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Example 0: Smallness by number of elements

Theorem (Cantor)

The set R is uncountable.

There are only countably many algebraic numbers.

Hence, there are uncountably many transcendental numbers.

Existence proof.
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Example 1: Baire category

Let (M, d) be a metric space.

A set A ⊆ M is said to be nowhere dense if IntA = ∅.

A set B ⊆ M is said to be meagre if it is the union of countably

many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)

Let (M, d) be complete. Then M is not meagre (in itself).

The space (C [0, 1], ‖ · ‖∞) is complete.

Theorem (Banach, Mazurkiewicz (independently), 1931)

The set D ⊆ C [0, 1] of all functions with a point of di�erentiability

is meagre in C [0, 1].

Baire ⇒ C [0, 1] is not meagre.

So C [0, 1] \ D 6= ∅, i.e. there exist nowhere-di�erentiable

functions. We say that the typical continuous function is n.-d.
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Example 1: Baire category & di�erentiability

Let X be Banach space. A function f : X → R is said to be

Fréchet di�erentiable at a point x0 if there is x∗ ∈ X ∗ such that

f (x0 + u) = f (x0) + x∗(u) + o(‖u‖), u → 0.

We also de�ne the directional derivative of f at x0 in direction u as

f ′(x0; u) = lim
t→0

f (x0 + tu)− f (x0)

t
.

If f (x0; ·) is a bounded linear operator, f is Gâteaux di�. at x0.

Theorem (Mazur, 1933)

X separable, f : X → R cts. and convex ⇒ NG (f ) meagre.

Theorem (Asplund, 1968)

X ∗ separable, f : X → R cts. and convex ⇒ NF (f ) meagre.
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Example 2: Lebesgue measure

Let f : Df ⊆ Rn → R; set N(f ) := {x ∈ Df : f ′(x) does not exist}.

Theorem (Rademacher)

Let f : Rn → R be Lipschitz. Then |N(f )| = 0.

This theorem is sharp for n = 1:

Theorem (Zahorski)

Given a Gδσ set A ⊆ R with |A| = 0, there exists a Lipschitz

function f : R→ R such that N(f ) = A.

For higher dimensions, Rademacher's theorem is not sharp:

Theorem (Preiss)

There exists A ⊆ R2 with |A| = 0 such that for any Lispchitz

f : R2 → R we have D(f ) ∩ A 6= ∅ (where D(f ) = R2 \ N(f )).
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Example 2: Baire category & Rademacher

Rademacher's theorem states that a Lipschitz function on Rn is

di�erentiable up to a negligible set. This negligibility is meant in

the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?

A: NOT for meager.

Proof.

Find a dense Gδ set G ⊆ R with |G | = 0. Then F := R \ G is

meagre and R = F ∪ G . Zahorski  Lipschitz f with N(f ) = G .

Then f is non-di�erentiable on a comeagre set; so f is not

di�erentiable up to a meagre set as R is not meagre by Baire.

This can easily be generalized to any Banach space.

Hence, meagre sets are not suitable for the study of di�erentiability

of Lipschitz functions.

Note that we used a decomposition result on R, namely, R can be

expressed as the union of two sets �negligible� in di�erent senses.
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a

(�unique�) Haar measure µ on G , i.e. a non-trivial (left-)translation

invariant Radon (σ-additive) measure. Lebesgue measure is Haar.

The sets A ⊆ G with µ(A) = 0 are small in the sense of measure,

(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.

(Easy to see.) Nonetheless, is it possible to de�ne a corresponding

notion of small sets? Yes!

De�nition (Christensen: Haar null sets (HN))

Let G be an Abelian Polish group.

A ⊆ G Borel is HN
def.⇐⇒ ∃ Borel prob. µ ∀x ∈ G : µ(x + A) = 0.

(i) G loc. cpt. ⇒ HN ≡ Haar measure zero;

(ii) G non-loc. cpt. & A ⊆ G cpt. ⇒ A is HN;

(iii) An ⊆ G is HN for each n ⇒
⋃∞

n=1 An is HN.
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⋃∞

n=1 An is HN.
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Example 3: HN & Rademacher

Theorem (Christensen, 1972)

X separable BS, f : X → R Lipschitz ⇒ NG (f ) is HN.

This was followed by Mankiewicz, Aronszajn and Phelps who

proved the same result for di�erent notions of smallness, namely

cube null, Aronszajn null and Gauss null.

Remark

X separable BS; consider Lipschitz functions fn : X → R. Then, by
Christensen, B =

⋃∞
n=1NG (fn) is HN. Since X is not HN, there is a

large set (namely X \ B) where all the functions are Gâteaux d.

Compare to the following (di�cult) result:

Theorem (Preiss, 1990)

X ∗ separable, f Lipschitz ⇒ f is Fréchet di�. on a dense set.
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σ-ideals

Common property of these notions:

De�nition

Let X be a set and S ⊆ P(X ). We say S is a σ-ideal if:

(i) A ∈ S and B ⊆ A ⇒ B ∈ S;
(ii) An ∈ S for all n ∈ N ⇒

⋃∞
n=1 An ∈ S.

S is nontrivial if X /∈ S.

All the aforementioned notions of smallness correspond to σ-ideals.

Countable: well-known;

Meagre: trivial;

Lebesgue measure zero: σ-additivity of measure;

HN: requires a proof (Christensen provided one).

The letter σ corresponds to countable unions, sums, limits etc.

Its importance is clear to anyone who can appreciate the di�erence

between Riemann and Lebesgue integrals.
Martin Rmoutil Some reasons why we are interested in σ-porous sets
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σ-ideals & Rademacher

In �nite dimension, Rademacher's result is fairly satisfactory.

Rademacher type theorem: On a certain space X there exists a

nontrivial σ-ideal S ⊆ P(X ) such that every Lipschitz f : X → R is

di�erentiable up to a set from S.
Corollary: Given Lipschitz functions fn (n ∈ N), there is a set

B
(

=
⋃∞

n=1N(fn)
)
∈ S s.t. each x ∈ B is a point of di�. for all fn.

Q: Given a certain setting, is there a suitable σ-ideal?

Theorem (Lindenstrauss & Preiss, 2003 (Ann. of Math.))

Let K be a countable compact set. Then any Lipschitz

f : C (K )→ R is di�. up to a Γ-null set.

(i) K is countable ⇔ C (K ) is separable and Asplund;

(ii) X BS is Asplund if every cts. convex f : X → R is Fréchet

di�erentiable up to a meagre set.

(iii) X not Asplund ⇒ there is |||·||| renorming s.t. NF (|||·|||) = X .

Martin Rmoutil Some reasons why we are interested in σ-porous sets
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Aronszajn null & Γ-null

Let X be a BS. Given 0 6= u ∈ X We de�ne A(u) as the family of

all Borel sets that are null on every line parallel to u.
Lebesgue: Every Lipschitz f : R→ R is di�. a.e.

Hence, given a Lip. f : X → R, the set B(u) of points where f is

non-di�. in direction u is from A(u).
Fact: Let S be the σ-ideal generated by A(u), u ∈ X . Then every

Lip. f : X → R satis�es NG (f ) ∈ S. Moreover, S is nontrivial.

A set A ⊆ X is Aronszajn null if for every sequence {ui}∞i=1 ⊆ X
with span{ui} = X we have A =

⋃∞
i=1 Ai where Ai ∈ A(ui ).

De�nition (Lindenstrauss, Preiss)

De�ne Γn(X ) as the space of all C 1-maps γ : [0, 1]n → X . A Borel

set E ⊆ X is Γn-null if {γ ∈ Γn(X ) : |γ−1(E )| > 0} is meagre.

This makes sense even for n =∞ (then Γ(X ) = Γ∞(X ) is only a

Fréchet space).

Fact: Γ(n)-null sets form a nontrivial (Baire) σ-ideal in any BS.

Martin Rmoutil Some reasons why we are interested in σ-porous sets
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Γ-null & problems

Theorem (Lindenstrauss, Preiss, Ti²er, 2008)

Any two Lipschitz functions on a separable Hilbert space have a

common point of Fréchet di�erentiability.

More generally, this works on any spaces with su�cient

(asymptotic) smoothness.

Open problem: Is this true for 3 functions?

The main Rademacher-type thm of Lindenstrauss and Preiss:

Theorem

Let X be a Banach space with separable dual. If σ-porous sets in X
are Γ-null, then every Lipschitz f : X → R satis�es NF (f ) ∈ Γ.

The spaces c0, even C (K ) for K countable compactum, and the

Tsirelson space are known to have the property. By separable

reduction this was shown by Cúth even for C (K ) with K scattered.
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Γ-null & problems

Theorem (Lindenstrauss, Preiss, Ti²er, 2008)

Any two Lipschitz functions on a separable Hilbert space have a

common point of Fréchet di�erentiability.

More generally, this works on any spaces with su�cient

(asymptotic) smoothness.

Open problem: Is this true for 3 functions?
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σ-porous sets

De�nition

Let (M, d) be a metric space, A ⊆ M, x ∈ M. We say that

A is porous at x , if there are xn → x and rn → 0 with:

B(xn, rn) ∩ A = ∅;

limn→∞
rn

d(xn,x)
> 0.

De�nition (equivalent)

γ(x ,R,A) = sup {r > 0 : for some z ∈ M, B(z , r) ⊆ B(x ,R) \ A},

p(A, x) = lim sup
R→0+

2 · γ(x ,R,A)

R
, p(A, x) = lim inf

R→0+

2 · γ(x ,R,A)

R
.

A is porous at x if p(A, x) > 0 and lower porous at x if p(A, x) > 0.

A set B is σ-porous if B =
⋃∞

n=1 An with An porous for all n.
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Basics about σ-porosity

Facts.

(i) The de�nition makes sense in any metric space.

(ii) M uncountable and complete ⇒ σ-porous sets form a nontriv.

σ-ideal.

(iii) σ-porous sets are always meagre (trivial).

(iv) In Rn, each σ-porous set is Lebesgue null (easy � density).

(v) (Zají£ek:) There is a closed F ⊆ Rn which is both n.-d.

(⇒ meagre) and Lebesgue null, but is not σ-porous.

(vi) (Foran:) Graph of a cts. function. (Zelený:) AC function.

Observation.

Let A ⊆ R. Then
M is porous ⇔ x 7→ dist(x ,A) is di�erentiable at no point of A.
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σ-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X ∗ separable ⇒ for any cts

convex f : X → R, NF (f ) is meagre.

Preiss, Zají£ek (1980s): Same for σ-porous, even cone small sets.

These results can be generalized to non-separable Asplund spaces

by a separable-reduction technique.

We �rst prove that the relevant notions, such as σ-porosity and

Fréchet di�erentiability, are separably determined. For example:

Theorem (Marek Cúth, M.R.)

Let X be a Banach space, A ⊂ X be a Souslin set.

Then for every separable subspace V0 ⊂ X there exists a closed

separable space V ⊂ X such that V0 ⊂ V and

(i) A is σ-upper porous ⇐⇒ A ∩ V is σ-upper porous in V ;

(ii) A is σ-lower porous ⇐⇒ A ∩ V is σ-lower porous in V .
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A separable reduction theorem

Using more re�ned methods we were able to prove the separable

determination of cone smallness, a smaller σ-ideal than that of

σ-porous sets.
As a consequence we obtained the following result, which is a

generalization of Zají£ek's result to the non-separable setting.

Theorem (Marek Cúth, M.R., Miroslav Zelený)

Let X be an Asplund space and G ⊂ X be open. Let f : G → R be

a continuous and approximately convex function. Then the set of

all points of G at which f is not Fréchet di�erentiable is cone small.

Thank you for your attention.
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