
MATLAB Examples on the use of ode23 and ode45:

Example 1: Use ode23 and ode45 to solve the initial value problem for a first order
differential equation:

]5,0[,1)0(,
2

'
2

∈=
−

−= ty
y

ty
y

First create a MatLab function and name it fun1.m.

 function f=fun1(t,y)
 f=-t*y/sqrt(2-y^2);

Now use MatLab functions ode23 and ode45 to solve the initial value problem
numerically and then plot the numerical solutions y, respectively. In the MatLab window,
type in the following commands line by line.

 >> [tv1 f1]=ode23('fun1',[0 5],1);
 >> [tv2 f2]=ode45('fun1',[0 5],1);
 >> plot(tv1,f1,'-.',tv2,f2,'--')
 >> title('y''=-ty/sqrt(2-y^2), y(0)=1, t in [0, 5]')
 >> grid

>> axis([0 5 0 1])

The numerical solutions f1 and f2 respectively generated by ode23 and ode45 are almost
the same for this example.

Example 2: Use ode23 to solve the initial value problem for a system of first order
differential equations:

 y 1'=2y 1+y 2+5y 3+e -2t
 y 2'=-3y 1-2y 2-8y 3+2e -2t -cos(3t)
 y 3'=3y 1+3y 2+2y 3+cos(3t)
 y 1(0)=1, y 2(0)=-1, y 3(0)=0
 t in [0,pi/2].

First, create an M-file which evaluates the right-hand side of the system F(t,Y) for any
given t, y1, y2, and y3 and name it funsys.m:

function Fv=funsys(t,Y);
Fv(1,1)=2*Y(1)+Y(2)+5*Y(3)+exp(-2*t);
Fv(2,1)=-3*Y(1)-2*Y(2)-8*Y(3)+2*exp(-2*t)-cos(3*t);
Fv(3,1)=3*Y(1)+3*Y(2)+2*Y(3)+cos(3*t);

Now type in the following commands in MatLab window line by line:

 >> [tv,Yv]=ode23('funsys',[0 pi/2],[1;-1;0]);
 >> plot(tv,Yv(:,1),'+',tv,Yv(:,2),'x',tv,Yv(:,3),' o')
 >> hold
 >> grid
 >> title('Example 2')
 >> text(0.3,14,'-+- y_1')
 >> text(0.3,10,'-x- y_2')
 >> text(0.3,-12,'-o- y_3')
 >> xlabel('time')
 >> hold off

A graph of y1, y2 and y3 is given below:

Note: try using ode45 and compare your results with those obtained by ode23.

Example 3:

(Here, we will use m-files for both the function and the solution)

Consider the second order differential equation known as the Van der Pol equation:

You can rewrite this as a system of coupled first order differential equations:

The first step towards simulating this system is to create a function M-file containing
these differential equations. Call it vdpol.m :

function xdot = vdpol(t,x)
xdot = [x(1).*(1-x(2).^2)-x(2); x(1)]

Note that ode23 requires this function to accept two inputs, t and x , although the function
does not use the t input in this case.

To simulate the differential equation defined in vdpol over the interval 0 <= t <= 20,
invoke ode23 :

t0 = 0; tf = 20;
x0 = [0 0.25]'; % Initial conditions
[t,x] = ode23('vdpol',t0,tf,x0);
plot(t,x)

For more information, visit:

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode45.shtml?cmdname=od
e45

MATLAB Function Reference

ode45, ode23, ode113, ode15s, ode23s, ode23t,
ode23tb

Solve initial value problems for ordinary differential equations (ODEs)

Syntax

• [T,Y] = solver(odefun,tspan,y0)
• [T,Y] = solver(odefun,tspan,y0,options)
• [T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
• sol = solver(odefun,[t0 tf],y0...)
•

where solver is one of ode45 , ode23 , ode113 , ode15s , ode23s , ode23t , or ode23tb .

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low For problems with crude error tolerances or for solving
moderately stiff problems.

ode113 Nonstiff Low to high For problems with stringent error tolerances or for
solving computationally intensive problems.

ode15s Stiff Low to
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

ode23t Moderately
Stiff

Low For moderately stiff problems if you need a solution
without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems

