next up previous contents index
Next: semi-continuum Up: Definitions Previous: semi-aposyndetic

semi-confluent

A surjective mapping f: X \to Y$ between compact spaces is said to be (see [Mackowiak 1979, Chapter 3 and 4, p. 12-28]):
- semi-confluent provided that for each subcontinuum Q$ of Y$ and for every two components C_1$ and C_2$ of f^{-1}(Q)$ either f(C_1)
\subset f(C_2)$ or f(C_2) \subset f(C_1)$.
next up previous contents index
Next: semi-continuum Up: Definitions Previous: semi-aposyndetic
Janusz J. Charatonik, Pawel Krupski and Pavel Pyrih
2001-11-30