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Abstract. We formulate a motivic homotopy theory version of
the plectic conjecture of J.Neková° and A.J.Scholl and give some
initial discussion of it.

1. introduction

In [13], Section 18, J.Neková° and A.J.Scholl asked if there is a plectic

motivic category, which would be the target category of the cohomology
of Shimura varieties in the case when the Shimura data come by Weil
restriction from some totally real �eld. In this paper, we approach
this question from the point of view of the motivic homotopy theory of
Morel and Voevodsky [11]. We construct a category of r-plectic motivic

spaces and spectra, and show that it veri�es the basic properties of the
target category conjectured in [13] in the case of pure Shimura data.

We also discuss a special guiding example of algebraic plectic coho-
mology classes on the canonical model of Hilbert-Blumenthal Shimura
varieties for a totally real number �eld F . In this case, Neková° and
Scholl [14] 3.3 analyze the Hodge case of their conjecture. The answer
is involved, using the calculation of cohomology via the toroidal com-
pacti�cation [2, 16]. Following Harder [7], they consider the decompo-
sition of the cohomology of the moduli space over C into the boundary
part and the interior part. The interior part consists further of the
algebraic part and the cuspidal part. There results a mixed Hodge
structure which can be determined in part using the Manin-Drinfeld
principle, stating that the cuspidal part does not contribute to the non-
triviality of the extension. The authors of [14] use this computational
information to de�ne a plectic structure on the real cohomology of the
Hilbert-Blumenthal moduli space.
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One of course hopes that a direct manipulation on the A1-space corre-
sponding to a Shimura variety obtained by Weil restriction of Shimura
data on a totally real �eld F would result in a plectic structure on its
motivic suspension spectrum, pulled back to a suitable extension of
F . The computations of [14], however, suggest that a completely new
idea would be necessary to carry out such a program. In the present
note, we specialize only to the algebraic part of the cohomology in the
Hilbert-Blumenthal case, which is already known to have a motivic ori-
gin ([16]), and we spell out how to exhibit the motivic plectic structure
on those cohomology classes. Even this basic example is valuable in
showing that to get a plectic structure, we have to pull back to the
Galois closure of F over Q. In fact, the motivic setting allows directly
extending this discussion to the case of the Gp2g-Shimura data ([4],
4.22). In this case, we are not dealing with ordinary motivic cohomol-
ogy, but with algebraic vector bundles. Nevertheless, the discussion is
the same.

The present note is organized as follows: The majority of our dis-
cussion is devoted to introducing the relevant preliminaries from A1-
homotopy theory. In Section 2, we explain the plectic version of the
stable and unstable motivic categories of Morel and Voevodsky [11].
In Section 3, we explain how this concept interacts with Hodge and
étale realizations. In Section 3, we review the motivic multiplicative
norm of Hu [8] and Bachman-Hoyois [1], and we state our version of
the plectic conjecture. In Section 5, we discuss the examples of the
algebraic bundles on Hilbert-Blumenthal Shimura varieties, and Gp2g.

2. The basic construction

Let k be a �eld. Recall that motivic spaces SpcMot
k are simplicial

objects in the category of sheaves of sets over the category Smk of
�nite type separated smooth schemes over Spec(k) in the Nisnevich
topology. Here by a Nisnevich cover, we mean an étale cover where
over every Zariski point (not necessarily closed), there exists a point
with the same residue �eld. One proves [11] that a presheaf F on Smk

is a Nisnevich sheaf if and only if it takes diagrams of the form

(1)

V

g

��

j // X

f
��

U
j′ // Y,
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where j, j′ are Zariski open inclusion, f is étale and restricts to an
isomorphism

X r V ∼= Y r U,

into pullbacks. The diagram (1) is then called a Nisnevich square.
One de�nes simplicial equivalence on motivic spaces as a morphism

which induces an equivalence on Nisnevich stalks. A simplicial model

structure is then put on SpcMot
k using the technique of model struc-

tures on categories of simplicial sheaves [9]. One obtains the motivic
homotopy category DSpcMot

k by localizing the homotopy category of
the simplicial model structure on SpcMot

k with respect to morphisms of
the form

A1
X → X

for a separated smooth scheme X of �nite type over Spec(k). The
category of motivic spectra is de�ned as the category of sequences of
motivic spaces (Z(n))n∈N0 together with maps

P1 ∧ Z(n) → Z(n+1).

A model structure is put on this category using the techniques of [11]
(or alternatively, [10]), and the resulting category is called the motivic

stable homotopy category ShMot
k over k.

We de�ne the category of r-plectic motivic spaces PrSpc
Mot
k as the

category of simplicial objects in the category of sheaves of sets over

Smr
k = Smk × · · · × Smk︸ ︷︷ ︸

r times

with respect to the Nisnevich topology, where a Nisnevich cover is
de�ned as an r-tuple of Nisnevich covers. Once again, a presheaf of
sets on Smr

k is a Nisnevich sheaf if and only if it turns into pullbacks
square diagrams in Smr

k which are Nisnevich squares of the form (1)
in each coordinate.
Again, we de�ne equivalence by equivalence on stalks, and we de�ne

the simplicial model structure using the techniques of [9]. The A1-
model structure is obtained by localizing with respect to all morphisms
of the form

(2) (A1
X1
, . . . ,A1

Xr
)→ (X1, . . . , Xr).

The resulting homotopy category is the r-plectic motivic homotopy cat-

egory DPrSpc
Mot
k .

A based plectic motivic space is a morphism

(Spec(k), . . . , Spec(k))→ X
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where the source denotes the representable sheaf, and X is an r-plectic
motivic space. Thus, we have a category PrBased

Mot
k , and a corre-

sponding derived category DPrBased
Mot
k . One can then de�ne a smash

product of r-plectic spaces as a colimit from products of r-plectic spaces.
One de�nes an r-plectic motivic spectrum as a sequence of r-plectic mo-
tivic spaces (Z(n)), n ∈ N0, and a sequence of based maps∧

(P1
k, . . . ,P1

k) ∧ Z(n) → Z(n+1)

where ∧
(X1, . . . , Xr)

denotes the plectic smash product, de�ned as follows:
Let, for I ( {1, . . . , r},

XI = (Y1, . . . , Yr)

where

Yi =

{
Spec(k) if i ∈ I
Xi if i /∈ I.

For I ⊆ J , there are inclusions

XI → XJ → (X1, . . . , Xr).

Thus, we have a morphism

colim
I

XI → (X1, . . . , Xr).

We let
∧

(X1, . . . , Xr) be the pushout of the diagram

colimI XI
//

��

(X1, . . . , Xr)

(Spec(k), . . . , Spec(k)).

Again, one puts a model structure on r-plectic motivic spectra using
the techniques of [11, 10], and the homotopy category is called the
r-plectic motivic stable homotopy category PrSh

Mot
k .

3. Realizations

Now assume D is an ∞-category (by which we mean a category
with limits and colimits where the Hom-sets are given the structure
of simplicial sets, where composition and identities are morphisms of
simplicial sets). Suppose we have a functor

F : Smr
k → D
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which takes Nisnevich covers to homotopy limits and morphisms of the
form (2) into equivalences. Then we obtain realization functors on the
level of derived categories

DF : DPrSpc
Mot
k → DD,

DF : DPrBased
Mot
k → DD.

Assume further that there is a shift operator

σ : D → D
which is an ∞-equivalence (i.e. has an inverse up to equivalence).
Assuming we have a natural equivalence

F (
∧

(P1
k, . . . ,P1

k) ∧ Z) ∼ σF (Z),

we also obtain a realization functor

DstF : PrSh
Mot
k → DD.

The plectic étale and Hodge realizations in the case when k is a number
�eld fall under this pattern.

For example, letMHSR-Chain, resp. PrMHSR-Chain, be the cate-
gory of unbounded chain complexes of R-mixed Hodge structures resp.
r-plectic R-mixed Hodge structures de�ned by Deligne [3] and Neková°-
Scholl [14]. Then we have the plectic tensor product functor

(3)
⊗

: (MHSR-Chain)r → PrMHSR-Chain.

For a smooth schemeX over R, given a smooth projective compacti�ca-
tion X of XC where the complement is a union of divisors with normal
crossings, we produce an object of MHSR-Chain. This is not functo-
rial, since the choice of X isn't, but by considering the pro-system of
all such resolutions (with arrows also given by resolutions, if we wish),
we can produce a functor. Applying the plectic tensor product (3),
we can produce an ∞-functor F which gives an input of the machine
described above.

Comment: Ordinarily, a (say pure) Hodge structure has a real struc-
ture coming from the period lattice. When the scheme X is de�ned
over R, we get another real structure coming from algebraic real De
Rham cohomology. The Hodge structure is real with respect to both.
In [14], periods are not considered, so the real structure comes from X,
which is why we assume X is de�ned over R.

The case of the plectic étale realization is treated similarly.
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4. Norms and the motivic plectic conjecture

Let k ⊂ F be a �nite separable extension of �elds. Then the mor-
phism

i : Spec(F )→ Spec(k)

induces a pullback functor

i∗ : SpcMot
k → SpcMot

F

which has a left adoint i] (the �forgetful functor�) and a right adjoint i∗
(the �Weil restriction.�) These functors naturally pass to the based con-
text and to spectra, and also to the corresponding derived categories.
Hu [8] proved that

i∗ ∼ i] : ShMot
F → ShMot

k .

Hu [8] also de�ned a multiplicative norm

N : ShMot
F → ShMot

k

with the property that for a motivic space X over Spec(F ),

NΣ∞X+ ∼ Σ∞(i∗X)+

where ?+ denotes adding a disjoint base point. This concept of the
norm was further generalized and applied by Bachmann and Hoyois
[1].
Let L be a Galois extension of k containing F and let G = Gal(L/k),

H = Gal(L/F ). For a based motivic spaceX over Spec(F ), one de�nes
the motivic spaceNX over Spec(k) by factoring out a colimit of motivic
spaces XS indexed over subsets S ( G satisfying HS = S de�ned as
follows: Let

JS = {g ∈ G | Sg = S}.
Then write

S =
∐
g∈IS

HgJS

for some map IS → H\G/JS. One can write

HgJs = H ×Jg JS
where Jg is the stabilizer of g in H × JS. Then Jg injects both into H
and JS. Let Fg = LJg , FS = LJS and let

ig : F ⊆ Fg,

ig,S : FS ⊆ Fg,

iS : k ⊆ FS.
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Then one puts

(4) XS := iS]
∏

(g)∈IS

ig,S∗i
∗
gX.

To get functoriality

XS ⊂ XT for S ⊆ T ,

one de�nes

JS,T = {g ∈ G | Sg = S, Tg = T},

S =
∐

g∈JS,T

HgJS,T

for some IS,T → H\G/JS,T . Letting Jg,T be the stabilizer of g in
H × JS,T , we de�ne Fg,T = LJg,T , FS,T = LJS,T and let

ig,T : F ⊆ Fg,T ,

ig,S,T : FS,T ⊆ Fg,T ,

iS,T : k ⊆ FS,T .

One lets

XS,T := iS,T ]
∏

(g)∈IS,T

ig,S,T∗i
∗
g,TX.

Then one has natural maps

XS,T

πS,T

||yy
yy
yy
yy

""F
FF

FF
FF

F

XS
// XT .

The map πS,T is onto �nite étale, so the dotted factorization arrow
exists (and is determined by) étale descent.
One notes that

NP1 = P[F :k]/P[F :k]−1,

so the construction stabilizes to give a norm functor from motivic spec-
tra over F to motivic spectra over k ([8, 1]).

One notes that if one denotes by F ′ the Galois closure of F over k,
so we have a diagram

Spec(F ′)
i′ //

ι &&MM
MMM

MMM
MM

Spec(k)

Spec(F )

i

99rrrrrrrrrr
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for a motivic spectrum E over Spec(F ), one has

i′∗N(E) ∼ ι∗E ∧ · · · ∧ ι∗E︸ ︷︷ ︸
r

,

i′∗i]E ∼ ι∗E ∨ · · · ∨ ι∗E︸ ︷︷ ︸
r

where r = [F : k].
This statement can be used to construct re�nements of both of the

functors i′∗N , i′∗i] from the stable homotopy category over Spec(F ) to
the (�naive") Σr-equivariant r-plectic stable homotopy category

Σr-PrSh
Mot
k

(where Σr acts by permutation of factors).
One version of the motivic plectic conjecture (in the pure case) can

be stated as follows:

Conjecture: Let F be a �nite totally real extension of Q. Consider a
Shimura datum over Q which is the Weil restriction of a Shimura data
over F , and let M be a canonical model for a given level structure,
with re�ex �eld E. Let

i : Spec(E ′)→ Spec(E)

where the �eld E ′ contains both E and F ′ where F ′ is the Galois
closure of F . Then i∗Σ∞(M+) has a natural structure of an object of
Σr-PrSh

Mot
k .

5. Some comments on plectic structures from Symplectic

Shimura data over a totally real field

Let F be a totally real number �eld, r = [F : Q]. Let Gp2g(F ) denote
the group of symplectic similitudes of a symplectic F -vector space V
of dimension 2g with an antisymmetric non-degenerate bilinear form
ψ. Denote by S the Weil restriction of Gm from C to R.
When F = Q, following Deligne, [4], 1.6, one has the symplectic

Shimura data given by the unique conjugacy class of homomorphisms

(5) h : S→ Gp(V )

which, restricted to Gm,R sends x to the homotethy of scale x−1. As
described in [4], 4.16, one can construct a canonical model (over Q) in
this case as the solution of a moduli problem. Let S be a scheme. By
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principally polarized schemes A over S we mean an abelian scheme A
over S together with an isomorphism

p : A→ A∗

where A∗ is the dual abelian scheme, which is symmetric with respect
to the canonical isomorphism of the identity functor with the double
dual and such that the pullback

(6) (Id× p)∗P
of the Poincaré line bundle on A × A∗ is ample. Denote by VZ an
integral lattice on which the symplectic form ψ takes integral values
and has discriminant 1.
When working at level n, one then considers the functor assigning

to a scheme S the set of principally polarized abelian schemes over S
together with a symplectic similitude

(7) kn : nA→ (VZ/nVZ)S

(where nA is the kernel of multiplication by n on A). For n ≥ 3, this
functor is representable by a schemeM ([12], Chapter 7), which de�nes
a canonical model for the data (5).
As pointed out in Section 4.3 of [4], instead of principally polarized

abelian schemes, we could alternatively also work �up to isogeny.� At
a stable level, we can describe an isogeny

(8) A→ Aφ

uniformly on the moduli space. For an isogeny φ in this sense, we could
consider the moduli spaceMφ of abelian schemes at the given level with
the polarization induced by the principal polarization on A, which is
represented by a point inM . We could then equivalently replaceM by

(9) hocolim
φ

Mφ.

More precisely, the homotopy colimit is taken over the category whose
objects are isogenies φ as in (8), and morphisms φ → φ′ are isoge-
nies ψ satisfying φ′ = ψ ◦ φ. The homotopy colimit (9) will give the
same answer as M in the motivic homotopy category as we are taking
a homotopy colimit of a functor from a contractible category, where
morphisms go to isomorphisms.

Now for a general totally real number �eld F , the analogous con-
struction constructing a canonical model (over F ) is outlined in [4],
Variante 4.22. In this case, we have

Gp2g(F )R ∼= Gp2g(R)n,
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so we obtain Shimura data

(10) h : S→ Gp2g(F )R

by taking a product of n copies of (5). The re�ex �eld is again Q.
In this case, one lets VZ be a maximal free OF -submodule of V on

which the form ψ takes values in OF and has discriminant 1. For a
scheme S over Spec(Q), we consider abelian schemes A over S together
with a homomorphism

λ : OF → End(A)

and an isomorphism

p : A→ A∗

which satis�es

p ◦ λ = λ∗ ◦ p,
is symmetrical with respect to the double duality, such that, again, (6)
is ample.
We further consider a symplectic similitude (7) over OF (i.e., in

particular, a map of OF -modules). Again, for a su�ciently high level
n, this moduli problem can be solved, i.e. the contravariant functor
assigning to S abelian schemes with the above structure is representable
by a scheme MF over Spec(Q), thus providing a canonical model for
the Shimura data (10).

Now ideally, one would like to construct a natural plectic structure
on

i′∗Σ∞MF
+

where

i′ : Spec(F ′)→ Spec(Q)

where F ′ is the Galois closure of F . Currently, such a construction is
not known.
The case of Hilbert-Blumenthal modular varieties (g = 1) was stud-

ied in the article by Neková° and Scholl [14], Section 3.3., see also [2].
We comment here on the �algebraic" part of the cohomology of MF .
Rapoport [16], Exemples 6.9, observed that, denoting

i : Spec(F )→ Spec(Q),

we have an i∗Gm-principal bundle onM
F coming from the i∗Gm-action

on the module of di�erentials (ΩX/Q)0 on the weakly polarizable abelian
variety at the point 0 (more precisely an abelian scheme over some
parameter scheme S, as in [16], Variante 6.8).
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Now we have

i′∗i∗Gm =
∏
[F :Q]

Gm,

where the product on the right hand side ranges functorially over the
embeddings F ⊆ F ′. Therefore, the right hand side is canonically lifted
to an [F : Q]-tuple, thereby showing that these cohomology classes
(which make up a part of the cohomology of MF , [14, 2, 5, 6]) have a
canonical motivic plectic structure.
It is worth pointing out that if F is not Galois over Q, then i∗i∗Gm

does not canonically split into copies of Gm. For example,

F = Q[x]/(x3 − 4x+ 1)

is a totally real �eld with a non-square discriminant 229, and thus is not
Galois. We see that accordingly, i∗i∗Gm splits as a product of Gm and a
quadratically twisted Gm. A variant of this e�ect on the multiplicative
norm was also used by Hu in [8] to produce additional examples of
non-trivial elements of the Picard groups of motivic spectra. This is
the reason we need to go to the Galois closure of F to formulate a
motivic plectic conjecture.

There is also an analogous discussion for g > 1. In this case, i∗Gm

acts on the g-dimensional module of di�erentials (ΩX/Q)0 of a weakly
F -polarized abelian variety over Q, thus giving rise to a i∗GLg-bundle
over the canonical model MF . Again, we have

i′∗i∗GLg =
∏
[F :Q]

GLq,

thus giving a Σr-equivariant plectic structure on the classifying space
Bi

′∗i∗GLg of such bundles ([11]).

References

[1] T. Bachmann and M. Hoyois, Norms in motivic homotopy theory. Astérisque
no. 425, AMS 2021. 208 pp.

[2] C. Davidescu, A.J. Scholl: Extensions in the cohomology of Hilbert modular
varieties, arXi:2003.07827v1

[3] P. Deligne. Théorie de Hodge II, Publ. Math. de IHES vol. 40 (1971), 5-58
[4] P. Deligne: Travaux de Shimura, Séminaire N. Bourbaki, 1971, exp. no. 389,

pp. 123-165
[5] G. Faltings: Arithmetische Kompakti�zierung des Modulraumes der abelschen

Varietäten. In: Arbeitstagung Bonn 1984, Lecture Notes in Math. 1111, 321-
383. Springer-Verlag 1985



12 PO HU, DANIEL KRIZ, IGOR KRIZ, AND PETR SOMBERG

[6] G. van der Geer: Hilbert modular surfaces, Springer-Verlag Berlin Heidelberg,
1988

[7] G. Harder: On the cohomology of SL(2, O), Lie groups and their representa-
tions, In: Gelfand, I.M. (ed.). Proc. of the Summer School on Group Repres.
London, A. Hilger, 1975, pp. 139-150

[8] P. Hu. Base change functors in the A1-stable homotopy category. Equivariant
stable homotopy theory and related areas (Stanford, CA, 2000). Homology,
Homotopy App. 3 (2001), no. 2, 417-451

[9] J. F. Jardine. Simplicial presheaves. J. Pure. Appl. Algebra 47 (1987), 35-87
[10] J. F. Jardine. Motivic symmetric spectra. Doc. Math. 5 (2000), 445-553
[11] F. Morel, V. Voevodsky: A1-homotopy theory of schemes, Inst. Hautes Études

Sci. Publ. Math. (1999), no.90, 45-143
[12] D. Mumford: Geometric invariant theory, Ergebnisse 34, Springer-Verlag, 1965
[13] J. Neková°, A.J. Scholl: Introduction to plectic cohomology, Advances in the

theory of automorphic forms and their L-functions, 321-337, Contemp. Math.,
664 American Mathematical Society, Providence, RI, 2016

[14] J.Neková°, A.J.Scholl: Plectice Hodge theory I, preprint, 2017
[15] S. Patrikis, F. Voloch, Y. Zarhin: Anabelian geometry and descent obstructions

on moduli spaces, Algebra Number Theory, Volume 10, 2016, no. 6.
[16] M. Rapoport: Compacti�cations de l'espace de modules de Hilbert-

Blumenthal, Composition Math. 36 (1978) 255-335


