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Multiplicity a reminder

Definition
Let R be a semisimple artinian ring and let M be a finitely
generated R-module. Then there are simple modules
S1, S2, . . . ,Sm such that M ' ⊕m

i=1Si . If S is a simple left
R-module, the multiplicity of S in M is defined as

|{i ∈ {1, . . . , k} | Si ' S}|

Remark
The multiplicity is correctly defined. That is, if S1, . . . ,Sn,
T1, . . . ,Tm are simple left R-modules and ⊕n

i=1Si ' ⊕m
i=1Ti then

for every simple left R-module S

|{i ∈ {1, . . . , n} | Si ' S}| = |{i ∈ {1, . . . ,m} | Ti ' S}|



multiplicity = dimension, a reminder

Proposition

Assume that R is a semisimple artininian finite dimensional
F-algebra, F algebraically closed. For any simple left R-module the
multiplicity of S in RR coincides with dimF(S).

Proof.
Use the Wedderburn-Artin theorem, there are k ∈ N0 and
n1, n2, . . . , nk ∈ N such that

R ' Mn1(F)× · · · ×Mnk (F)

as F-algebras. So we may assume

R = Mn1(F)× · · · ×Mnk (F)

and in this case we know that there are simple left modules
S1, S2, . . . ,Sk pair-wise non-isomorphic such that

RR ' Sn1
1 ⊕ Sn2

2 ⊕ · · · ⊕ Snk
k . So the multiplicity of Si in R is ni

which coincides with dimF(Si ).



The regular representation

Let G be a finite group, F an algebraically closed field with
char(F) - |G |. Let S1,S2, . . . ,Sk be simple left FG modules such
that every simple left FG module is isomorphic to exactly 1 of
these modules. We already know that k is the number of
conjugacy classes in G . For 1 ≤ i ≤ k let di := dimF(Si ).
By the previous proposition the multiplicity of Si in FGFG is
exactly di , so FG ' ⊕k

i=1S
di
i as left FG -modules.

Now look at dimensions of these modules: dimF(FG ) = |G |,
dimF(⊕k

i=1S
di
i ) =

∑k
i=1 d

2
i .

Thus we conclude

|G | =
k∑

i=1

d2
i .



Summary in the language of RepF(G )

Theorem
Let G be a finite group, F an algebraically closed field,
char(F) - |G |.

1. Every representation of G over F is equivalent to a direct sum
of irreducible representations.

2. If k is the number of conjugacy classes of G , then there are
ϕ1, ϕ2, · · · , ϕk ∈ RepF(G ) irreducible such that every
irreducible representation of G over F is equivalent to exactly
one of these representations.

3. If di is the degree of ϕi then the multiplicity of ϕi in regF(G )
is di

regF(G ) '
d1︷ ︸︸ ︷

ϕ1 ⊕ · · · ⊕ ϕ1⊕ · · · ⊕
dk︷ ︸︸ ︷

ϕk ⊕ · · · ⊕ ϕk

4. |G | =
∑k

i=1 d
2
i



Representations of finite abelian groups

Proposition

Let G be a finite group and F algebraically closed field such that
char(F) - |G |. Then G is abelian if and only if every irreducible
representation of G over F has degree 1.

Proof.
Let k be the number of conjugacy classes in G . Note that G is
abelian if and only if k = |G |.
Let ϕ1, ϕ2, . . . , ϕk ∈ RepF(G ) be the list of all irreducible
representations of G over F up to equivalence (that is, every
irreducible representation of G over F is equivalent to exactly one
representation on the list). Let di be the degree of ϕi . Then
|G | =

∑k
i=1 d

2
i .

If |G | = k , then every di is one which implies that every irreducible
representation of G over F has degree 1.
Conversely, if di = 1 for every i ∈ {1, . . . , k}, we get |G | = k , so G
is an abelian group.



Representations of finite abelian groups

Remark
Recall we saw an example of an irreducible representation
ϕ ∈ RepQ(Z3) of degree 2.

Example

Find all irreducible complex representations of a finite abelian
group.

Idea: We have to find Hom(G ,C∗) for a finite abelian group. We
know the size of this set. We use the theorem on the structure of
finite abelian groups and the universal property of coproducts.



Characters, informal intro

Characters can be seen as numerical invariants associated to group
representations of finite degree.
Sometimes one can use characters to decide whether a given
representation is irreducible or not or whether two given
representations are equivalent or not.



Characters, the definition

Definition
Let G be a group and let ψ : G → GL(n,F) be a matrix
representation of G over a field F. Character of ψ is a function
χψ : G → F defined by the rule

χψ : g 7→ Tr(ψ(g)), g ∈ G

Remark
If n = 1 then ψ and χψ are essentially the same.

Definition
Let G be a group and let ϕ : G → AutF(V ) be a representation of
G over F of finite degree (that is dimF(V ) <∞). Character of ϕ
is a function χϕ : G → F defined by the rule

χϕ : g 7→ Tr([ϕ(g)]B), g ∈ G

where B is a basis of V .



Basic properties of characters

Proposition

Let G be a group and let F be a field.

a) Equivalent representations of G over F have equal characters.

b) Character of any representation of G over F is constant on
conjugacy classes of G .

c) Character of a direct sum of representations is the sum of
characters of the summands

d) If g ∈ G is an element of order n ∈ N, E an extension of F
containing all roots of xn − 1 and ψ : G → GL(d ,F) a matrix
representation of degree d. Then χψ(g) =

∑d
i=1 λi , where

λ1, . . . , λd ∈ E are roots of xn − 1.

e) If F = C and g ∈ G is an element of finite order, the
χψ(g−1) = χψ(g) for every matrix representation
ψ : G → GL(d ,C) of G over C.



Proofs of a) and b)
We consider matrix representations only (proofs for linear
representations are essentially the same).
The crucial property is that Tr(AB) = Tr(BA) for every pair of
matrices A ∈ Mk,`(F) and B ∈ M`,k(F).
a) Assume ψ1, ψ2 : G → GL(d ,F) are equivalent representations of
G over F.
That means, there exists a matrix X ∈ GL(d ,F) such that for
every g ∈ G

ψ1(g) = Xψ2(g)X−1 .

Apply trace:

χψ1(g) = Tr(Xψ2(g)X−1) = Tr(ψ2(g)X−1X ) = χψ2(g)

b) Let ψ : G → GL(d ,F) be a matrix representation of G over F
and let g , h ∈ G in the same conjugacy class. That is, there exists
x ∈ G such that h = xgx−1. Then

χψ(h) = Tr(ψ(x)ψ(g)ψ(x)−1) = Tr(ψ(g)ψ(x)−1ψ(x)) = χψ(g)



Proof of c)

Again we prove this part for matrix representations only.
For i = 1, 2, . . . , k let ψi : G → GL(di ,F) be a matrix
representation of G over F. We want to prove

χψ1⊕ψ2⊕···⊕ψk
=

k∑
i=1

χψi

But this is obvious from the definition of direct sum of
representations: Recall
ψ := ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψk : G → GL(

∑k
i=1 di ,F) maps an element

g ∈ G to a block-diagonal matrix ψ1(g)⊕ ψ2(g)⊕ · · · ⊕ ψk(g).
Then the sum of diagonal entries of ψ(g) is the sum of all diagonal
entries of matrices ψ1(g), ψ2(g), . . . , ψk(g). In other words

χψ(g) =
k∑

i=1

χψi
(g)



Proof of d)

Since gn = 1 and ψ is a group homomorphism, we obtain
ψ(g)n = E . If λ ∈ E is an eigenvalue of ψ(g), then λn = 1.

Indeed, let v ∈ Ed
be a nonzero vector satisfying ψ(g)v = λv .

Then
v = (ψ(g))nv = λnv

which implies λ is a root of xn − 1 ∈ F[x ], so by our assumption
λ ∈ E.
From linear algebra we know that Tr(ψ(g)) is the sum of all roots
of characteristic polynomial of ψ(g) regarding their multiplicity.
Since each of these roots is an eigenvalue of ψ(g), we obtain
λ1, λ2, . . . , λd such that λni = 1 for every 1 ≤ i ≤ d and

χψ(g) =
d∑

i=1

λi



Proof of e)
Again consider g ∈ G such that gn = 1 and let ψ : G → GL(d ,C)
be a homomorphism of groups. Then ψ(g)n = E . We know that
every d × d matrix over C is similar to an upper triangular matrix
(for example to its Jordan canonical form).
Let X ∈ GL(d ,C) be such that Y := Xψ(g)X−1 is upper
triangular.
Let λ1, . . . , λd be elements on the diagonal of Y . Then

χψ(g) = Tr(ψ(g)) = Tr(Y ) =
d∑

i=1

λi

Note also that

χψ(g−1) = Tr(ψ(g)−1) = Tr(Xψ(g)−1X−1) = Tr(Y−1)

Of course, Y−1 is also upper triangular with entries
λ−11 , λ−12 , . . . , λ−1d on the diagonal.
Recall that in part d) we proved λni = 1, in particular |λi | = 1 for
every 1 ≤ i ≤ d .



Proof of e)

Hence λ−1i = λi and therefore

χψ(g−1) =
d∑

i=1

λi =
d∑

i=1

λi = χψ(g) .

Remark
Recall that the Jordan canonical form of ψ(g) is diagonal, since if
B is a Jordan block with nonzero eigenvalue and size bigger than
1, then Bn 6= E for every n ∈ N.

Remark
From the proof it follows that if ψ : G → GL(d ,C) is a complex
representation of G and g ∈ G has finite order, then |χψ(g)| ≤ d .
We will recall this fact later.



Schur’s lemma in RepF(G )

Lemma
(Schur) Let G be a finite group and let F be a field.

a) Assume that ϕ,ψ ∈ RepF(G ) are irreducible. Then every
θ ∈ RepF(G )(ϕ,ψ) is either 0 or an isomorphism.

b) Assume that F is algebraically closed and ϕ ∈ RepF(G ) is
irreducible. Then every θ ∈ RepF(G )(ϕ,ϕ) is a scalar multiple
of identity.

Remark
Recall that every irreducible representation of a finite group G over
F corresponds to a simple left FG -module. Every such a module is
obtained as a factor of FG modulo a maximal left ideal, so every
irreducible representation of a finite group has finite dimension
(you can prove this directly showing that every nonzero
representation of a finite group has a nonzero invariant subspace of
finite dimension).



Ideas of the proof of Schur’s lemma
a) Let ϕ : G → AutF(V ) and ψ : G → AutF(U) be representations
of G over F.
Recall θ ∈ RepF(G )(ϕ,ψ) means that θ ∈ HomF(V ,U) satisfies
that for every g ∈ G

θ ◦ [ϕ(g)] = [ψ(g)] ◦ θ

For this it is easy to see that Ker θ is ϕ-invariant subspace of V
and Im θ is ψ-invariant subspace of U.
If ϕ is irreducible then θ is either a monomorphism or zero.
If ψ is irreducible then θ is either onto or zero.
If both representations are irreducible then θ is either an
isomorphism or zero.
b) Assume ϕ : G → AutF(V ) irreducible and F algebraically
closed. Since dimF(V ) is finite, θ ∈ EndF(V ) has an eigenvalue
λ ∈ F. This means that θ(v) = λv for some v 6= 0.
Consider θ′ := θ − λ1V ∈ RepF(G )(ϕ,ϕ). By a) this is is either an
isomorphism or zero. Now v ∈ Ker θ and hence θ′ = 0.



Schur’s lemma in matrix form

Lemma
(Schur) Let G be a group, F be a field.

a) Assume ϕ : G → GL(n,F), ψ : G → GL(m,F) are irreducible
matrix representations of G over F. Let C ∈ Mm,n(F) satisfies

Cϕ(g) = ψ(g)C

for every g ∈ G . Then either C = 0 or m = n and C is
regular.

b) Assume that F is algebraically closed, ϕ : G → GL(n,F)
irreducible and C ∈ Mn(F) satisfies

Cϕ(g) = ϕ(g)C

for every g ∈ G . Then C = λE for some λ ∈ F.



Proof of the matrix form of Schur’s lemma, part a)
It is possible to use linear representations associated to matrix reps
and apply the previous version of Schur’s lemma (at least for finite
groups). Let us write here a direct argument.
a) Consider Ker C := {v ∈ Fn | Cv = 0} ≤ Fn,
Im C := {Cv | v ∈ Fn} ≤ Fm.
An easy computation shows that Ker C is a ϕ-invariant subspace,
i.e.,

v ∈ Ker C ⇒ ∀g ∈ G [ϕ(g)]v ∈ Ker C .

If Cv = 0 then C [ϕ(g)]v = [ψ(g)]Cv = 0.
Similarly Im C is ψ-invariant subspace: If w = Cv for some
v ∈ Fn, then [ψ(g)]w = [ψ(g)]Cv = C ([ϕ(g)]v). That is,

w ∈ Im C ⇒ ∀g ∈ G [ϕ(g)]w ∈ Im C .

If ϕ is irreducible, then either Ker C = 0 or Ker C = Fn. If ψ is
irreducible, then either Im C = 0 or Im C = Fm.
If both representations are irreducible, then either C = 0 or n = m
and C is regular



Proof of Schur’s lemma, part b)

In this case C is a square matrix. Since F is algebraically closed,
there exists λ ∈ F an eigenvalue of C .
Note that for every g ∈ G we have
[ϕ(g)](C − λE ) = (C − λE )[ϕ(g)]. So we can apply part a) for
the matrix C − λE . This matrix is not regular, so it has to be zero.
That is C = λE .



Some applications

Corollary

Let G be a finite group. If ϕ : G → GL(n,F) and
ψ : G → GL(m,F) are irreducible matrix representations of G over
F which are not equivalent and X ∈ Mm,n(F) is an arbitrary matrix
then ∑

g∈G
ψ(g)Xϕ(g−1) = 0

Proof.
Let Y :=

∑
g∈G ψ(g)Xϕ(g−1). Then for every h ∈ G is

ψ(h)Y =
∑
g∈G

ψ(hg)Xϕ(g−1h−1h) = [
∑
g∈G

ψ(hg)Xϕ((hg)−1)]ϕ(h) .

In other words ψ(h)Y = Yϕ(h) for every h ∈ G . By Schur’s
lemma, Y = 0 or m = n and Y is regular. If Y is regular, we
obtain ψ(h) = Yϕ(h)Y−1 for every h ∈ G , that is, ϕ and ψ are
equivalent.



Some applications, cont.

Corollary

Let G be a finite group. If ϕ : G → GL(n,F) is an irreducible
matrix representation and F is algebraically closed, then for every
X ∈ Mn(F) there exists λ ∈ F such that∑

g∈G
ϕ(g)Xϕ(g−1) = λE

(the proof is similar as the proof of the previous corollary)



The end

That’s all for today.
Thnk you for your attention.


