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Introduction

Introduction to scenario generation

Scenario = potential realization of randomness

Allows formulation of stochastic optimization problems

Scenario generation = process of creating scenarios out of data.

Has impact on
1 Computational complexity.
2 Quality of solutions.

However...

Scenario generation is difficult for discrete data.

Also, there is a relative lack of research.

⇒ The only easy-to-use method is sampling for discrete data.

We propose a new easy-to-use copula-based alternative to sampling.

We show this method outperforms sampling significantly.
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Introduction

Copula and Sklar’s theorem

Copula

Copula is the distribution function of a random vector with uniform
margins on interval [0, 1].

Sklar’s theorem

Let F be a joint distribution function of random vector X = (X1, . . . ,Xn).
Then there exists copula C such that for t1, . . . , tn ∈ R it holds

F (t1, . . . , tn) = C (FX1(t1), . . . ,FXn(tn)) .

Copula C is uniquely determined on×n
i=1 RanFXi

.
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A copula-based method

A copula-based method from [Kaut, 2014]

Sklar’s theorem allows us to model dependence structure (copula) and
marginal distributions independently.

Assume:
1 We have input random vector X = (X1, . . . ,Xn).
2 Copula C of X (or its estimate).
3 We aim to generate S scenarios.

Method works in two steps:
1 Model copula C using so-called copula sample.
2 Transform copula sample to reflect marginal distributions.
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A copula-based method

Step 1: Generate copula sample

Copula sample is defined as

C := {(r1, . . . , rn) : 1 ≤ ri ≤ S ,∀i ≤ n}

where each value appears exactly once in each dimension.

For a target copula C , we try to find copula sample C minimizing

devavg(C,C ) =
1

Sn

n∑
r1=1

· · ·
n∑

rn=1

|Cr (r1, . . . , rn)− Cr (r1, . . . , rn)|
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A copula-based method

Step 1: Generate copula sample
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A copula-based method

Step 2: Transform copula sample

Assume we generated copula sample {(r1s , . . . , rns ) : s ∈ {1, . . . ,S}}.
We need to transform ranks r is into reasonable values.

⇒ Choose value x is from region[
F−1
Xi

(
r is − 1

S

)
,F−1

Xi

(
r is
S

)]
.

The options are
1 Conditional median
2 Conditional expectation
3 And so on ...
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Extension for discrete data

Extension for discrete data

Method is designed for continuous data.

⇒ Fails to generate reasonable scenarios for discrete data.

We demonstrate this on uniform distribution on {0, 1}2.
⇒ The algorithm produces only scenarios (0, 0) and (1, 1).

Main idea: transform discrete variables into continuous ones.

Discrete extension

Assume that X with suppX ⊆ N0 is a discrete random variable and U is a
continuous random variable on [0, 1] with strictly increasing distribution
function on [0, 1] which is independent of X . Then we define the extension
of X as a random variable X ∗ = X + U − 1.
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Extension for discrete data

Illustration of a uniform discrete extension

Figure: Comparison of a discrete distribution function and its uniform extension.
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Extension for discrete data

Step 1 revisited: Generate copula sample

We use the following procedure

1 Replace all discrete margins of X with their extensions.

2 Compute the copula C ∗ of the resulting vector. Call it extension
copula.

3 Use this copula to generate a copula sample.
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Extension for discrete data

Properties of extension copula

Expression for extension copula:

C ∗(u1, . . . , uk , v1, . . . , vp) =∑
S⊆{1,...,p}

C
(
u1, . . . , uk , v

S
1 , . . . , v

S
p

)∏
i∈S

λi (vi )
∏
j ̸∈S

(1− λj(vj)) ,

where

λi (vi ) =


vi−v−

i

v+
i −v−

i

vi ̸∈ RanFYi
,

0 vi ∈ RanFYi
,

Properties of C ∗:

According to Sklar’s theorem, copulas are uniquely defined on

×n
i=1 RanFXi

.

The extension copula linearly interpolates these points.

It does not depend on the extension type!
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Extension for discrete data

Extension is a natural one

(a) Discrete margins. (b) Mixed margins.
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Extension for discrete data

Step 2 revisited: Transform copula sample

Assume we generated copula sample {(r1s , . . . , rns ) : s ∈ {1, . . . ,S}}.
The algorithm replaces discrete variables Xi by their extensions X ∗

i .

⇒ We obtain regions[
F−1
X∗
i

(
r is − 1

S

)
,F−1

X∗
i

(
r is
S

)]
.

Problems:
1 Conditional expectation/median might be non-integral.
2 Region might not contain any possible realization of Xi .

Question: Into which realization of Xi transform ranks r is?
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Extension for discrete data

On discrete transformation of copula samples

Identification of reasonable realizations

Let LX be a function defined as

LX (u) =


0 u = 0,

F−1
X (u) + 1[u ∈ RanFX ] u ∈ (0, 1),

sup(suppX ) u = 1.

Then only for the realizations n ∈ suppX fulfilling

LX

(
r is − 1

S

)
≤ n ≤ F−1

X

(
r is
S

)
it holds

P

(
F−1
X∗

(
r is − 1

S

)
≤ X ∗ ≤ F−1

X∗

(
r is
S

)∣∣∣∣X = n

)
> 0.
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Extension for discrete data

Approach No.1 for discrete transformation

Select realization of X with the greatest contribution to

P

(
LX

(
r is − 1

S

)
≤ X ≤ F−1

X

(
r is
S

))
.

This translates to problem

max
n∈N0

P(X = n)

s.t. LX

(
r is − 1

S

)
≤ n ≤ F−1

X

(
r is
S

)
.
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Extension for discrete data

Approach No.2 for discrete transformation

Select realization of X with the greatest contribution to

P

(
F−1
X∗

(
r is − 1

S

)
≤ X ∗ ≤ F−1

X∗

(
r is
S

))
.

This translates to problem

max
n∈N0

P

(
1− n + F−1

X∗

(
r is − 1

S

)
≤ U ≤ 1− n + F−1

X∗

(
r is
S

))
· P(X = n)

s.t. LX

(
r is − 1

S

)
≤ n ≤ F−1

X

(
r is
S

)
.
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Extension for discrete data

Approach No.3 for discrete transformation

If suppX is large, we have following options:

1 med
(
X

∣∣∣ LX (
r is−1
S

)
≤ X ≤ F−1

X

(
r is
S

))
,

2 E
[
X

∣∣∣ LX (
r is−1
S

)
≤ X ≤ F−1

X

(
r is
S

)]
.
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Case study

Case study: Stochastic knapsack

The Knapsack problem is a traditional optimization problem.

We make appearance of items and prices uncertain.

Two versions of the problem:
1 Uncertain appearances of items.
2 Uncertain appearances of items and prices.

Versions represent problems with discrete and mixed data.

Two-stage stochastic problem:
1 First stage: Decide if we try to put item into knapsack.
2 Second stage: Item appears or not and prices are determined. Value of

knapsack is calculated.
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Case study

Problem formulation

Model the appearance of items using scenario variables

qsj =

{
1 if item j appears in scenario s,

0 otherwise.

Problem formulation is

max
xi , es

∑
s∈S

ps

 K∑
j=1

cjxjq
s
j − Qes


s.t.

K∑
j=1

wjxjq
s
j ≤ W + es s ∈ S,

xi ∈ {0, 1} i = 1, . . . ,K ,

es ≥ 0 s ∈ S.

If prices are uncertain, we replace cj by their scenario values csj .
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Case study

Problem-oriented method

Denote
1 f objective function.
2 f (x , η) so-called out-of-sample evaluation. Represents “true” objective

value.
3 f (x , τ) so-called in-sample evaluation. Approximates f (x , η).

Is based on minimizing the discrepancy between in-sample and
out-of-sample evaluations on a pool of heuristic solutions.

Obtain scenario set τ by solving

min
τ

L(τ ;X ) :=
∑
x∈X

(f (x , τ)− f (x , η))2 ·

(α · 1[f (x , τ) > f (x , η)] + β · 1[f (x , τ) < f (x , η)])

See [Prochazka and Wallace, 2020] for more details.
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Analysis results

In-sample stability

Defined as

STn =
1

|X |
∑
x∈X

maxτ∈Tn f (x , τ)−minτ∈Tn f (x , τ)

minτ∈Tn f (x , τ)
.
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Analysis results

Out-of-sample evaluation gap

Defined as

EGn =
1

|X |
∑
x∈X

√√√√ 1

K

∑
τ∈Tn

(
f (x , τ)− f (x , η)

f (x , η)

)2

.
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Analysis results

Optimality gap

Defined as

OGn =
1

K

∑
τ∈Tn

f (x∗, η)− f (x∗τ , η)

f (x∗τ , η)
.
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Analysis results

Ranking visual assessment I.
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Analysis results

Ranking visual assessment II.
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Analysis results

Ranking assessment using Kendall’s τ

Number of Scenarios Sampling Copula-based Problem-oriented
5 scenarios 0.729 0.935 0.931
10 scenarios 0.750 0.952 0.953
15 scenarios 0.835 0.969 0.959
20 scenarios 0.898 0.968 0.961
25 scenarios 0.901 0.972 0.962

Table: Stochastic knapsack problem with uncertain item appearances.

Number of Scenarios Sampling Copula-based Problem-oriented
5 scenarios 0.758 0.905 0.939
10 scenarios 0.817 0.945 0.954
15 scenarios 0.844 0.954 0.961
20 scenarios 0.896 0.960 0.958
25 scenarios 0.900 0.961 0.962

Table: Stochastic knapsack problem with uncertain item appearances and prices.
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Conclusion

Conclusion

We conclude the analysis as follows

Method outperforms sampling significantly.

Method is comparable with some problem-oriented methods.

However, problem-oriented methods are difficult to develop.

Meanwhile the proposed method is easy to use.
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Conclusion

Contributions

Contributions of our thesis:
1 A new method for generating scenarios for discrete data. Namely

Use of extension copula in method from [Kaut, 2014].
New approaches to the transformation of discrete margins.

2 Illustrational examples.

Demonstration of why the unextended method fails.
Motivating the use of extension copula.

3 Extension copula for mixed random vectors.

Generalization of extension copula for mixed random vectors.
Derivation of the generalized form (based on
[Denuit and Lambert, 2005]).
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Conclusion
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Conclusion

Research ideas

Scenario generation for discrete data for two-stage and multi-stage
problems.

Ideas:

Relax discrete distributions to continuous ones (discrete extensions or
use continuous scenarios to describe discret ones)
Adjust methods using Wasserstein distance for discrete data
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