## Disorder in Algebra

Joint work with David Stanovský

## Filippo Spaggiari

spaggiari@karlin.mff.cuni.cz

**AAA 105** – Prague, Czech Republic May  $31^{th}$  – June  $2^{nd}$ , 2024

- Algebraic Structures
- **2** Information Theory
- 3 Entropy and Universal Algebra
- Entropy Lower Bounds

1. Algebraic Structures

#### Definition (Multiplication Maps)

Let  $X = (X, \triangleright)$  be a binary algebraic structure, and let  $a \in X$ . We define

- The **left multiplication map** by a as  $L_a : x \mapsto a \triangleright x$ .
- The **right multiplication map** by a as  $R_a : x \mapsto x \triangleright a$ .

#### Definition (Left Quasigroup)

The binar  $X = (X, \triangleright)$  is called **left quasigroup** if all left multiplication maps  $L_a$  are permutations. For a left quasigroup X we define the **left multiplication group** as

$$\mathsf{LMlt}(X) = \langle \, \mathsf{L}_a : \, a \in X \, \rangle \leq \mathsf{Sym}(X).$$

### Racks and Quandles

#### Definition (Rack and Quandle)

The binar  $X = (X, \triangleright)$  is called **rack** if all left multiplication maps  $L_a$  are automorphisms. For a rack X we define the **left multiplication group** as

$$\mathsf{LMlt}(X) = \langle \, \mathsf{L}_a : \, a \in X \, \rangle \leq \mathsf{Aut}(X).$$

If  $L_a(a) = a$  for all  $a \in X$ , the rack X is called **quandle**.

| X  | binar           | binar left quasigroup |               | quandle             |  |
|----|-----------------|-----------------------|---------------|---------------------|--|
| La | nothing special | permutations          | automorphisms | aut. fixing a point |  |

**Remark.** Quandle axioms encode the movement of *knots* in the very same way that group axioms encode the symmetry of figures.

#### Example (Projection Quandle)

The structure  $(X, x \triangleright y = y)$  is a **projection quandle**.

| $\triangleright$ | 1 | 2                     | 3 | 4 | 5 |  |
|------------------|---|-----------------------|---|---|---|--|
| 1                | 1 | 2                     | 3 | 4 | 5 |  |
| 2                | 1 | 2                     | 3 | 4 | 5 |  |
| 3                | 1 | 2                     | 3 | 4 | 5 |  |
| 4                | 1 | 2                     | 3 | 4 | 5 |  |
| 5                | 1 | 2<br>2<br>2<br>2<br>2 | 3 | 4 | 5 |  |

#### Example (Dihedral Quandle)

The structure  $R_n = (\mathbb{Z}_n, x \triangleright y = 2x - y)$  is a **dihedral quandle**.

# 2. Information Theory



## Entropy of a Discrete Distribution

#### Definition (Discrete Probability Distribution)

A **discrete probability distribution (DPD)** over a finite set X is a sequence  $p = (p_x : x \in X)$  such that

- $0 \le p_x \le 1$  for every  $x \in X$ .
- $\bullet \sum_{x \in X} p_x = 1.$

#### Definition (Entropy of a DPD)

The **entropy** of p is the value

$$h(p) = -\sum_{x \in X} p_x \log(p_x).$$



## Entropy of a Function

#### Definition (Entropy of a Function)

Let  $f: X \to X$  be a function. We define the **distribution** of f as

$$\hat{f} = \left(\frac{|f^{-1}(x)|}{|X|} \colon x \in X\right).$$

Consequently, the **entropy** of f is  $h(f) = h(\hat{f})$ .

#### Proposition (Properties of h)

Let  $f: X \to X$  be a function. Then

- **1**  $0 \le h(f) \le \log |X|$ .
- **2** h(f) = 0 if and only if f is constant.
- **3**  $h(f) = \log |X|$  if and only if f is a permutation.



## Entropy of a Left Quasigroup

#### Definition (Entropy of a Left Quasigroup)

Let *X* be a finite left quasigroup. We define the **entropy** of *X* as

$$\mathsf{H}(X) = \frac{1}{|X|} \sum_{x \in X} \mathsf{h}(\mathsf{R}_x).$$

#### Proposition (**Properties of** H)

Let X be a finite left quasigroup. Then

- **1**  $0 \le H(X) \le \log |X|$ .
- **2** H(X) = 0 if and only if X is a projection.
- **3**  $H(X) = \log |X|$  if and only if X is a Latin square.



## Entropy and Disorder

| $\triangleright$ | 1 | 2                | 3 | 4 | 5 |
|------------------|---|------------------|---|---|---|
| 1                | 1 | 2                | 3 | 4 |   |
| 2                | 1 | 2<br>2<br>2<br>2 | 3 | 4 | 5 |
| 3                | 1 | 2                | 3 | 4 | 5 |
| 4                | 1 | 2                | 3 | 4 | 5 |
| 5                | 1 | 2                | 3 | 4 | 5 |

| $\triangleright$ | 1                     | 2 | 3 | 4 | 5 |
|------------------|-----------------------|---|---|---|---|
| 1                | 1                     | 5 | 4 | 3 | 2 |
| 2                | 3                     | 2 | 1 | 5 | 4 |
| 3                | 5                     | 4 | 3 | 2 | 1 |
| 4                | 2                     | 1 | 5 | 4 | 3 |
| 5                | 1<br>3<br>5<br>2<br>4 | 3 | 2 | 1 | 5 |

#### Projection

Entropy = 0 Min disorder Max predictability

#### Latin Square

Entropy = log |X|Max disorder Min predictability

**Remark.** The entropy of a left quasigroup measures its deviation from projection to Latin square: it indicates how *disordered* and *unpredictable* its table is.



## Computation of Entropy

#### Example (Entropy of Dihedral Quandle)

Let  $R_n = (\mathbb{Z}_n, x \triangleright y = 2x - y)$  be a dihedral quandle. Then

$$H(X) = \left\langle \begin{array}{cc} \log(n) & n \text{ odd} \\ \frac{1}{2}\log(n) & n \text{ even} \end{array} \right.$$

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
|   |   | 3 |   |   |   |
|   |   |   |   |   |   |
|   |   | 2 |   |   |   |
| 3 | 4 | 1 | 3 | 5 | 2 |
| 4 | 3 | 5 | 2 | 4 | 1 |
|   |   |   |   |   |   |
| 5 |   | 4 | T | 3 | 3 |

AAA 105 12 F. Spaggiari

# 3. Entropy and Universal Algebra

#### Proposition (Entropy of the Product)

Let X and Y be finite left quasigroups. Then

$$H(X \times Y) = H(X) + H(Y).$$

#### Proposition (Entropy of the Quotient)

Let X be a finite left quasigroup, and let  $\theta$  be a uniform congruence on X. Then

$$H(X/\theta) \le H(X)$$
.



## Entropy and HSP

## Proposition (Entropy of the Substructures)

Let  $Y \leq X$  be finite left quasigroups. Then

AAA 105 F. Spaggiari

### Entropy and **HSP**

#### Example (Entropy of Substructures)

There are left quasigroups  $S \leq R$  such that

$$|R| = 21,$$
  $|S| = 15,$   $H(R) \approx 1.78848,$   $H(S) \approx 1.79996.$ 

Moreover, *R* and *S* are *connected quandles*, and they are the smallest counterexample in this class.

#### Proposition (Entropy of Substructures – The best we can do)

Let  $Y \leq X$  be finite left quasigroups. Then

$$\mathsf{H}(Y) \le \frac{|X|^2}{|Y|^2} \mathsf{H}(X).$$

#### Definition (Disjoint Sum)

Let *X* and *Y* be left quasigroups. The **disjoint sum** X # Y is the left quasigroup structure defined on the disjoint union  $X \sqcup Y$  by

$$x \triangleright y = \left\langle \begin{array}{ll} x \triangleright^X y & \text{if } x, y \in X \\ x \triangleright^Y y & \text{if } x, y \in Y \\ y & \text{otherwise.} \end{array} \right.$$

For an integer  $k \ge 1$  we denote by  $kX = X \# X \# \dots \# X$  (k times).

| <i>X</i> # <i>Y</i> | l x   | Υ   | _ |   | X     |       |       |
|---------------------|-------|-----|---|---|-------|-------|-------|
| - ''                |       |     | - | X | X     | proj. | proj. |
|                     | X     | 1 , |   | X | proj. | X     | proj. |
| ĭ                   | proj. | ĭ   |   |   | proj. |       |       |



## Entropy of the Disjoint Multiple

#### Proposition (Entropy of the Disjoint Multiple)

Let X be a finite left quasigroup, and let  $k \ge 1$  be an integer. Then

$$\mathsf{H}(kX) \leq \frac{1}{k}\mathsf{H}(X) + \left(\log k - \frac{k-1}{k}\log(k-1)\right).$$

#### Corollary (Entropy Limit of the Disjoint Multiple)

*Let X be a finite left quasigroup. Then* 

$$\lim_{k\to\infty}\mathsf{H}(kX)=0.$$

**Remark.** We have arbitrarily large left quasigroup with arbitrarily small entropy.

## 4. Entropy Lower Bounds

(for Quandles)

#### Definition (Connected Quandle)

A finite quandle Q is **connected** if the natural action of LMlt(Q) on Q is transitive.

#### Proposition

*Let* Q *be a finite connected quandle. Then*  $H(Q) = h(R_x)$  *for every*  $x \in Q$ .

Remark. Connectedness pushes towards disorder.

#### Proposition (Lower Bound for Connected Quandles)

*There is no entropy lower bound for the class of connected quandles.* 

#### Definition (Faithful Quandle)

A finite quandle *Q* is **faithful** if  $L_x \neq L_y$  whenever  $x \neq y$ .

Remark. Faithfulness pushes towards disorder.

#### Proposition (Lower Bound for Faithful Quandles)

There is no entropy lower bound for the class of faithful quandles.

**Proof idea.** Disjoint sum of faithful structures is faithful.



## Connected Faithful (Non-Latin) Quandles

#### Proposition (Lower Bound for CFNL Quandles)

There is no entropy lower bound in the class of connected faithful (non-Latin) left quasigroups.

**Proof.** The conjugacy class of (12) in  $S_n$  is a quandle with respect to the conjugation operation  $(Cl_{S_n}((12)), x \rhd y = xyx^{-1})$ . Because an increasing number of transpositions conjugate (12) to itself as n grows, the entropy is very low.

#### **Summary**

- We developed a tool to analyze and describe the state of disorder and predictability of an algebraic structure.
- The entropy function performs well with respect to Universal Algebraic constructions.

#### New horizons

- Is it possible to prove any significant theorems using constraints on the entropy?
- Are there any structural properties that arise as sufficient conditions based solely on high or low values of entropy?
- Is there a structural property, other than Latinness, that defines a class of structures with a lower bound on entropy?

[1] T. M. Cover, *Elements of information theory*, John Wiley & Sons, 1999.

## Thank you for your attention!

spaggiari@karlin.mff.cuni.cz

AAA 105 24 F. Spaggiari