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1. Consider a linearised homogeneous isotropic elastic solid, that is a continuous medium where the (linearised) stress
tensor is given by the formula

� = λ (Tr �) I + 2µ�,

where � =def
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is the linearised strain. Assume the displacement field in the form

U =

UX̂(X,Y )

UŶ (X,Y )
0

 .
• Find the corresponding linearised strain � and show that the strain has nonzero components only in X and Y

plane. (The strain is effectively restricted to R2.)

• Find an explicit formula for the corresponding stress tensor � in terms of UX̂ and UŶ . Is it true that the stress
tensor has also nonzero components only in X and Y plane?

• Show that the (linearised) governing equations (no specific body force)

div � = 0,

for a steady state in R3 reduce to two nontrivial equations,
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• Show that if the stress � is generated by the means of Airy stress function ψ,
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 ,
then equations (1) are automatically fulfilled.

• Use the compatibility conditions for linearised strain tensor � in R2, and show that the compatibility conditions
imply

∆∆ψ = 0.

The moral of this example is the following. The governing equations for plane strain problems can be, in some cases,
converted to a single linear partial differential equation for scalar quantity ψ.


