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Abstract. We observe a new equivariant relationship between
topological Hochschild homology and cohomology. We also calcu-
late the topological Hochschild homology of the topological Hoch-
schild cohomology of a �nite prime �eld, which can be viewed as a
certain ring of structured operations in this case.

1. Introduction

Topological Hochschild homology, with its structure of a genuine S1-
equivariant spectrum, is a remarkably strong tool, which has surprising
applications. Examples include the construction of topological cyclic
cohomology TC, [5, 12, 13, 14, 1], which is an e�ective tool for com-
puting algebraic K-theory of complete rings [8]. Constructed in the
process, another form of topological cyclic cohomology, TR was found,
which was later used by Bhatt, Morrow, and Scholze, [3, 4] (see also
[27, 19]) to give an approach to prismatic cohomology, unifying several
known cohomology theories in p-adic Hodge theory.
There is a remarkable asymmetry between topological Hochschild

homology THH(R) and topological Hochschild cohomology THC(R),
which is known to be an algebra over the little 2-cube operad (a struc-
ture originally conjectured by Deligne), but there is no known counter-
part of a genuine S1-equivariant structure, which seems odd.

There is an old suggestion that the topological Hochschild homology
THH(R) and topological Hochschild cohomology THC(R) for an asso-
ciative S-algebra R should somehow be dual (see e.g. [29]). This stems
from the idea of Koszul duality for operads [11] which, even though
its statements do not apply here literally (due to the fact that associa-
tive S-algebras do not form a based category), should still have some
manifestation.
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Yet the behaviors of the constructions of topological Hochschild ho-
mology and cohomology are quite di�erent. As already remarked,
THH(R) forms a genuine S1-spectrum, while, THC(R) has a structure
of a C2-algebra in the category of S-modules. This is the spectral form
of the Deligne conjecture, which appears to have been �rst proved in
[25] (even though one can also interpret spectrally the proof for chain
complexes given by Hu and Kaufmann [16, 22]). How are these two
structures dual, or, more broadly, what do they have in common?

It is of course not uncommon in algebraic topology for one of the
partners of homology and cohomology to have more structure. For
example, the ring-valued cohomology of a space is a ring, while its ho-
mology is not. Still, when learning about the structures of algebraic
topology, we realize that homology of a space is a module over cohomol-
ogy, a structure which works well with duality, so the disparity between
the homology and cohomology of a space is largely resolved. From this
point of view, the asymmetry between THH(R) and THC(R) for ring
(or A∞ ring spectrum R) seems much more profound, with little work
in this direction done up to this point.
The purpose of this paper is to give a step in this direction by con-

sidering topological Hochschild homology of topological Hochschild co-
homology:

1. Theorem. Let R be an associative S-algebra. There exists a nat-
ural S1-equivariant associative S-algebra THHC(R)S1 (indexed over
the complete universe) equivalent to THH(THC(R)) over which there
exists an S1-equivariant module equivalent to THH(R).

Formulating the requisite constructions requires solving numerous
technical problems, and none of the formalisms available in the litera-
ture seemed to �t our purposes completely. For this reason, we actually
develop new (or modi�ed) approaches to parts of the THH story from
scratch, using S-modules [9].

It is worth noting that considering topological Hochschild homology
of THC(R) is, in many ways, a novel direction. While THH can be
applied to any A∞ (i.e. coherently associative) ring, THC(R) is not
a type of ring one would usually think of in this context. It is typi-
cally highly non-connective (as we shall see), which makes, for example,
many of the methods of Nikolaus and Scholze [27] not applicable. Be-
cause of this, it seemed to make sense to do a calculation at least in
one basic case. This is provided by the following result:
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2. Theorem. We have

(1) (THH(THC(HFp)))Z/p
r−1

∗ = F (HZ/pr, HZ/pr)∗ ⊗ ΓZ/pr(ρ)

where ρ is in homological degree −2 and Γ denotes the divided power
algebra. Additionally,

(2) (TR(THC(HFp)))∗ = (F (HZ, HZ)∗)
∧
p ⊗ ΓZ(ρ)⊗ ΛZ(q)

where TR is the homotopy limit of THHZ/pr−1
with respect to the map

R of [12] and q has homological degree −1.

Theorem 2 can also be interpreted as a calculation of a type of struc-
tured THH operations, in the basic case of the perfect �eld Fp. The
answer is remarkably small, reminding us of the result of Caruso [7] on
the lack of Z/p-equivariant cohomology operations. That, of course,
was later explained in [21, 28, 20], where it was shown that to get all
the expected operations, one needs to consider a twist. This in fact
suggest a connection between [20] and the present paper, which is the
question of the �rst k-invariant of THH, which will be pursued in
subsequent work.

The present paper is organized as follows: Section 2 recalls some
important preliminary constructions, namely the multiplicative norm
and the unframed cactus operad. In Section 3, we reformulate the con-
struction of THH in a way which is compatible with the constructions
needed to prove Theorem 1. Theorem 1 is proved in Section 4. Sections
5 and 6 serve to recall some preliminary material needed in the proof of
Theorem 2. In Section 5, we recall some facts about the dual Steenrod
algebra and about integral Steenrod operations. In Section 6, we recall
the calculation of the equivariant homotopy groups of THH(Fp) from
our present point of view. In Section 7, we prove Theorem 2.

Acknowledgement: We are thankful to M.Mandell for comments.

2. Preliminaries

The main purpose of this section is to recall, and partially refor-
mulate for the purposes of this paper, two important preliminary con-
structions: the multiplicative norm and the unframed cactus operad.

2.1. The multiplicative norm. One of the subjects to address is the
multiplicative norm of equivariant S-modules. This was introduced by
Hill, Hopkins, and Ravenel in [15] in the context of �nite groups. (It
had been previously introduced by Hu [17] in the context of motivic
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spectra, which was later studied in detail by Bachmann and Hyois [2].)
For the basics on equivariant spectra, we refer the reader to [24].
Let G be a compact Lie group. Suppose H ⊆ G is a subgroup of

�nite index. Let U be a completeH-universe. Then we have a complete
G-universe

V = IndGH(U).

Enumerating, once and for all, the cosets in G/H, we obtain an inner
product space isomorphism

(3) V ∼=
⊕
|G/H|

U .

(We use g ∈ G/H to identify the gth copy of the H-universe U with
a gHg−1-universe.) Now, for a U -indexed Lewis-May H-spectrum X,
(3) gives the external smash product

X ∧ · · · ∧X︸ ︷︷ ︸
|G/H| copies

a structure of a V-indexed G-spectrum. This construction become,
in an obvious way, a functor from U -indexed H-spectra to V-indexed
G-spectra, which we denote by NG

H .
Racell from [9] the construction extends to L-spectra (and hence

to S-modules), which goes as follows: Recall that an L-spectrum is a
spectrum X with a map

I(U ,U)oX → X

satisfying the obvious associativity and unit properties. Now consider
the coequalizer of

(4) I(Un,V)o (
∧
|G/H|

I(U ,U)oX) ⇒ I(Un,V)o (
∧
|G/H|

X).

The two arrows are by composing of linear isometries, or by applying
the action on X. Now on (4), both maps are actually morphisms
of G-equivariant spectra indexed over V , if we use the G-action on
V , conjugation action on isometries and coset action on the smash
components.
This de�nes a functor from U -indexed L-H-spectra to V-indexed L-

G-spectra, which further passes to S-modules. We denote all these
functors by NG

H . By construction, we have an isomorphism

(5) N
Z/n
{e} (X) ∧NZ/n

{e} (Y ) ∼= N
Z/n
{e} (X ∧ Y )
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(where ∧ denotes the symmetric monoidal smash product of S-modules),
satisfying the obvious associativity and commutativity properties. The
construction also preserves cell objects.

2.2. The unframed cactus operad. For our purposes, it is also ap-
propriate to describe in detail the unframed cactus operad introduced
by Voronov [30]. To start out, by a cactus datum, we shall mean a pair

(T, E)

where

T = {0 = t0 < t1 < · · · < tn = 1}
is a partition of the unit interval and E is an equivalence relation on T
such that

• Every equivalence class of E has > 1 element

• 0 ∼ 1

• If E1 = {ti1 < · · · < tik}, E2 = {tj1 < · · · < tj`} are equivalence
classes of E , then one of the following occurs:
(a) There exist a 1 ≤ s < ` such that

tjs < ti1 < tik < tjs+1

or
(b) There exist a 1 ≤ s < k such that

tis < tj1 < tj` < tis+1 .

or
(c) tik < tj1

or
(d) tj` < ti1 .

The topology on the set of all cactus data is given by de�ning a
sequence to converge if it converges in the Hausdor� topology on the
set of equivalence classes of E , and no two points in an equivalence class
are identi�ed in the limit.

The cactus graph Γ(T, E) associated with a cactus datum (T, E) is
obtained by identifying the elements of T which belong to the same
equivalence class of E .
A cactus loop of the graph Γ(T, E) associated with the cactus datum

(T, E) is determined by choosing an E-equivalence class

E = {ti1 < · · · < tik},
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a number 1 ≤ s < k, and taking the union of the images of all intervals
[tj, tj+1], is ≤ j < is+1 such that for all is ≤ p ≤ j, j + 1 ≤ q ≤ is+1,

tp � tq.

One readily sees that a cactus loop is indeed a loop in the graph Γ(T, E).
Further, form a 2-dimensional CW-complex Γ2(T, E) by attaching a 2-
cell to each cactus loop homeomorphically on the bounary. Further,
choosing an orientation of the 2-cell so that its boundary intervals
[tj, tj+1] with increasing j appear, say, in clockwise order, there is a
unique (up to homeomorphism) oriented embedding Γ2(T, E) ⊂ R2.
Denote by L(T, E) the set of loops of the cactus datum (T, E). One

can check that the set of pairs

((T, E), x), x ∈ L(T, E)

forms a covering space X̃ over the space X of all cactus data.
A labelled cactus consists of the data

(T, E), σ : L(T, E)
∼= // {1, . . . N}

where (T, E) is a cactus datum. The unframed cactus operad is the set

of labelled cacti with topology induced from the covering space X̃.
To de�ne the operad structure, letting a loop ` ∈ L(T, E) consists of

edges

(6) [tj1 , tj1+1], . . . , [tjm , tjm+1],

j1 < j2 < · · · < jm, we have

(7) tjs+1 ∼ tjs+1 ,

s = 1, . . . ,m− 1.
Identifying (7) in (6), we obtain an interval congruent (by an increas-

ing map) to

J = [0,
m∑
s=1

(tjs+1 − tjs)]

where (7) goes to
s∑

p=1

(tjp+1 − tjp).

Let h be the homothety mapping J homeomorphically onto [0, 1].
Then a cactus datum

(S,F)

is inserted into the loop ` by taking the partition

T ∪ h−1(S)
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with the equivalence relation generated by E∪h−1(F). One checks that
this endows the space of all labelled cacti with an operad structure and
that, moreover, the resulting operad is equivalent to the little 2-cube
operad.

3. A description of THH(R)

By a cyclically ordered �nite set, we mean a �nite set embedded to
S1. Two embeddings are considered the same when they are related by
an orientation-preserving di�eomorphism of S1. A cyclically ordered
set is a set Q each of whose �nite subsets are cyclically ordered in
a fashion compatible with inclusion. A cyclic ordering on a set Q is
determined by a ternary relation of being �in the anti-clockwise order."
A morphisms of cyclically ordered sets f : Q → Q′ is a map of sets
where whenever x, y, z are in the anticlockwise order in Q, then either
f(x), f(y), f(z) are in the anticlockwise order, or |{f(x), f(y), f(z)}| <
3. The category of �nite cyclically ordered sets will be denoted by Φ.
Denoting by Top the category of topological spaces, we have a canon-

ical functor

T : ΦOp → Top

where T (Q) is the space of morphisms of cyclic sets

Q→ S1

(with the subspace topology of (S1)Q).
Let R be a cell associative S-algebra. Then there is a natural functor

THR from Φ into S-modules given by setting

THR(Q) = R∧Q

where the action of surjective (resp. injective) morphisms of cyclically
ordered �nite sets is by multiplication in R (resp. by insertion of units).
Here ∧ denotes the symmetric monoidal smash product of S-modules.
We consider the coend

THH(R) = T+ ∧Φ TH
R(Q).

To give THH(R) a genuine Z/n-equivariant structure, we denote by
Φn the category whose objects are Z/n-equivariant cyclically ordered
sets Q such that Z/n acts freely on Q in a way which preserves cyclic
ordering and multiplication by any element x ∈ Q de�nes a morphism
of cyclically ordered sets

Z/n→ Q.
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Morphisms in Φn are morphisms of cyclically ordered sets which pre-
serve the Z/n-action. We have, again, a canonical functor

Tn : ΦOp
n → Z/n-Top

where Tn(Q) is the space of morphisms of Z/n-equivariant cyclically
ordered sets

Q→ S1

(where we consider the standard Z/n-action on S1). Denoting for Q ∈
Obj(Φn) by Q/(Z/n) its set of orbits, we also have a functor from
Φn to genuine Z/n-equivariant spectra (i.e. indexed by the complete
universe)

THR
n (Q) = (N

Z/n
{e} R)∧Q/(Z/n).

(This uses (5).) We set

THH(R)Z/n = (Tn)+ ∧Φn TH
R
n .

By (5), for Z/m ⊂ Z/n, we have a natural morphism

res
Z/n
Z/mTHH(R)Z/n → THH(R)Z/m

which is an equivalence. (This last property uses non-trivialy the uni-
tality of R.) Thus, by the considerations of [18], we obtain a genuine
S1-equivariant spectrum THH(R)S1 .

4. The action of THH(THC(R))

In this section, we construct the S1-equivariant S-algebra

THHC(R)S1

of Theorem 1, and show that it is equivalent to THH(THC(R)). Now
let Ξ be the category whose objects are �nite ordered sets and mor-
phisms are non-strictly increasing maps. We have a functor

J : ΞOp → Top

where J(Q) is the set of non-decreasing maps

Q→ [0, 1]

(with the subspace topology of [0, 1]Q).
For an associative S-algebra R, we also have a functor TJR from Ξ

to (ROp ∧R)-modules given where

TJR(Q) = R∧Q.
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(Again, surjective morphism act by multiplication in R, while injective
morphism act by inserction of units.) We let

TI(R) = J+ ∧Ξ TJ
R.

One notices that a pair of strictly monotone onto maps [0, 1] → [0, s],
[0, 1]→ [s, 1] induces an isomorphism

(8) TI(R) ∧R TI(R) ∼= TI(R).

Now we may de�ne

(9) THC(R) = FROp∧R(TI(R), R).

By (8), we obtain an action of the unframed cactus operad (see Section
2 above) on THC(R) where (T, E) acts by subdividing [0, 1] along the
partition T , using the inverse of (8), and then composing by using (8)
again on the edges (6) of a given loop. In particular, the data giving
(8) thereby induce a morphism

(10) THC(R) ∧ THC(R)→ THC(R).

We will now replace THC(R) with its cell approximation in the cat-
egory of S-algebras over the unframed cactus operad. For simplicity,
from now on, we suppress the approximation from the notation.
Now consider the space TJH of �nite sets Q of closed subintervals

of S1 with disjoint interiors whose union has a non-empty complement.
Then Q is a cyclically ordered set. Letting Φ0 be the category of �nite
cyclically ordered sets and isomorphisms, then we may consider the
contravariant functor

TJH0 : Φ0 → Top

given by sending Q to the space of isomorphims from Q to an element
of TJH. Then we may de�ne the spectrum

THHC0(R) = (TJH0)+ ∧Φ0 THTHC(R)

where THTHC(R) is de�ned as in Section 3. Additionally, using (10), we
may construct from THHC0(R) an S-module THHC(R) by imposing
a colimit identi�cation where con�gurations in TJH0 which contain
a pair of intervals sharing a boundary point are identi�ed with the
con�guration where the two intervals are merged.
More precisely, let Φ1 denote the set of cyclically ordered sets with

a distinguished element. TJH1 denote the set of all isomorphism of
cyclically ordered sets Q ∈ Φ1 with an element of TJH where the
end point of the distinguished interval J is equal to the beginning
point of the next interval J ′, counted counter-clockwise. In addition
to the forgetful map TJH1 → TJH0, we then have another map φ1 :
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TJH1 → TJH0 given by replacing the intervals J , J ′ with their union.
Then consider

(11) (TJH1)+ ∧Φ1 THTHC(R)

Then there are two morphisms from (11) to THHC0(R), one given
by applying inclusion to the �rst coordinate, the other by applying
φ1 to the �rst coordinate and the map (10) to the second. We de�ne
THHC(R) as the coequalizer of these two morphisms.
Then THHC(R) is equivalent to THH(THC(R)) and is an associa-

tive S-algebra by using (8). Also, by the same principle, THHC(R)
acts on THH(R) (by contracting all the embedded intervals to a point).
To obtain a Z/n-equivariant version, we consider similarly the space

TJHn of collections in TJH which are invariant under the standard
Z/n-action. We have a category Φ0

n with the objects Obj(Φn) and
morphisms the isomorphisms in Φn. We de�ne TJH0

n as the category
of all isomorphisms from an object of Φ0

n to an element of TJHn. We
can then de�ne

THHC0(R)Z/n = (TJHn)+ ∧Φ0
n
THTHC(R)

n .

Again, identi�cations can be imposed when a Z/n-invariant n-tuple of
pairs of intervals sharing a boundary point is present.
More precisely, we de�ne Φ1

n as the set of pairs (Q, x) where Q ∈
Obj(Φn) = Obj(Φ0

n) and x ∈ Q. Then let TJH1
n be the set of Φ0

n-
morphisms from Q with (Q, x) ∈ Φ1

n to an element of TJHn, where,
again, the end point of the distinguished interval J is equal to the
beginning point of the next interval J ′, counted counter-clockwise. In
addition to the forgetful map TJH1

n → TJH0
n, we then, again, have a

map φ1
n : TJH1

n → TJH0
n given by replacing J and J ′ with their union,

and similarly for all the Z/n images of the pair J, J ′. Again, we then
have two morphism from

(TJH1
n)+ ∧Φ1

n
THTHC(R)

n

to THHC0
n(R) given by the forgetful map and by applying φ1

n in the
�rst coordinate and (5), (10) in the second. We denote by THHCn(R)
the coequalizer of these morphisms.
By construction, then, we thus obtain a genuine Z/n-equivariant

associative S-algebra THHCn(R) which acts Z/n-equivariantly on

THHn(R).

Again, this data is compatible under restriction, thus creating a genuine
S1-equivariant S-algebra THHC(R)S1 acting on THH(R)S1 . This
completes our proof of the last statement of Theorem 1.
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5. Some recollections on the Steenrod algebra

In this section, we will recall some facts about cohomological opera-
tions which will be needed in the next section. We refer the reader to
Kochman [23] as a general reference. First of all, we recall that on

A∗p = F (HZ/p,HZ/p)∗,
multiplication by the Bockstein Q0 from the left (or the right) is exact
in the sense that its kernel is equal to its image. These two maps are
induced by maps

QL
0 , Q

R
0 : F (HZ/p,HZ/p)→ ΣF (HZ/p,HZ/p),

given by applying the Bockstein map in the �rst resp. the second
coordinate. Thus, the Bockstein spectral sequence for F (HZ, HZ/p)∗
collapses to E2 = 0, and we have

0 = p : F (HZ, HZ/p)→ F (HZ, HZ/p),
since it is 0 on coe�cients and both the source and the target are
generalized Eilenberg-MacLane spectra. The co�bration sequence

HZ
p // HZ // HZ/p

then gives a splitting

F (HZ/p,HZ/p) = F (HZ, HZ/p) ∨ Σ−1F (HZ, HZ/p).
Now the E1 of the Bockstein spectral sequence from F (HZ, HZ/p)∗
to F (HZ, HZ)∗ is a Koszul complex (by Milnor's relation [26]). On
coe�cients, the image of the Bockstein on the second coordinate of
F (HZ, HZ/p) is therefore equal to the coe�cients of some generalized
Eilenberg-MacLane spectrum, which we will denote by P . We therefore
conclude that

(12) F (HZ, HZ) = HZ ∨ P.
We may now work backward, studying the e�ect of pk on eiher coordi-
nate, �nding for example that

(13) F (HZ, HZ/pk) = HZ/pk ∨ P ∨ ΣP.

Therefore, pk is 0 on (13), and we obtain, in general,

(14) F (HZ/pk, HZ/pk) = F (HZ, HZ/pk) ∨ Σ−1F (HZ, HZ/pk),

where the splitting is induced by the co�bration sequence

HZ
pk // HZ // HZ/pk

in the �rst coordinate. Symmetric statements also hold in the other
coordinate.
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3. Lemma. The �ber of the morphism

(15) F (HZ/pk, HZ/pk)→ F (HZ/p`, HZ/p`)

given by the di�erence of the Bockstein maps in both coordinates is
canonically equivalent to

F (HZ/pk+`, HZ/pk+`).

Proof. Using (14), we may write (15) on coe�cients as

(16)

Z/pk0 ⊕ P ∗0 ⊕ P ∗[1]0 ⊕ Z/pk[−1]−1 ⊕ P ∗[−1]−1 ⊕ P ∗−1

��
Z/p`[1]0 ⊕ P ∗[1]0 ⊕ P ∗[2]0 ⊕ Z/p`−1 ⊕ P ∗−1 ⊕ P ∗[1]−1

(Here the subscript 0 resp. −1 denotes a part of the coe�cients of the
term (13) which is unsuspended resp. suspended by −1.)
Now one of the Bocksteins sends P ∗[1] isomorphically to P ∗[1]0, while

the other sends it isomorphically to P ∗[1]−1. On the other hand, one of
the Bocksteins sends P ∗0 to P ∗−1, while the other sends P

∗
−1 isomorphi-

cally to P ∗−1. The surviving terms give the answer, with the surviving
target terms desuspended by 1. Extensions are present between the
copies of Z/pk and Z/p`, due to the de�nition of the Bockstein. Book-
keeping completes the result. �

Also, using the splitting (14), we obtain a canonical (up to homotopy)
map

F (HZ/pk, HZ/pk)→ F (HZ/pk−1, HZ/pk−1)

and we have
(17)

holim
k

(. . .→ F (HZ/pk, HZ/pk)→ F (HZ/pk−1, HZ/pk−1)→ . . . )

= F (HZ, HZ)∧p ∨ Σ−1F (HZ, HZ)∧p .

6. A recollection of THH(HFp)

We begin with recalling the calculation of THH(HFp)Z/p
r−1

of [12].
One has

(18) THH(HFp) = BHFp(HFp, HFp ∧HFp, HFp),
(where the bar construction is in the category of HFp-algebras and
everywhere we assume co�brant models). The coe�cients of (18) can
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be calculated via the Eilenberg-MacLane spectral sequence which col-
lapses to E2 for p = 2 and has a Kudo di�erential for p > 2. In both
cases, we can conclude that

(19) THH(HFp)∗ = Z/p[σ]

where σ is in homological degree 2. Now the Tate spectral sequence
for THH(HFp) is

(20) Z/p[σ][x, x−1]⊗ ΛFp(u)⇒ ̂THH(HFp)
Z/pr−1

where x is the Tate periodicity element of homological degree −2 and
u has homological degree −1. Then [12] prove that x is a permanent
cycle, while

(21) d2r−1u = x2rσr−1.

Furthermore, there is a multiplicative extension

(22) p = xσ,

therefore giving

(23) ̂THH(HFp)
Z/pr−1

∗ = Z/pr−1[x, x−1].

The Z/pr−1-Borel cohomology spectral sequence for THH(HFp) re-
sults from taking the part of (20) with non-negative powers of x (and
all the di�erentials contained entirely in that part), while the Z/pr−1-
Borel homology spectral sequence for THH(HFp) results from taking
the part of (20) with negative powers of x, shifted by −1 (graded ho-
mologically).
One gets:

(24)
(EZ/pr−1

+ ∧ THH(HFp))Z/p
r−1

2i = Z/pmax(i+1,r)

(EZ/pr−1
+ ∧ THH(HFp))Z/p

r−1

2i+1 = Z/pmax(i+1,r−1)

for i ≥ 0 (it is 0 for i < 0).
The calculation of THH(HFp)Z/p

r−1
is then completed by induction:

For any Z/pr−1-equivariant spectrum E, we have a co�bration sequence

(25) (EZ/pr−1
+ ∧ E)Z/p

r−1 → EZ/p
r−1 → (ΦZ/pE)Z/p

r−2

.

Since THH(HFp) is a cyclotomic spectrum, its coe�cients are the
coe�cients of the homotopy �ber of the connecting map

(26) THH(HFp)Z/p
r−2 → Σ(EZ/pr−1

+ ∧ THH(HFp))Z/p
r−1

.

We know the target by (24). The induction gives

(27) THH(HFp)Z/p
r−1

∗ = Z/pr[y]



14 PO HU, IGOR KRIZ, PETR SOMBERG AND FOLING ZOU

where y has homological degree 2. Assuming this inductively with
r replaced by r − 1, the connecting map (26) on coe�cients (which
decreases homological degree by 1) is onto in odd degrees, and the
even terms have an extension, creating the answer (27) additively. The
multiplicative answer then also follows inductively from the fact that
the second map (25) is a ring map when E is a ring spectrum.
We also recall the fact that the map R (which is de�ned in [12] by

composing the second map (25) with the cyclotomic structure map)
sends y to py, while the map F (de�ned as the forgetful map) sends y
to y. This implies that, letting TR be the microscope of the map R,
we have

(28) TR(HFp) = HZp.

All the spectra discussed in the process of the calculation are module
spectra over (28), and thus are generalized Eilenberg-MacLane spectra.

7. Calculation of TR(THC(HFp))

We now combine the material of the last two sections to calculate the
coe�cients of THH(THC(HFp))Z/p

r−1
, and thereby prove Theorem 2.

First of all, we can write

(29) THC(HFp) = CobarHFp(HFp, HFp ∧HFp, HFp),

so the coe�cients are indeed dual to (18). Here we write

CobarHFp(HFp, HFp ∧HFp, HFp) = CHFp(HFp ∧HFp) =
FHFp∧HFp(BHFp(HFp ∧HFp, HFp ∧HFp, HFp), HFp).

In fact, there is a Hopf algebra structure, which implies that we can
write

(30) THC(HFp)∗ = ΓFp(ρ)

where Γ denotes the divided polynomial power algebra and the homo-
logical degree of the element ρ is −2. Now by (29), THC(HFp) is an
HFp-algebra, and (implicitly assuming co�brant replacements in every
term), we can therefore, non-equivariantly, write

(31)
THH(THC(HFp)) =
BHFp(THC(HFp), THC(HFp) ∧ THC(HFp), THC(HFp)),

indicating that the bar construction is performed in the category of
HFp-algebras. This means we have again an Eilenberg-MacLane spec-
tral sequence. In fact, we have a further �ltration on (31), in the
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category of HFp-algebras, with associated graded object
(32)

THC(HFp) ∧HFp BHFp(HFp, HFp ∧ THC(HFp), HFp) =
THC(HFp) ∧HFp THH(HFp) ∧HFp BHFp(CHFp(HFp ∧HFp)) =
THC(HFp) ∧HFp THH(HFp) ∧HFp F (HFp, HFp)

(by Koszul duality). The coe�cients of (32) are

(33) Fp[σ]⊗ ΓFp(ρ)⊗ A∗

where A∗ = F (HZ/p,HZ/p)∗. On the other hand, by Theorem 1, we
have a map

(34) THH(THC(HFp))→ F (THH(HFp), THH(HFp)).

(This is, in fact, even true Z/pr−1-equivariantly.) Non-equivariantly,
however, all the elements (33) exist and are non-zero in the target of
(34), and thus cannot support di�erentials, Therefore, we have proved
that

(35) THH(THC(HFp))∗ = Fp[σ]⊗ ΓFp(ρ)⊗ A∗.

From this point on, the strategy for computing THH(THC(HFp))Z/p
r−1

∗
mimics the strategy for THH(HFp)∗, described in Section 6. We begin
by calculating the coe�cients of the Borel homology spectrum

(36) EZ/pr−1
+ ∧ THH(THC(HFp))

via the Borel homology spectral sequence. In contrast with the Borel
homology of THH(HFp), the di�erentials are somewhat di�erent. First,
we may �lter the E2-term

(37) Fp[σ]⊗ ΓFp(ρ)⊗ A∗{e0, e1, . . . }

by powers of σ (where ei is the generator of Hi(Z/p,Z/p)). This �ltra-
tion is, in fact, also realized on the spectral level. Now the associated
graded object is a polynomial algebra in one variable σ over

(38) ΓFp(ρ)⊗ A∗{e0, e1, . . . }.

On (38), however, there is a d2-di�erential given by

(39) d2(ei) = QR
0 ei−2σ

(where σ acts on ΓFp(ρ) as the dual variable σ does using the Hopf
algebra structure on THC(HFp)∗, i.e by σ : γi(ρ) 7→ γi−1(ρ)). This
di�erential in fact comes from the extension (22):
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0 1 2 3 4

0

−1

−2

−3

−4

A∗e0 A∗e1 A∗e2 A∗e3 A∗e4

A∗ρ · e0 A∗ρ · e1 A∗ρ · e2 A∗ρ · e3 A∗ρ · e4

A∗γ2ρ · e0 A∗γ2ρ · e1 A∗γ2ρ · e2 A∗γ2ρ · e3 A∗γ2ρ · e4

·QR
0·QR
0 ·QR

0·QR
0 ·QR

0·QR
0

·QR
0·QR
0 ·QR

0·QR
0 ·QR

0·QR
0

By the observations of Section 5, however, QR
0 is in fact exact on the

Steenrod algebra. This means that the E3-term of the slice (38) is a
sum of

(40) (ΓFp(ρ))<0 ⊗ A∗/QR
0 {e0, e1}

where (ΓFp(ρ))<0 denotes the augmentation ideal of ΓFp(ρ) and

(41) A∗/QR
0 {e0, e1, . . . }.

When we put the slices together, we get a polynomial algebra on one
generator σ tensored with (40) and (41). On

(42) A∗/QR
0 {e0, e1, . . . }[σ],

we then get another component of the d2-di�erential

(43) d2(ei) = QL
0 ei−2σ.

0 1 2 3 4

0

1

2

3

4

σ

·QL
0·QL
0
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By the observations of Section 5, QL
0 on A∗/QR

0 is a Koszul complex,
with image P∗ and cokernel Z/p ⊕ P∗[1]. Therefore, the part of the
E3-term on (43) is a sum of

(44) P∗ ⊕ P∗[1]{e0, e1, . . . }
and

(45) Z/p[σ]{e0, e1, . . . }.
On (45), we then have the di�erential (21).
In summary, we obtain

4. Lemma. The coe�cients of (36) are a direct sum of (41), (44), and
(24).

�

Next, we use (25) to obtain

7.1. Proposition. We have

(46) THH(THC(HFp))Z/p
r−1

∗ = F (HZ/pr, HZ/pr)∗[y]⊗ ΓZ/pr(ρ).

Additionally, the map R of [12] sends y to py and γiρ to γiρ.

Proof. Analogously to (26), the coe�cients of THH(THC(HFp))Z/p
r−1

are the coe�cients of the spectrum

(47)

THH(THC(HFp))Z/p
r−2

��

Σ(EZ/pr−1
+ ∧ THH(THC(HFp)))Z/p

r−1
.

The target is computed in Lemma 4. Thus, we proceed again by induc-
tion on r. Assuming the statement is true with r replaced by r− 1, we
have an inductive calculation of the source of (47). Thus, we need to
compute the connecting map. To this end, use the computations (13),
(14). Every copy of P [1] in the source is isomorphically mapped to a
copy of P in the target. At the augmentation ideal of Γ(ρ), in fact, we
have a sum of copies of the exension of Lemma 3 with k = r−1, ` = 1.
On the second component F (HZ, HZ/pr−1)∗[y][−1] from (14) of the

(48) F (HZ/pr−1, HZ/pr−1)∗[y]

in the source of (47), we also have the standard Bockstein extension.
On the Z/pr−1 part of the �rst component F (HZ, HZ/pr−1)∗[y] from
(14) of (48), we have, in fact, the same map and extension as in (26).
Multiplicative considerations (which follow from the behavior of the
unit) complete the proof. �
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Proof of Theorem 2. Apply Proposition 7.1, and take the limit (17). �
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