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Stochastic dominance

Definition

A random variable X dominates a random variable Y by the nth-order

stochastic dominance (X ⪰(n) Y ) if

E u(X ) ≥ E u(Y ) for all u ∈ Un such that these expected values exist.

• U1 = {u utility function, u′ ≥ 0}
• U2 = {u utility function, u′ ≥ 0, u′′ ≤ 0}
• U3 = {u utility function, u′ ≥ 0, u′′ ≤ 0, u′′′ ≥ 0}

Properties:

• X ⪰(1) Y ⇒ X ⪰(2) Y ⇒ X ⪰(3) Y

• X ⪰(1) Y ⇔ FX (x) ≤ FY (x)

X ⪰(2) Y ⇔ F
(2)
X (x) ≤ F

(2)
Y (x) ⇔ CVaRα(X ) ≤ CVaRα(Y ), ∀α

X ⪰(3) Y ⇔ F
(3)
X (x) ≤ F

(3)
Y (x)
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Motivation for relaxation of SD

Which investment would be preferred by most investors?

0 EUR with probability 0.01

1000 EUR with probability 0.99

X =

Y = 1 EUR with probability 1
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Motivation for relaxation of SD

How much must X change to some Z in order to dominate Y ?
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General measure of stochastic non-dominance

Definition

Let X and Y be integrable random variables (X ,Y ∈ L1). Denote

dr (X ,Y ) =
( ∫ 1

0
| F−1

X (α)− F−1
Y (α) |r

) 1
r the Wasserstein distance of

order r between X and Y .

Then the general measure of stochastic non-dominance between X

and Y, GNDr
n(X ,Y ), is defined as follows:

GNDr
n(X ,Y ) = inf

Z∈L1

dr (X ,Z )

subject to Z ⪰(n) Y .

GNDr
n(X ,Y ) = 0 ⇐⇒ X ⪰(n) Y
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Specific measure of stochastic non-dominance

Definition

Let X and Y be discretely distributed random variables.

X attains values x1, . . . , xT with probabilities p1, . . . , pT and

Y attains values y1, . . . , yM with probabilities q1, . . . , qM .

Denote by D the family of all discrete distributions with T atoms attained

with probabilities p1, . . . , pT . Then the specific measure of stochastic

non-dominance between X and Y, SNDr
n(X ,Y ), is defined as follows:

SNDr
n(X ,Y ) = min

Z∈D
dr (X ,Z )

subject to Z ⪰(n) Y .
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Wasserstein distance between discretely distributed r. v.

X attains values x1, . . . , xT with probabilities p1, . . . , pT and

Z attains values z1, . . . , zT with probabilities p1, . . . , pT .

dr (X ,Z )r = min
ξts

T∑
t=1

T∑
s=1

ξts | xt − zs |r

subject to
T∑
s=1

ξts = pt , t = 1, . . . ,T ,

T∑
t=1

ξts = ps , s = 1, . . . ,T ,

ξts ≥ 0, s = 1, . . . ,T , t = 1, . . . ,T .
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Portfolio optimization with respect to SD

Search for optimal weights to maximize the expected return while

dominating the benchmark by FSD or SSD.

• k assets

• R(λ) is the return of portfolio with weights λ.

• Y represents the return of the benchmark.

Optimal portfolio with respect to the n-th order stochastic dominance:

max
λ

E R(λ)

s.t. R(λ) ⪰(n) Y ,

λ ∈ Λ = {λi ∈ R,
k∑

i=1

λi = 1, λi ≥ 0}.
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Larger feasible set

SD constraint

max
λ

E R(λ)

s.t. R(λ) ⪰(n) Y ,

λ ∈ Λ

Weaker constraint

max
λ

E R(λ)

s.t. SNDr
n(R(λ),Y ) ≤ ε

λ ∈ Λ

• For ε = 0 the constraints are the same.

• The higher the ε, the more relaxed the SD condition is.
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Portfolio optimization with SNDr
n constraints

max
λ,Z

E R(λ)

s.t. min
Z

dr (R(λ),Z ) ≤ ε,

Z ⪰(n) Y

λ ∈ Λ.

max
λ,Z

E R(λ)

s.t. dr (R(λ),Z ) ≤ ε,

Z ⪰(n) Y

λ ∈ Λ.
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Portfolio optimization with SNDr
n constraints

max
λ,z,x,ξ

T∑
t=1

ptxt

subject to
T∑
t=1

T∑
s=1

ξts | xt − zs |r≤ εr

xt =
k∑

i=1

λi · rit t = 1, . . . ,T ,

T∑
s=1

ξts = pt , t = 1, . . . ,T ,

T∑
t=1

ξts = ps , s = 1, . . . ,T ,

ξts ≥ 0, s = 1, . . . ,T , t = 1, . . . ,T ,

Z ⪰(n) Y ,

λ ∈ Λ. 10/48



Portfolio optimization with SNDr
n constraints

Z ⪰(1) Y

becomes

zs ≥
M∑

m=1

πmsym, ∀s

M∑
m=1

πms = 1, ∀s

S∑
s=1

πmsps = vm, ∀m

j−1∑
m=1

vm ≤
j−1∑
m=1

qm j = 2, . . . ,M,

πms ∈ {0, 1}, ∀m, ∀s.

Z ⪰(2) Y

becomes

T∑
s=1

pssts ≤ F
(2)
Y (yt), ∀t,

zs + sts ≥ yt , ∀s, t,
sts ≥ 0, ∀s, t.
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Simplification for empirical

distributions



Wasserstein distance between empirically distributed r. v.

Theorem

X attains values x1 ≤ · · · ≤ xT with probabilities 1/T .

Z attains values z1 ≤ · · · ≤ zT with probabilities 1/T .

Then their Wasserstein distance of integer order r is

dr (X ,Z )r =
1

T

T∑
t=1

| xt − zt |r .
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Portfolio optimization with SNDr
n constraints

X attains values x1 ≤ · · · ≤ xT with probabilities 1/T .

max
λ,z,x

1

T

T∑
t=1

xt

s.t.
1

T

T∑
t=1

| xt − zt |r≤ εr

xt =
k∑

i=1

λi · rit ∀t

Z ⪰(n) Y

λ ∈ Λ.
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Portfolio optimization with SNDr
n constraints

Y attains values y1 ≤ · · · ≤ yT with probabilities 1/T .

Z ⪰(1) Y

becomes

zt ≥
T∑
s=1

πtsys , ∀t,

T∑
t=1

πts = 1, ∀s,

T∑
s=1

πts = 1, ∀t,

πts ∈ {0, 1}, ∀s, t.

Z ⪰(2) Y

becomes

zt ≥
T∑
s=1

wtsys , t = 1, . . . ,T ,

T∑
t=1

wts = 1, s = 1, . . . ,T ,

T∑
s=1

wts = 1, t = 1, . . . ,T ,
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Further useful properties under empirical distribution

X and Y are empirically distributed with atoms x1, . . . , xT and

y1, . . . , yT .

• SNDr
1(X ,Y ) = GNDr

1(X ,Y ) and SND1
2(X ,Y ) = GND1

2(X ,Y )

• When SNDr
n(X ,Y ) is computed, it holds for the optimal closest

dominating Z that zt ≥ xt . As a result,

1

T

T∑
t=1

| xt − zt |r≤ εr

can be replaced by

1

T

T∑
t=1

(zt − xt)
r ≤ εr ,

zt ≥ xt .
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Almost stochastic dominance



Almost first-order stochastic dominance

Definition (Leshno, Levy(2002)):

Let X and Y be two random variables defined on a support [a, b] with

distribution functions FX and FY . For ε ∈ (0, 0.5), we say that X

dominates Y by ε-Almost FSD (X ⪰ε
(1) Y ) if∫

S1

FX (t)− FY (t)dt ≤ ε ·
∫ b

a

| FX (t)− FY (t) | dt,

where

S1 = {t ∈ [a, b] : FX (t) > FY (t)}.
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Relationships to d1 and GND1
1

Theorem

Suppose the support of X and Y is in [a, b], and FX and FY are their

distribution functions. Then

d1(X ,Y ) =

∫ b

a

| FX (t)− FY (t) | dx .

Theorem:

Suppose the support of X and Y is in [a, b], and FX and FY are their

distribution functions. Then∫
S1

FX (t)− FY (t)dt = GND1
1(X ,Y )

Theorem:

Suppose X and Y are empirically distributed. Then

GND1
1(X ,Y ) = SND1

1(X ,Y )
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Relationship of AFSD and SND1
1

Theorem:

Let X and Y be two random variables defined on a support [a, b],

ε ∈ (0, 0.5). Then X dominates Y by ε-Almost FSD if and only if

SND1
1(X ,Y ) ≤ ε · d1(X ,Y )

18/48



Portfolio optimization with SND1
1 vs. AFSD constraints

SND1
1 constraints

max
λ

E R(λ)

s.t. SND1
1 (R(λ),Y ) ≤ ε

λ ∈ Λ

AFSD constraints

max
λ

E R(λ)

s.t. SND1
1 (R(λ),Y ) ≤ ε̃ · d1(R(λ),Y )

λ ∈ Λ
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SND1
1 and AFSD constraints lead to different feasible sets

X1 attains values −1 and 20 with probabilities 0.1 and 0.9, respectively.

X2 attains values −0.5 and 5 with probabilities 0.1 and 0.9, respectively.

Y = 0 almost surely.

X1 X2

SND1
1(X ,Y ) 0.1 0.05

d1(X ,Y ) 18.1 4.55

ε̃ = SND1
1(X ,Y )/d1(X ,Y ) 0.0055 0.011
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Special case when the optimal solution is the same

For any ε̃ ∈ [0, 0.5] and the corresponding optimal solution λ of

max
λ

E R(λ)

s.t. SND1
1 (R(λ),Y ) ≤ ε̃ · d1(R(λ),Y )

λ ∈ Λ

there exists an ε = ε̃ · d1(R(λ),Y ) such that the optimal solution of

max
λ

E R(λ)

s.t. SND1
1 (R(λ),Y ) ≤ ε

λ ∈ Λ

is the same.
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Idea of proof

E R(λ)− E Y

=

∫ ∞

−∞
FY (t)− FX (t)dt

=

∫ ∞

−∞
| FY (t)− FX (t) | dt − 2

∫ ∞

−∞
[FY (t)− FX (t)]

−dt

=d1(R(λ),Y )− 2

∫
S1

FY (t)− FX (t)dt

=d1(R(λ),Y )− 2 · SND1
1(R(λ),Y ).

22/48



For ∀ ε̃-AFSD solution, SND1
1 solution exists. Not vice versa.

X1 attains values −1 and 20 with probabilities 0.1 and 0.9, respectively.

X2 attains values −0.5 and 5 with probabilities 0.1 and 0.9, respectively.

Y = 0 almost surely.

X1 X2

SND1
1(X ,Y ) 0.1 0.05

d1(X ,Y ) 18.1 4.55

ε̃ = SND1
1(X ,Y )/d1(X ,Y ) 0.0055 0.011

E X 17.9 4.45
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Portfolio optimization AFSD constraints

max
λ,z,x,π

1

T

T∑
t=1

xt

subject to 1/T ·
T∑
t=1

(zt − xt) ≤ ε · d1(R(λ),Y )

zt ≥ xt t = 1, . . . ,T .

xt =
k∑

i=1

λi · rit t = 1, . . . ,T

Z ⪰(1) Y

λ ∈ Λ.
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Dual formulation of Wasserstein distance

dr (X ,Y )r = max
ρt ,µt

1

T

T∑
t=1

ρt +
1

T

T∑
t=1

µt

ρt + µs ≤| xt − zs |r , t = 1, . . . ,T , s = 1, . . . ,T ,

ρt ∈ R, t = 1, . . . ,T ,

µt ∈ R, t = 1, . . . ,T .
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Portfolio optimization AFSD constraints

max
λ,z,x,π,ρ,µ

1

T

T∑
t=1

xt

subject to 1/T ·
T∑
t=1

(zt − xt) ≤ ε ·
T∑
t=1

(ρt + µt)

ρt + µs ≤| xt − ys |, t = 1, . . . ,T , s = 1, . . . ,T ,

ρt , µt ∈ R, t = 1, . . . ,T ,

zt ≥ xt t = 1, . . . ,T .

xt =
k∑

i=1

λi · rit t = 1, . . . ,T

Z ⪰(1) Y

λ ∈ Λ.
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Absolute value constrained from below

ρt + µs ≤| xt − ys | means that

either ρt + µs ≤ xt − ys ,

or ρt + µs ≤ −xt + ys .

Using a big constant M and integer variable bts , we can reformulate it as

ρt + µs ≤ xt − ys + bts ·M
ρt + µs ≤ −xt + ys + (1− bts) ·M

bts ∈ {0, 1}.
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Tractable ASD

Definition (Lizyayev, Ruszczynski (2012)):

X dominates Y by Tractable ε-Almost nth order stochastic

dominance if there exists a non-negative random variable V such that

E V ≤ ε and X + V ⪰(n) Y .
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Relationship between tractable AnSD and GND1
n

Suppose that Z is the optimal solution of the problem that searches for

GND1
n(X ,Y ). Set V = Z − X . Then

• V ≥ 0,

• X + V ⪰(n) Y ,

• E V = d1(Z ,X ) =GND1
n(X ,Y ).

⇓
X dominates Y by Tractable ε-Almost nth-order stochastic dominance

⇔
GND1

n(X ,Y ) ≤ ε.

Further, GND1
n(X ,Y ) = SND1

n for n = 1 and n = 2

for empirically distributed X and Y .
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Empirical study



Empirical study

• 49 industry representative portfolios

• CRSP index as benchmark

• We compare the optimal portfolios with respect to SSD, SND1
2,

SND2
2 and TSD constraints.

• FSD portfolio and the corresponding SND1
1 portfolios are

outperformed by the SSD portfolio in terms of returns as well as

risks.

• Considered ε: 0.000025, 0.0001, 0.00025, 0.0005, 0.00075, . . . , 0.06

Single period results

• Daily returns from Oct 2022 to Sept 2023
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Mean daily return and CVaR ·104

SND1
2 SND2

2 SND1
2 SND2

2

ε mean mean CVaR0.9 CVaR0.9

0 14.84 14.84 1.76 1.76

0.000025 15.03 14.91 1.78 1.76

0.0001 15.55 15.13 1.85 1.78

0.00025 16.45 15.53 1.94 1.82

0.0005 17.51 16.16 2.09 1.88

0.00075 18.52 16.75 2.24 1.95

0.001 19.39 17.26 2.39 2.02

0.0025 19.84 19.67 2.57 2.43

0.06 19.84 19.84 2.57 2.57

TSD 15.08 1.75
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Relationship to mean-CVaR efficient frontier
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Risk reduction compared to benchmark
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Risk reduction compared to benchmark
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Risk reduction compared to benchmark
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Risk reduction compared to benchmark
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Empirical study - moving window out-of-sample analysis

• Portfolios are formed at the beginning of every quarter based on the

preceding 12 months of daily returns.

• Their out-of-sample performance is evaluated in 96 non-overlapping

periods from January 1 through December 31 in every year from

1928 through 2023.
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Average annual out-of-sample returns depending on allowed ε
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CVaR0.9 of annual losses
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Mean-CVaR ratio
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Out-of-sample performance with respect to mean and CVaR0.9
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Maximum drawdown
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Calmar ratio

43/48



Out-of-sample measure of stochastic non-dominance

How often is the in-sample constraint satisfied out-of-sample?

What is the average measure of non-dominance out-of-sample?

SND1
2 SND2

2 SND1
2 SND2

2

ε % satisfied % satisfied avg SND1
2 avg SND2

2

0 10 10 0.0006 0.0013

0.0001 13 10 0.0008 0.0014

0.00025 17 13 0.001 0.0015

0.0005 23 16 0.0012 0.0017

0.00075 27 19 0.0015 0.002

0.001 33 23 0.0017 0.0022

0.002 49 34 0.0023 0.003

0.0075 93 78 0.0034 0.0052

0.06 100 100 0.0034 0.0064

44/48



Boxplots of the oos measures of non-dominance
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Boxplots of the excessive measures of non-dominance
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% of periods when optimal portfolio consisted of 1 asset

SND1
2 SND2

2

ε % in 1 asset % in 1 asset

0 6 6

0.000025 7 6

0.0001 9 7

0.00025 13 8

0.0005 19 11

0.00075 22 12

0.001 29 15

0.002 55 26

0.0075 95 76

0.06 100 100
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Conclusions

• Formulation of portfolio optimization with SNDr
n constraints

• Formulation of portfolio optimization with AFSD constraints and

relations to SND1
1 constraints

• Improved out-of-sample performance by allowing certain SNDr
n.

• Measuring the violation of SD by the Wasserstein distance of order 2

leads to more risk-averse results
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Increases in annual returns are statistically significant

Increase in average out-of-sample annual returns in percent

compared with SSD optimal portfolio (and p-value)

SND1
2 SND1

2 SND2
2 SND2

2

ε 0.0001 0.001 0.0001 0.001

average return spread 0.94 2.37 0.25 1.28

p-value (0.04) (0.03) (0.05) (0.04)
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