Efficient linear semi-implicit finite element scheme for fluid-shell interaction

K. Tůma

joint work with S. Schwarzacher and B. She

Faculty of Mathematics and Physics, Charles University in Prague

September 24, 2024

Problem formulation - time dependent domain

• Time dependent domain

$$\Omega_f(t) = \{ \mathbf{x} = (x_1, x_2) \in \Sigma \times (0, \eta(t, x_1)) \} \subset \mathbb{R}^2,$$
$$\Sigma = (0, L)$$

- Incompressible Newtonian fluid in $\Omega_f(t)$
- Thin elastic structure on $\Gamma_S(t)$

Incompressible Newtonian fluid

$$\operatorname{div} \mathbf{u} = 0,$$

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla \mathbf{u}) \right) = \operatorname{div} \mathbb{T},$$

$$\mathbb{T} = -p\mathbb{I} + 2\mu \mathbb{D}(\mathbf{u}).$$

Thin elastic structure

$$\rho_s \frac{\partial \xi}{\partial t} + \mathcal{L}(\eta) = f, \quad \xi = \frac{\partial \eta}{\partial t},$$
$$\mathcal{L}(\eta) = -\gamma_1 \Delta_{x_1} \eta - \gamma_2 \Delta_{x_1} \zeta - \gamma_3 \Delta_{x_1} \xi, \quad \zeta = -\Delta_z \eta.$$

Coupling fluid and structure

- ALE mapping \mathcal{A}_{η} .
- Its Jacobian \mathcal{F} and determinant $J = \det \mathbb{F}$.
- Reformulate everything into the fixed configuration $\hat{\Omega}$.

Coupling conditions

Kinematic coupling : $\mathbf{u} = \xi \mathbf{e}_2,$ Dynamic coupling : $f = -\mathbf{e}_2 \cdot \left(J(\mathbb{T} \circ \mathcal{A}) \mathbb{F}^{-\mathrm{T}} \right) \mathbf{e}_2.$

Weak formulation of FSI on Ω_{η}

Let us define

$$W_{\eta} = \{(\boldsymbol{\varphi}, \boldsymbol{\psi}) \in W^{1,2}(\Omega_{\eta}) \times L^{2}(\Sigma) : \psi(x)\mathbf{e}_{2} = \boldsymbol{\varphi}(x, \eta(x)), \boldsymbol{\varphi} = \mathbf{0} \text{ on } \Gamma_{\mathrm{D}}\}.$$

Definition

Let (p,\mathbf{u},ξ,η) be a solution to the coupled FSI problem. The weak form then reads

$$\int_{\Omega_{\eta}} \operatorname{div} \mathbf{u} \, q \, \mathrm{d}x = 0 \quad \text{for all } q \in L^{2}(\Omega_{\eta})$$

$$\rho_f \int_{\Omega_\eta} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{w} \cdot \nabla) \mathbf{u} + \operatorname{div} \mathbf{w} \frac{\mathbf{u}}{2} \right) \cdot \boldsymbol{\varphi} \, \mathrm{d}x + \frac{\rho_f}{2} \int_{\Omega_\eta} (\boldsymbol{\varphi} \cdot (\nabla \mathbf{u}) - \mathbf{u} \cdot (\nabla \boldsymbol{\varphi})) \cdot \mathbf{v} \, \mathrm{d}x + \int_{\Omega_\eta} \mathbb{T} \cdot \nabla \boldsymbol{\varphi} \, \mathrm{d}x + \rho_s \int_{\Sigma} \frac{\partial \xi}{\partial t} \psi \, \mathrm{d}x_1 + a_s(\eta, \zeta, \xi, \psi) = 0$$

for all $({\boldsymbol \varphi},\psi)\in W_\eta,$ where ${\bf w}$ is the speed of deformation, ${\bf v}={\bf u}-{\bf w}$ and

$$a_s(\eta,\zeta,\xi,\psi) = \int_{\Sigma} \left(\gamma_1 \frac{\partial \eta}{\partial x_1} \frac{\partial \psi}{\partial x_1} + \gamma_2 \frac{\partial \zeta}{\partial x_1} \frac{\partial \psi}{\partial x_1} + \gamma_3 \frac{\partial \xi}{\partial x_1} \frac{\partial \psi}{\partial x_1} \right) \, \mathrm{d}x_1.$$

Definition

Let $(p, \mathbf{u}, \xi, \eta)$ satisfy the weak formulation on Ω_{η} with the test functions $(q, \boldsymbol{\varphi}, \psi) \in L^2 \times W_{\eta}$. Let $(\hat{p}, \hat{q}, \hat{\mathbf{u}}, \hat{\boldsymbol{\varphi}}) = (p, q, \mathbf{u}, \boldsymbol{\varphi}) \circ \mathcal{A}_{\eta}$. Then it holds

$$\int_{\hat{\Omega}} J \nabla \hat{\mathbf{u}} \cdot \mathbb{F}^{-\mathrm{T}} \, \hat{q} \, \mathrm{d}\hat{x} = 0,$$

Finite element method on $\hat{\Omega}$

- Numerical approximation denoted by $(\hat{p}_h^k, \hat{\mathbf{u}}_h^k, \hat{\eta}_h^k, \hat{\xi}_h^k)$ at time t^k .
- Time step τ , $t^k = k\tau$.
- Backward Euler

$$D_t v_h^k = \frac{v_h^k - v_h^{k-1}}{\tau}.$$

- Ω_h triangulated uniformly.
- Pair $(\hat{\mathbf{u}}_h^k, \hat{p}_h^k) \in \hat{V}_h^f \times \hat{Q}_h^f$ inf-sup stable mini elements (P1-bubble + P1).
- Unknowns $\hat{\eta}_h^k, \hat{\xi}_h^k$ P1 elements (\hat{V}_h^s) .

$$\hat{V}_h^{\text{fsi}} = \{ (\hat{\boldsymbol{\varphi}}, \hat{q}, \psi) \in \hat{V}_h^f \times \hat{Q}_h^f \times \hat{V}_h^s : \hat{\boldsymbol{\varphi}}(x_1, 1) = \psi(x_1) \}$$

Linear monolithic scheme on $\hat{\Omega}$

Definition

For $k=1,\ldots,N$ we seek $(\hat{\mathbf{u}}_h^k,\hat{p}_h^k,\hat{\xi}_h^k,\hat{\eta}_h^k)\in \hat{V}_h^{\mathrm{fsi}}\times\hat{V}_h^s$ with $\hat{\xi}_h^k=D_t\eta_h^k$ such that for all $(\hat{\pmb{\varphi}},\hat{q},\psi)\in\hat{V}_h^{\mathrm{fsi}}$ it holds

$$\int_{\hat{\Omega}} J_h^{k-1} \nabla \hat{\mathbf{u}}_h^k \cdot (\mathbb{F}_h^{k-1})^{-\mathrm{T}} \, \hat{q} \, \mathrm{d}\hat{x} = 0,$$

$$\begin{split} \rho_f &\int_{\hat{\Omega}} \left(J_h^{k-1} D_t \hat{\mathbf{u}}_h^k + D_t J_h^{k-1} \frac{2 \hat{\mathbf{u}}_h^{k-1} - \hat{\mathbf{u}}_h^k}{2} \right) \cdot \boldsymbol{\varphi} \, \mathrm{d}\hat{x} + \\ \frac{\rho_f}{2} &\int_{\hat{\Omega}} J_h^{k-1} \left(\hat{\boldsymbol{\varphi}} \cdot (\nabla \hat{\mathbf{u}}_h^k) - \hat{\mathbf{u}}_h^k \cdot (\nabla \hat{\boldsymbol{\varphi}}) \right) \cdot (\mathbb{F}_h^{k-1})^{-1} \hat{\mathbf{v}}_h^{k-1} \, \mathrm{d}\hat{x} + \\ &\int_{\hat{\Omega}} J_h^{k-1} \hat{\mathbb{T}} (\mathbf{u}_h^k, p_h^k) (\mathbb{F}_h^{k-1})^{-T} \cdot \nabla \hat{\boldsymbol{\varphi}} \, \mathrm{d}\hat{x} + \\ &\rho_s &\int_{\Sigma} D_t \xi_h^k \psi \, \mathrm{d}x_1 + a_s(\eta_h^k, \zeta_h^k, \xi_h^k, \psi) = 0. \end{split}$$

Stability

Theorem

Let $\{(\hat{\mathbf{u}}_h^k, \hat{p}_h^k, \hat{\xi}_h^k, \hat{\eta}_h^k)\}_{k=1}^N$ be the solution of our numerical scheme. Then the following stability result holds for all $m = 1, \ldots, N$

$$E_{h}^{m} + \tau \sum_{k=1}^{m} 2\mu \int_{\hat{\Omega}} \eta_{h}^{k} |(\nabla \mathbf{u}_{h}^{k}(\mathbb{F}_{h}^{k-1})^{-1})^{s}|^{2} \,\mathrm{d}\hat{x} + \gamma_{3} \left\| \frac{\partial \xi_{h}^{k}}{\partial x_{1}} \right\|_{L^{2}(\Sigma)}^{2} + \tau D_{\mathrm{num}}^{k} = E_{h}^{0}$$

where for any $k=0,\ldots,N$ the total energy E_h^k and the numerical dissipation $D_{\rm num}^k$ read

$$E_{h}^{k} = \frac{\rho_{f}}{2} \int_{\hat{\Omega}} \eta_{h}^{k} |\mathbf{u}_{h}^{k}|^{2} \,\mathrm{d}\hat{x} + \frac{\rho_{s}}{2} \|\xi_{h}^{k}\|_{L^{2}(\Sigma)}^{2} + \frac{\gamma_{1}}{2} \left\|\frac{\partial\eta_{h}^{k}}{\partial x_{1}}\right\|_{L^{2}(\Sigma)} + \frac{\gamma_{2}}{2} \left\|\frac{\partial^{2}\eta_{h}^{k}}{\partial x_{1}^{2}}\right\|_{L^{2}(\Sigma)},$$

$$D_{\mathrm{num}}^{k} = \frac{\rho_{f}}{2} \int_{\hat{\Omega}} \eta_{h}^{k} |D_{t}\hat{\mathbf{u}}_{h}^{k}|^{2} \mathrm{d}\hat{x} + \frac{\rho_{s}}{2} \|D_{t}\xi_{h}^{k}\|_{L^{2}(\Sigma)}^{2} + \frac{\gamma_{1}}{2} \left\|\frac{\partial\xi_{h}^{k}}{\partial x_{1}}\right\|_{L^{2}(\Sigma)}^{2} + \frac{\gamma_{2}}{2} \left\|\frac{\partial^{2}\xi_{h}^{k}}{\partial x_{1}^{2}}\right\|_{L^{2}(\Sigma)}^{2}.$$

• We need to preserve $\eta_h^k > 0$. This holds due to no contact between the upper and the bottom surface. (Talk by J. Fara, Thursday 16:00.)

Convergence rate

Errors:

$$\begin{split} e_p^k &= \hat{p}_h^k - \hat{p}^k, \\ e_{\mathbf{u}}^k &= \hat{\mathbf{u}}_h^k - \hat{\mathbf{u}}^k, \\ e_{\xi}^k &= \xi_h^k - \xi^k, \\ e_{\eta}^k &= \eta_h^k - \eta^k, \\ e_{\zeta}^k &= \zeta_h^k - \zeta^k. \end{split}$$

We study the error between our numerical solution $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\xi}_h, \hat{\eta}_h)$ and target smooth solution $(\hat{\mathbf{u}}, \hat{p}, \xi, \eta)$ of FSI problem existing in the following class of strong solutions (Grandmont and Hillairet, ARMA 2016)

$$\begin{cases} \eta > \underline{\eta}, \eta \in L^{2}(0, T; W^{3,2}(\Sigma)) \cap W^{2,2}(0, T; W^{2,2}(\Sigma)), \\ \hat{\mathbf{u}} \in L^{\infty}(0, T; W^{1,2}(\hat{\Omega}; \mathbb{R}^{2})) \cap L^{2}(0, T; W^{2,2}(\hat{\Omega}; \mathbb{R}^{2})), \\ \frac{\partial \hat{\mathbf{u}}}{\partial t} \in L^{2}(0, T; W^{1,2}(\hat{\Omega}; \mathbb{R}^{2})), \\ \hat{p} \in L^{\infty}(0, T; L^{2}(\hat{\Omega})), \ \nabla p \in L^{2}((0, T) \times \hat{\Omega}). \end{cases}$$

Theorem

Let $\{(\hat{\mathbf{u}}_{h}^{k}, \hat{p}_{h}^{k}, \hat{\xi}_{h}^{k}, \hat{\eta}_{h}^{k})\}_{k=1}^{N}$ be the solution of our numerical scheme, and let $(\hat{\mathbf{u}}, \hat{p}, \xi, \eta)(t), t \in (0, T)$ be the strong solution of given FSI problem belonging to the class on the previous slide. Then for any $k = 1, \ldots, N$ it holds

$$\begin{split} \|e^k_{\mathbf{u}}\|_{L^{\infty}(0,T;L^2(\hat{\Omega}))} + \|e^k_{\xi}\|_{L^{\infty}(0,T;L^2(\Sigma))} + \left\|\frac{\partial e^k_{\eta}}{\partial x_1}\right\|_{L^{\infty}(0,T;L^2(\Sigma))} + \\ \|e^k_{\zeta}\|_{L^{\infty}(0,T;L^2(\Sigma))} + \|\nabla e^k_{\mathbf{u}}\|_{L^2((0,T)\times\hat{\Omega})} + \gamma_3 \left\|\frac{\partial e^k_{\xi}}{\partial x_1}\right\|_{L^2((0,T)\times\Sigma)} \stackrel{<}{\sim} \tau + h. \end{split}$$

Numerical implementation

- FEniCS finite element code.
- Instead of height of the structure η , we take a shift $\eta = \eta 1$ and then linearly extend it to the whole domain via $\eta = \eta \hat{x}_2$.
- Displacement η^k is computed on Γ using

$$\eta^k = \eta^{k-1} + \tau u_2^k \quad \text{on } \Gamma.$$

- Direct solver MUMPS.
- Whole simulation consists of two steps:
 - $\begin{array}{l} \mbox{Step 1} \ \mbox{For known } \eta^{k-1} \ \mbox{we solve for velocity } \mathbf{u}^k, \mbox{its} \\ \mbox{Laplace } \zeta^k \ \mbox{and pressure } p^k \ \mbox{using the weak form.} \\ \mbox{Step 2} \ \mbox{We linearly prolongate the displacement } \eta \ \mbox{to} \\ \mbox{whole } \hat{\Omega} \ \mbox{by solving} \end{array}$

$$\int_{\hat{\Omega}} \frac{\partial \eta}{\partial x_2} \, \frac{\partial t}{\partial x_2} \, \mathrm{d}\hat{x} = 0$$

with zero BC at the bottom, and $\eta = \eta^{k-1} + \tau u_2^k$ at the top, where u_2^k is obtained in Step 1.

- Domain $\hat{\Omega}$ is a rectangle 2×1 .
- Periodic BC on lateral sides, no-slip at the bottom.
- Parameters $\rho_f = \rho_s = 1$, $\mu = 0.01$, $\gamma_1 = \gamma_2 = 0.1$, $\gamma_3 = 0$.
- Flow driven by force acting on the shell

$$g = \begin{cases} 200t\sin(2\pi x) & t \le 0.2, \\ 0 & t > 0.2. \end{cases}$$

Experimental order of convergence

- $\bullet \ t \in [0,T], T=1.0$
- 6 different time steps, six different meshes.
- $\tau_{\rm min} = 1 \times 10^{-4}$, $h_{\rm min} = 8.84 \times 10^{-3}$ used as reference solution

h	$\ e_{\mathbf{u}}\ _{L^{\infty}(L^2)}$	$\ e_{\xi}\ _{L^{\infty}(L^2)}$	$ e_{\eta} _{L^{\infty}(L^2)}$	$\ \nabla e_{\eta}\ _{L^{\infty}(L^2)}$	$\ e_{\zeta}\ _{L^{\infty}(L^2)}$	$\ \nabla e_{\mathbf{u}}\ _{L^2(L^2)}$
2.83×10^{-1}	1.20×10^{0}	2.84×10^{0}	2.22×10^{-1}	1.41×10^{0}	9.22×10^{0}	1.23×10^{1}
1.41×10^{-1}	3.19×10^{-1}	5.80×10^{-1}	5.99×10^{-2}	3.79×10^{-1}	2.42×10^{0}	7.51×10^{0}
7.07×10^{-2}	1.05×10^{-1}	1.39×10^{-1}	1.52×10^{-2}	1.34×10^{-1}	6.02×10^{-1}	4.11×10^{0}
3.54×10^{-2}	2.78×10^{-2}	3.31×10^{-2}	3.65×10^{-3}	6.57×10^{-2}	1.44×10^{-1}	2.12×10^0
1.77×10^{-2}	5.91×10^{-3}	6.64×10^{-3}	7.32×10^{-4}	2.94×10^{-2}	2.89×10^{-2}	1.04×10^{0}

τ	$\ e_{\mathbf{u}}\ _{L^{\infty}(L^2)}$	$\ e_{\xi}\ _{L^{\infty}(L^2)}$	$\ e_{\eta}\ _{L^{\infty}(L^2)}$	$\ \nabla e_{\eta}\ _{L^{\infty}(L^2)}$	$\ e_{\zeta}\ _{L^{\infty}(L^2)}$	$\ \nabla e_{\mathbf{u}}\ _{L^2(L^2)}$
5.00×10^{-3}	2.55×10^{-1}	5.50×10^{-1}	4.23×10^{-2}	2.66×10^{-1}	1.67×10^{0}	1.61×10^{0}
2.50×10^{-3}	1.36×10^{-1}	2.87×10^{-1}	2.21×10^{-2}	1.39×10^{-1}	8.74×10^{-1}	8.52×10^{-1}
1.25×10^{-3}	6.87×10^{-2}	1.43×10^{-1}	1.10×10^{-2}	6.91×10^{-2}	4.35×10^{-1}	4.28×10^{-1}
6.25×10^{-4}	3.25×10^{-2}	6.73×10^{-2}	5.17×10^{-3}	3.25×10^{-2}	2.05×10^{-1}	2.02×10^{-1}
3.12×10^{-4}	1.37×10^{-2}	2.83×10^{-2}	2.17×10^{-3}	1.36×10^{-2}	8.60×10^{-2}	8.45×10^{-2}

Experimental order of convergence

- $\bullet \ t \in [0,T], T=1.0$
- 6 different time steps, six different meshes.
- $\tau_{\rm min} = 1 \times 10^{-4}$, $h_{\rm min} = 8.84 \times 10^{-3}$ used as reference solution

Experimental order of convergence

•
$$t \in [0, T], T = 1.0$$

- 6 different time steps, six different meshes.
- $\tau_{\rm min} = 1 \times 10^{-4}$, $h_{\rm min} = 8.84 \times 10^{-3}$ used as reference solution

K. Tůma

Linear semi-implicit scheme vs fully implicit scheme

- Fully implicit = non-linear scheme with all unknowns.
- Main difference in time splitting, compare errors for different time steps τ on finest mesh.
- Linear semi-implicit scheme: 410 880 DOFs in Step 1 + 153 920 DOFs in Step 2 in every time step.
- Fully implicit scheme: 564 000 DOFs in every Newton step.

Linear semi-implicit scheme vs fully implicit scheme

- Fully implicit = non-linear scheme with all unknowns.
- Main difference in time splitting, compare errors for different time steps τ on finest mesh.
- Linear semi-implicit scheme: 410 880 DOFs in Step 1 + 153 920 DOFs in Step 2 in every time step.
- Fully implicit scheme: 564 000 DOFs in every Newton step.
- CPU time matters! Intel Xeon Gold 6240 CPU.

Scheme	τ	Avg Newton its	CPU time [min]
Fully implicit	5.00×10^{-3}	3	135.5
Semi-implicit	5.00×10^{-3}		24.5
Fully implicit	3.12×10^{-4}	2	1310.7
Semi-implicit	3.12×10^{-4}	_	338.0

Conclusion

- FSI linear semi-implicit scheme.
- Energy stable, linear convergence in space and time.
- Implemented in FEniCS, convergence rates confirmed.
- Our linear scheme outperforms fully implicit scheme.

