

Proof. The equivalence (1) ⇔ (2) follows from [Rot09, Proposition 4.1], which says
that a module is semisimple if and only if every submodule is a direct summand.
We just apply this to the module AA. The rest is left as an exercise—it is not so
crucial in the next exposition and easily follows from the summary in §1. □

The more interesting case for us are the rings of global dimension (at most) one.

Definition 3.2. A ring A is right hereditary if the right global dimension of A is
at most one.

Remark 3.3. As we know that the left and right global dimensions coincide for finite-
dimensional algebras over a field, we will later speak only of hereditary algebras.

Right hereditary rings can be characterized in various ways.

Theorem 3.4. The following are equivalent for a ring A:
(1) A is right hereditary;
(2) The projective dimension of A/I is at most one for each IA ⊆ AA,
(3) Each right ideal IA ≤ A is projective,
(4) Each submodule of a projective right module is projective,
(5) Each factor of an injective right module is injective.

If A is a finite-dimensional algebra, these are further equivalent to
(6) The projective dimension of each simple module SA is at mosat one.

Proof. The equivalences (1) ⇔ (2) and (1) ⇔ (6) follow from the Baer Criterion
Corollary 1.9, and (2) ⇔ (3) follows from Proposition 1.3 applied to M = A/I.

(1) ⇒ (4) Suppose that L ⊆ P is a submodule of a projective module. Since the
projective dimension of P/L is at most one, L is projective again by Proposition 1.3.

(4) ⇒ (1) Any M ∈ ModA is a factor of a projective (even free) module, so there
is an exact sequence 0 → L → P → M → 0 with P projective. Assuming (4), L is
also projective, so the projective dimension of M is at most one.

(1) ⇒ (5) This is proved dually using Proposition 1.4. □

Remark 3.5. Many important examples of hereditary rings exist outside the realm
of finite-dimensional algebras; see, e.g., [Rot09, §4.3]. For example, the ring of
integers Z (or to that end any principal ideal domain) is hereditary because of
Theorem 3.4(3). Hereditary commutative domains are called Dedekind domains
and there are two important sources of them:

(1) Rings of integral elements in finite field extensions of Q, such as Z[i], Z[e 2πi
3 ]

or Z[
√
−5];
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(2) Coordinate rings of smooth affine algebraic curves, such as C[x] or C[x,y]
(y2−f(x)) ,

where f(x) ∈ C[x] is a cubic polynomial with no multiple roots.

As this course focuses on path algebras, we introduce the main source of examples
of hereditary algebras here.

Lemma 3.6 ([ASS06, Theorem VII.1.7(a)]). If K is a field and Q is a finite acyclic
quiver, then the path algebra KQ is hereditary.

Proof. We will prove that each simple module has projective dimension at most
one. Since each simple module is of the form S ∼= εiKQ/εi rad(KQ) = εiA/εiRQ

for some i ∈ Q0, it suffices to prove that εiRQ is a projective KQ-module (where
RQ ⊆ KQ is the arrow ideal). As a vector space, εiRQ has a basis formed by the
non-trivial parts starting at i, so

εiRQ =
⊕

(α : i→j)

αKQ.

It remains to note that for any arrow α : i → j, the left multiplication α·− induces an
isomorphism of the right modules αKQ ∼= εjKQ, so εiRQ

∼=
⊕

(α : i→j) εjKQ. □

Remark 3.7. The path algebra KQ is hereditary even if Q has oriented cycles. The
proof is much harder, uses non-commutative Gröbner bases.

We have already seen [ASS06, Theorem II.3.7] which says that for every basic
finite dimensional algebra A over an algebraically closed field K, there is an admis-
sible ideal I ⊆ KQA such that A ∼= KQA/I. A natural question now is which of
these algebras are hereditary, where a partial answer is given by Lemma 3.6. We
will show that, in fact, these are the only hereditary algebras in this context. As
a first step, we show that the quiver of a basic hereditary algebra over K = K is
acyclic.

Lemma 3.8 ([ASS06, Corollary VII.1.5(a)]). Let A be hereditary and f : Q → P
be a homomorphism between indecomposable projectives. If f is non-zero, then it
is a monomorphism.

Proof. Since A is hereditary, Im f ⊆ P is projective. So f : Q ↠ Im f is a split
epimorphism. As Q is indecomposable and f non-zero, it follows that Ker f = 0. □

Proposition 3.9. Suppose that A is a hereditary finite-dimensional algebra over
K = K. Then QA is acyclic.

Proof. Recall from [ASS06, Theorem II.3.7] that each arrow α : i → j in QA cor-
responds under the isomorphism KQA/I ∼= A to a basis element α + ei(radA)2ej
of the vector space ei(radA)ej/ei(radA)2ej . Here e1, . . . , en is a chosen complete
set of primitive orthogonal idempotents. In particular, if we identify KQA/I with
A, an arrow α : i → j becomes a non-zero element of ei(radA)ej . So the left mul-
tiplication by α induces a non-zero homomorphism α · − : ejA → eiA whose image
is contained in rad(eiA). Therefore, this homomorphism is not surjective, but is
injective by Lemma 3.8.

Now suppose by way of contradiction that there is an oriented cycle in QA. The
discussion in the previous paragraph tells us that there is a corresponding cycle
of injective but not surjective homomorphisms between indecomposable projective
modules:

1
α1 // 2 α2

��
e1A oo

α1·−oo e2A jj α2·−
]]

k − 1

αk−1 22

3 =⇒ ek−1A
��

αk−1·− tt

e3A
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The composition of the cycle also yields an endomorphism of e1A which is injective
but not surjective, which is absurd as dimK e1A < ∞. □

Now we are ready for the final result of this section which (together with lemma 3.6)
characterizes basic hereditary algebras over an algebraically closed field.

Theorem 3.10 ([ASS06, Theorem VII.1.7(b)]). Let A be a basic hereditary finite-
dimensional algebra over an algebraically closed field K. Then A ∼= KQA.

Proof. Without loss of generality, assume that A = KQA/I with QA acyclic and
I ⊆ KQA admissible. Now we will use the argument from [ARS97, Lemma III.1.11]
to prove that I = 0. To this end, we have an exact sequence of A-modules

0 // I
RQ·I

// RQ

RQ·I
p // RQ

I
// 0.

Since RQ is projective as a right KQ-module, RQ/RQI is projective as a right A-
module. Indeed, there is a vector space basis of RQ formed by all non-trivial paths in
Q, so RQ =

⊕
α∈Q1

αKQ ∼=
⊕

α∈Q1
t(α)KQ and RQ/RQI ∼=

⊕
α∈Q1

t(α)KQ/t(α)I.
Furthermore, I/RQI ⊆ R2

Q/RQI = rad(RQ/RQI) since I is admissible. So p is a
projective cover in modA. Since A is hereditary, radA = RQ/I is already projective
as a right A-module, so p is an isomorphism, and I = RQI. Now the Nakayama
Lemma applied to the left KQ-module I shows that I = 0. □
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