HW 2.1 Assume that the function $f(t,x) : \mathbb{R}^2 \to \mathbb{R}$ satisfies f(-t,x) = -f(t,x), for all t. Prove that the following implications holds:

If x(t), $t \in I$ is solution to x' = f(t, x), then $\tilde{x}(t) := x(-t)$, $t \in \tilde{I}$ is also a solution to x' = f(t, x), where $\tilde{I} = \{-t; t \in I\}$.

What kind of symmetry is this? (You can use this in the following problem.)

HW 2.2 Investigate the behavior of solutions to the first order ODE

$$x' = t(x - x^2)$$

without actually solving the equation. In particular, investigate monotonony and convexity of solutions as functions x = x(t).

Sketch a picture (of size 10x10 cm at least) with examples of typical solutions.

HW 2.3 Investigate the behavior of solutions to the system

$$x' = x + y^3$$
$$y' = x - x^3$$

In particular, investigate the direction of solutions in the xy-plane. Sketch a picture (of size 10x10 cm at least) with examples of typical solutions.

By the way, is there some symmetry here?

HW 2.4* Assume that x = x(t) is a smooth positive function, defined on some interval $t \ge t_0$.

(i) Show that if $x' \leq c(1+x)$ for some c > 0, there cannot be a blow-up for any finite time $t > t_0$.

(ii) Show that if $x' \ge cx^a$ with some c > 0 and a > 1, there indeed is a blow-up for some finite $t > t_0$.