Practicum 1 - February 17 Introduction: ODE -- definition, concept of solution ODE type: with separated variables demo: x'=3t², x'=5x , x' = -t/x class: x'=x²+1, x'=e^x(t+1) , x'=(x^2-x)/t Theorem P.1 - sketch of the proof demo: x'=2√|x|.exp(-t) (only for x>0) ============================================================ Practicum 2&3 - February 24 finishing x'=2√|x|.exp(-t) (for x=0 and x<0) ODE type: first order linear class: x'-x=te^t x'-x/t = t^2e^t x-x/t^2 = 1/t^3 x'+2x=cos t demo: tx'-3x=t³ + initial condition: x(1)=-1 + remark on maximal solutions ODE type: homogeneous demo: x'=(x-t)/(x+t) ... (can't be solved) 1. x'=exp(x/t)+x/t 5. t²x' = x² + 2tx 6. 2txx' + t²-x² = 0 ODE type: Bernoulli demo: ex.6) above via z=x² ============================================================ Practicum 4 - March 3 topic: EQA (elementary qualitative analysis) demo: x'=x²+t²-1 class: 1. x'=t²(x+1) 2. x'=(x-1)/(t-1) 3. x'=t(x+1) 4. x'=x/t+t² 5. x'=2tx-2 theory: Peano & Picard, symmetries: proof for f(-t,-x)=f(t,x) ============================================================ Practicum 5 - March 10 topic: EQA 2 demo: x'=3y² , y'=-2x class: 0. x'=y , y'=-x 1. x'=x(1-x)-xy , y'=-2y+xy 2. x'=x(1-x/2-y) , y'=y(2-2x-y) 3. x'=x(2-2x-y) , y'=y(1-x/2-y) Note: 1--3 in 1st quadrant only (x,y>0) on board: no. 0 (prime integral preview) no. 1 (demo by student) ============================================================ Practicum 6 - March 17 Review of theory: - general system of ODEs, Peano & Picard (Thm P.4 & P.5) - prime integral: definition, characterization (Thm P.7) demo: x'=3y² , y'=-2x (prime integral: y³+x²=c) class: find prime integral(s) for the systems: 1. x'=x, y'=-y 2. x'=xy, y'=xy 3. x'=y, y'=x-x² (or x"+x²-x=0) 4. x'=xy, y'=xz, z'=yz theory: stability, asymptotic stability, instability Theorem P.5 [Linearized (in)stability theorem] application: example above ... conclusion? ============================================================ Practicum 7 - March 24 Recall (informally) concept(s) of stability Examples (by prime integrals): x'=x, y'=-y (stable, not asymptotically) y³+x²=c (unstable) Linearization: general motivation Theorem of linearized (instability) class: 1. x'=x(2-x-y), y'=y(x-1) 2. x'=x(1-x-y/(x+1/4)), y'=y(1-4y/3x) {H-T} Ad 1) E₁=(1,1) ... stable spiral E₂=(2,0) unstable direction v=(1,-3/2) Theorem P.6 [Stable/unstable direction] ... see example E₂=(2,0) above ... ============================================================ Practicum 8 - March 31 Recall (1) X'=F(X) and its linearization (2) U'=AU Theorems P.5,P.6 and Hartman-Grobman ... motivation to study (2) Some (informal) remarks on incomplete (yet) theory to (2): ∙ matrix exponential ∙ solution(s) in the form exp(λt)v ∙ reformulate as one equation of order n (example: A=[0 1;4 0], x=exp(±2t) Class - for team 1 - 5, let A= 1) diag(1,2) 2) diag(-2,1) 3) [-2,1;0,-2] 4) [-1,-2;2,-1] 5) [0,1;0,0] (On board, solutions to 1,2,4 were presented.) Preliminary info on the "final project". ============================================================ Practicum 9 - April 7 (Problems 3) and 5) from the last class.) Theorem P.8 -- on solutions to (L-1) and (L-2) matrix exponential: some properties Example: exp(tA₃) = diagonal + nilpotent linear n-th order with const. coeff.: Ansatz -> characteristic poly Class - matrix exponential: 1) [ a 0 ; b 0 ] 2) [ 0 1 10 ; 0 0 -1 ; 0 0 0] 3) [ α -β ; β α ] characteristic poly + general solution: 4) x"" + 16x = 0 5) x"" = 0 6) x"+3x'-40x=0 7) x'''-3x"+3x'-x=0 ============================================================ Practicum 10 - April 7 topic: stability part 2 - Lyapunov functions motivation: HW3.3 Definition: (strict) Lyapunov function Theorem P.9 [Lyapunov theorem] Example: pendulum (with friction) Class - L.f. & stability: 0) verify that \dot{V}_F \le 0 for the pendulum above 1) x'=-2y-x³ , y'=3x-y³ 2) x'=-x/2-y² , y'= xy - 7x²y 3) x'=-2y³ , y'=x 4) x'=-y+2x³ , y'=2x+y³ Hint: V=ax²+by² with a,b>0; more generally ax^{2n}+by^{2m}, m,n natural numbers