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ABSTRACT. We formulate a motivic homotopy theory version of
the plectic conjecture of J.Nekovaf and A.J.Scholl and give some
initial discussion of it.

1. INTRODUCTION

In [13], Section 18, J.Nekovai and A.J.Scholl asked if there is a plectic
motivic category, which would be the target category of the cohomology
of Shimura varieties in the case when the Shimura data come by Weil
restriction from some totally real field. In this paper, we approach
this question from the point of view of the motivic homotopy theory of
Morel and Voevodsky [11]. We construct a category of r-plectic motivic
spaces and spectra, and show that it verifies the basic properties of the
target category conjectured in [13] in the case of pure Shimura data.

We also discuss a special guiding example of algebraic plectic coho-
mology classes on the canonical model of Hilbert-Blumenthal Shimura
varieties for a totally real number field F'. In this case, Nekovai and
Scholl [14] 3.3 analyze the Hodge case of their conjecture. The answer
is involved, using the calculation of cohomology via the toroidal com-
pactification [2, 16]. Following Harder |7], they consider the decompo-
sition of the cohomology of the moduli space over C into the boundary
part and the interior part. The interior part consists further of the
algebraic part and the cuspidal part. There results a mixed Hodge
structure which can be determined in part using the Manin-Drinfeld
principle, stating that the cuspidal part does not contribute to the non-
triviality of the extension. The authors of [14] use this computational
information to define a plectic structure on the real cohomology of the
Hilbert-Blumenthal moduli space.
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One of course hopes that a direct manipulation on the Al-space corre-
sponding to a Shimura variety obtained by Weil restriction of Shimura
data on a totally real field F' would result in a plectic structure on its
motivic suspension spectrum, pulled back to a suitable extension of
F. The computations of [14], however, suggest that a completely new
idea would be necessary to carry out such a program. In the present
note, we specialize only to the algebraic part of the cohomology in the
Hilbert-Blumenthal case, which is already known to have a motivic ori-
gin (|16]), and we spell out how to exhibit the motivic plectic structure
on those cohomology classes. Even this basic example is valuable in
showing that to get a plectic structure, we have to pull back to the
Galois closure of F' over Q. In fact, the motivic setting allows directly
extending this discussion to the case of the Gpy,-Shimura data ([4],
4.22). In this case, we are not dealing with ordinary motivic cohomol-
ogy, but with algebraic vector bundles. Nevertheless, the discussion is
the same.

The present note is organized as follows: The majority of our dis-
cussion is devoted to introducing the relevant preliminaries from A!-
homotopy theory. In Section 2, we explain the plectic version of the
stable and unstable motivic categories of Morel and Voevodsky [11].
In Section 3, we explain how this concept interacts with Hodge and
étale realizations. In Section 3, we review the motivic multiplicative
norm of Hu |8] and Bachman-Hoyois |1], and we state our version of
the plectic conjecture. In Section 5, we discuss the examples of the
algebraic bundles on Hilbert-Blumenthal Shimura varieties, and Gpa,.

2. THE BASIC CONSTRUCTION

Let k be a field. Recall that motivic spaces Spci’ are simplicial

objects in the category of sheaves of sets over the category Smy of
finite type separated smooth schemes over Spec(k) in the Nisnevich
topology. Here by a Nisnevich cover, we mean an étale cover where
over every Zariski point (not necessarily closed), there exists a point
with the same residue field. One proves [11] that a presheaf F' on Smy,
is a Nisnevich sheaf if and only if it takes diagrams of the form

v_l.x

(1) l | fl
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where j,j’ are Zariski open inclusion, f is étale and restricts to an
isomorphism

XN\V=YU,

into pullbacks. The diagram (1) is then called a Nisnevich square.

One defines simplicial equivalence on motivic spaces as a morphism
which induces an equivalence on Nisnevich stalks. A simplicial model
structure is then put on SpcM using the technique of model struc-
tures on categories of simplicial sheaves [9]. One obtains the motivic
homotopy category DSpc° by localizing the homotopy category of
the simplicial model structure on Spct° with respect to morphisms of
the form

Ay = X

for a separated smooth scheme X of finite type over Spec(k). The
category of motivic spectra is defined as the category of sequences of

motivic spaces (Z(n))nen, together with maps
P A Z(n) — Z(n+1)-

A model structure is put on this category using the techniques of [11]
(or alternatively, [10]), and the resulting category is called the motivic
stable homotopy category Sh't over k.

We define the category of r-plectic motivic spaces P,Spci'® as the

category of simplicial objects in the category of sheaves of sets over
Smy, = Smy X -+ X Smy

VvV
r times

with respect to the Nisnevich topology, where a Nisnevich cover is
defined as an r-tuple of Nisnevich covers. Once again, a presheaf of
sets on Sm;), is a Nisnevich sheaf if and only if it turns into pullbacks
square diagrams in Smj, which are Nisnevich squares of the form (1)
in each coordinate.

Again, we define equivalence by equivalence on stalks, and we define
the simplicial model structure using the techniques of [9]. The A'-
model structure is obtained by localizing with respect to all morphisms
of the form

(2) (A, .. A ) = (X4, X,).

The resulting homotopy category is the r-plectic motivic homotopy cat-

egory DP,Spcet.

A based plectic motivic space is a morphism

(Spec(k), ..., Spec(k)) = X
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where the source denotes the representable sheaf, and X is an r-plectic
motivic space. Thus, we have a category P,Based° and a corre-
sponding derived category D P, Basedy’°". One can then define a smash
product of r-plectic spaces as a colimit from products of r-plectic spaces.
One defines an r-plectic motivic spectrum as a sequence of r-plectic mo-
tivic spaces (Z(n)), n € Ny, and a sequence of based maps

/\(]P)llc’ R 7]P)llc> N Zn) = Z(nt1)

where

A, X))

denotes the plectic smash product, defined as follows:
Let, for I C {1,...,7},

Xi=,....Y,)
where
X; ifié¢l.
For I C J, there are inclusions
Xr— X, — (Xy,...,X,).
Thus, we have a morphism
coljimXI — (Xy,..., X,).

Y, :{ Spec(k) ifiel

We let A(Xy,...,X,) be the pushout of the diagram

(X1,...,X;)

colimy X7

|

(Spec(k), ..., Spec(k)).

Again, one puts a model structure on r-plectic motivic spectra using
the techniques of [11, 10|, and the homotopy category is called the
r-plectic motivic stable homotopy category P.Sh}!e.

3. REALIZATIONS

Now assume D is an oo-category (by which we mean a category
with limits and colimits where the Hom-sets are given the structure
of simplicial sets, where composition and identities are morphisms of
simplicial sets). Suppose we have a functor

F:Sm;, — D
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which takes Nisnevich covers to homotopy limits and morphisms of the
form (2) into equivalences. Then we obtain realization functors on the
level of derived categories

DF : DP,Spc — DD,
DF : DP,Basedy'”" — DD.
Assume further that there is a shift operator

c:D—7D

which is an oco-equivalence (i.e. has an inverse up to equivalence).
Assuming we have a natural equivalence

F(N\P}.....P) A Z) ~oF(2),

we also obtain a realization functor
DyF : P.Sh'* — DD.

The plectic étale and Hodge realizations in the case when £ is a number
field fall under this pattern.

For example, let M H Sg-Chain, resp. P.M HSg-Chain, be the cate-
gory of unbounded chain complexes of R-mixed Hodge structures resp.
r-plectic R-mixed Hodge structures defined by Deligne |3] and Nekovai-
Scholl [14]. Then we have the plectic tensor product functor

(3) Q) : (MHSp-Chain)” — P,M H Sp-Chain.

For a smooth scheme X over R, given a smooth projective compactifica-
tion X of X¢ where the complement is a union of divisors with normal
crossings, we produce an object of M HSg-C'hain. This is not functo-
rial, since the choice of X isn’t, but by considering the pro-system of
all such resolutions (with arrows also given by resolutions, if we wish),
we can produce a functor. Applying the plectic tensor product (3),
we can produce an oco-functor F' which gives an input of the machine
described above.

Comment: Ordinarily, a (say pure) Hodge structure has a real struc-
ture coming from the period lattice. When the scheme X is defined
over R, we get another real structure coming from algebraic real De
Rham cohomology. The Hodge structure is real with respect to both.
In [14], periods are not considered, so the real structure comes from X,
which is why we assume X is defined over R.

The case of the plectic étale realization is treated similarly.
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4. NORMS AND THE MOTIVIC PLECTIC CONJECTURE
Let kK C F be a finite separable extension of fields. Then the mor-
phism
i: Spec(F) — Spec(k)
induces a pullback functor

75 Spcfy"t — Spcymf

which has a left adoint ¢; (the “forgetful functor”) and a right adjoint i,
(the “Weil restriction.”) These functors naturally pass to the based con-
text and to spectra, and also to the corresponding derived categories.
Hu [8] proved that

iy ~ iy 0 Shit — Sh".
Hu |8| also defined a multiplicative norm
N : Shifet — Spptet
with the property that for a motivic space X over Spec(F),
NE®X, ~ 5%(i,X),

where 7, denotes adding a disjoint base point. This concept of the
norm was further generalized and applied by Bachmann and Hoyois

[1].

Let L be a Galois extension of k containing F' and let G = Gal(L/k),
H = Gal(L/F). For a based motivic space X over Spec(F’), one defines
the motivic space N X over Spec(k) by factoring out a colimit of motivic
spaces Xg indexed over subsets S C G satisfying HS = S defined as
follows: Let

Js={g€G|Sg=S5}.
Then write

S= 1] HoJs

g€ls
for some map Is — H\G/Js. One can write

HgJS:HXJg JS

where J, is the stabilizer of g in H x Jg. Then J, injects both into H
and Js. Let F, = L9, Fg = L7s and let

1y 1 F' C Iy,
lg,s + Fis © Fy,
isingg.
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Then one puts
(4) Xg := igy H ig,sxit X.
(9)€ls
To get functoriality
Xs C Xpfor SCT,
one defines
Jsr={9€G|S;,=85Tg="T},

for some Igr — H\G/Jsr. Letting J,r be the stabilizer of g in
H x Jsr, we define F, 7 = L7s7 Fgr = L’ST and let

g I C Iy,

tg.57  Fsr C Fyr,
isr:k C For.

One lets
XS,T = iS,Tjj H Z-g,S,T*Z';TX~
(9)€lsT
Then one has natural maps
Xsr
N
Xg i Xop,

The map mgr is onto finite étale, so the dotted factorization arrow
exists (and is determined by) étale descent.
One notes that

N]P)l _ P[F:k}/]P)[F:k]fl’

so the construction stabilizes to give a norm functor from motivic spec-
tra over I to motivic spectra over k ([8, 1]).

One notes that if one denotes by F’ the Galois closure of F' over k,
so we have a diagram

Spec(F") d Spec(k)
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for a motivic spectrum E over Spec(F'), one has

i"N(E)~{EN---NUE,

r

"B~ EN - VUE
r

where r = [F': k.

This statement can be used to construct refinements of both of the
functors i N, i"*iy from the stable homotopy category over Spec(F) to
the (“naive") X,-equivariant r-plectic stable homotopy category

Sp-BShy'™

(where 3, acts by permutation of factors).
One version of the motivic plectic conjecture (in the pure case) can
be stated as follows:

Conjecture: Let F' be a finite totally real extension of Q. Consider a
Shimura datum over Q which is the Weil restriction of a Shimura data

over F'; and let M be a canonical model for a given level structure,
with reflex field E. Let

i : Spec(E") — Spec(E)

where the field E’ contains both E and F’ where F” is the Galois
closure of F. Then i*¥°°(M,) has a natural structure of an object of
5,-P,ShMot,

5. SOME COMMENTS ON PLECTIC STRUCTURES FROM SYMPLECTIC
SHIMURA DATA OVER A TOTALLY REAL FIELD

Let F be a totally real number field, r = [F': Q|. Let Gpy,(F') denote
the group of symplectic similitudes of a symplectic F-vector space V
of dimension 2¢g with an antisymmetric non-degenerate bilinear form
1. Denote by S the Weil restriction of G,, from C to R.

When F = Q, following Deligne, [4], 1.6, one has the symplectic
Shimura data given by the unique conjugacy class of homomorphisms

(5) h:S— Gp(V)

which, restricted to G,,r sends x to the homotethy of scale x7l. As
described in [4], 4.16, one can construct a canonical model (over Q) in
this case as the solution of a moduli problem. Let & be a scheme. By
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principally polarized schemes A over & we mean an abelian scheme A
over § together with an isomorphism

p:A— A"

where A* is the dual abelian scheme, which is symmetric with respect
to the canonical isomorphism of the identity functor with the double
dual and such that the pullback

(6) (Id x p)*P

of the Poincaré line bundle on A x A* is ample. Denote by V3 an
integral lattice on which the symplectic form ¢ takes integral values
and has discriminant 1.

When working at level n, one then considers the functor assigning
to a scheme S the set of principally polarized abelian schemes over &
together with a symplectic similitude

(7) kn : nA — (Vz/nVZ)S

(where , A is the kernel of multiplication by n on A). For n > 3, this
functor is representable by a scheme M (|12], Chapter 7), which defines
a canonical model for the data (5).

As pointed out in Section 4.3 of [4], instead of principally polarized
abelian schemes, we could alternatively also work “up to isogeny.” At
a stable level, we can describe an isogeny

(8) A— A,

uniformly on the moduli space. For an isogeny ¢ in this sense, we could
consider the moduli space M, of abelian schemes at the given level with
the polarization induced by the principal polarization on A, which is
represented by a point in M. We could then equivalently replace M by

(9) hocglim M,.

More precisely, the homotopy colimit is taken over the category whose
objects are isogenies ¢ as in (8), and morphisms ¢ — ¢ are isoge-
nies 1 satisfying ¢’ = 1) o ¢. The homotopy colimit (9) will give the
same answer as M in the motivic homotopy category as we are taking
a homotopy colimit of a functor from a contractible category, where
morphisms go to isomorphisms.

Now for a general totally real number field F', the analogous con-
struction constructing a canonical model (over F) is outlined in [4],
Variante 4.22. In this case, we have

Gpaog(F)r = Gpay(R)",
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so we obtain Shimura data
(10) h:S — Gpoy(F)r

by taking a product of n copies of (5). The reflex field is again Q.

In this case, one lets V7 be a maximal free Op-submodule of V' on
which the form ¢ takes values in O and has discriminant 1. For a
scheme S over Spec(Q), we consider abelian schemes A over S together
with a homomorphism

\:Op — End(A)

and an isomorphism
p:A— A"
which satisfies
poA=Aop,

is symmetrical with respect to the double duality, such that, again, (6)
is ample.

We further consider a symplectic similitude (7) over O (i.e., in
particular, a map of Op-modules). Again, for a sufficiently high level
n, this moduli problem can be solved, i.e. the contravariant functor
assigning to S abelian schemes with the above structure is representable
by a scheme M over Spec(Q), thus providing a canonical model for
the Shimura data (10).

Now ideally, one would like to construct a natural plectic structure
on

TP MY
where
i' : Spec(F') — Spec(Q)

where F’ is the Galois closure of F'. Currently, such a construction is
not known.

The case of Hilbert-Blumenthal modular varieties (¢ = 1) was stud-
ied in the article by Nekovar and Scholl [14], Section 3.3., see also [2].
We comment here on the “algebraic" part of the cohomology of M.
Rapoport [16], Exemples 6.9, observed that, denoting

i: Spec(F) — Spec(Q),

we have an i,G,,-principal bundle on M* coming from the i,G,,-action
on the module of differentials (£2x/g)o on the weakly polarizable abelian
variety at the point 0 (more precisely an abelian scheme over some
parameter scheme S, as in [16], Variante 6.8).
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Now we have

"*0,Go = [ G,
[F:Q]

where the product on the right hand side ranges functorially over the
embeddings F' C F’. Therefore, the right hand side is canonically lifted
to an [F' : Q]-tuple, thereby showing that these cohomology classes
(which make up a part of the cohomology of M¥, |14, 2, 5, 6]) have a
canonical motivic plectic structure.

It is worth pointing out that if F'is not Galois over Q, then i*i,G,,
does not canonically split into copies of G,,. For example,

F = Qlz]/(z* — 4z + 1)

is a totally real field with a non-square discriminant 229, and thus is not
Galois. We see that accordingly, :*1,G,, splits as a product of G,,, and a
quadratically twisted G,,,. A variant of this effect on the multiplicative
norm was also used by Hu in [8] to produce additional examples of
non-trivial elements of the Picard groups of motivic spectra. This is
the reason we need to go to the Galois closure of F' to formulate a
motivic plectic conjecture.

There is also an analogous discussion for g > 1. In this case, .G,
acts on the g-dimensional module of differentials (€2x/g)o of a weakly
F-polarized abelian variety over QQ, thus giving rise to a i,G'L,-bundle
over the canonical model M¥. Again, we have

i"i,GLy = || GL,
[F:q)

thus giving a Y,.-equivariant plectic structure on the classifying space
Bi'*i,GL, of such bundles ([11]).
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