@AMS

AMERICAN MATHEMATICAL SOCIETY
www.ams.urg

Periods of Periodic Solutions and the Lipschitz Constant

Author(s): Tames A. Yorke

Source: Proceedings of the American Mathematical Society, Vol. 22, No. 2 (Aug., 1969), pp.- 509
-512

Published by: American Mathematical Society

Stable URL: http://www.jstor.org/stable/2037090

Accessed: 10/10/2008 12:28

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher ?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org


http://www.jstor.org/stable/2037090?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams

PERIODS OF PERIODIC SOLUTIONS AND THE
LIPSCHITZ CONSTANT!

JAMES A. YORKE
Let x(¢!) be a nonconstant periodic solution with period p of
(1) % = F(x) ( = d/dt)

where F:Q—R" for some set QCR". Let ||-|| denote the Euclidean
norm. We say F has (Euclidean) Lipschitz constant L if

2 |F(2) — Fx)|| £ Ll|#1 — ] for each #,, x, € Q.
There is a simple relationship between L and p.
THEOREM. If F satisfies (2), then p=2w/L.

The fact that p is bounded below by ¢/L for some ¢ is surprising.
This was first proved by Y. Sibuya (unpublished), who showed
p=2/L.

This estimate 27w /L cannot be improved: If =2 and

x=(x1,x2,---,x,,)ER",

let x{ = —Lxs, 5 = Lxy, x{ =0 for 2 <7 =<, then (2) is satisfied letting
F(x)=(—Lxs, Lxy, 0, - - -, 0), and all nonconstant solutions are
periodic with period 27 /L.

To prove the theorem, we define the functions f({) = F(x(¢)) and
N@®=|lf@)| and y@) =f@E)/N(t), for tER. The function y(t) is
a unit vector tangent to the periodic trajectory. The proof involves
relating two facts about (d/dt)y(t). Since (2) is satisfied, solutions of
(1) are unique, so N(¢) #0 for any ¢. (If N(¢) =0 for some ¢, we would
have N(¢)=0.) Since x is a C* function, x is Lipschitzean. Also, f is
a Lipschitz function of ¢ (with constant L sup;efo, [x’(t) } ). It is not
hard to verify that N and y are also Lipschitzean, so in particular
f, N and y are absolutely continuous, and therefore they are differen-
tiable functions of ¢ almost everywhere. From now on, ¢ will always
be assumed to be a point at which f, IV, and y have derivatives (which
we denote f/, N’, and 3’). Note that ||y]|=1 so

0 = Ll = 200, v
== yO||* = 2{(®), ¥ ®)
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where (-, -) is the inner product, i.e., ¥ and y’ are perpendicular.
Also f'=(yN)'=y'N+yN’. Since y and ¥’ are orthogonal for each ¢
and N and N’ are scalar functions, ||f'||2=||y'N||2+||yN'||2 so

3) 71/ 2 [yl
We can estimate Hy’H as follows: for s>0
I+ s) = 7@l = IFGs + ) = Fe@)l| = Llla + 5) — Q)|
= L€ @ls + o(s) = Llf@s + o(s),

SO

@) 7@l = Zlfoll = LN,
SO

(5) Iyl =L (from (3) and (4).

Variations of the next lemma were proved by Fenchel [1], Borsuk
[3], and Milnor [2]. They let x be C? with ||x’(¢)|| =1. Their proofs
are substantially longer.

LEMMA.

(6) f :Hy’Hdt > 2.

The lemma says the variation of the unit vector in the direction x’
in one period is at least 27. This seems intuitively obvious and is
clearly true in dimension # =2, but we delay the proof.

The proof of the theorem is now completed by combining (5) and
(6):

» v4
2 gf lly' @) at __<.f Ldt = Lp,
0 0
that is, p =27 /L and the theorem is proved.

We now only need to prove the lemma.

ProoF oF LEMMA. Choose 4 and 47 in [0, ], >0, such that
|2+ T) —2(t1)|| =supe.reto.s1 ||2(e) —2(r)||, (which is the “diameter”
of the trajectory). Since

w1(t) S w(t — br)

is also a periodic solution with period p, we may assume without loss
that £ =0. Write v =x(0) —x(7T). The function
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u(t) = 3|x(t) — =(7)||2

has a maximum at =0 so
d
0= Et-u(t) lico = (2(t) — (D), &' ®)) =0 = (v, #'(0)) = (v, £(0)).

Similarly, (v, f(T))= (v, '(T)) =0, (letting «(t) =}||x(t) —x(0)[|?.

Cram. [o||y'||dt =z
Let S={x:||x||=1}. Then y is a curve with values in S, and
(¥(0), v)=0and (¥(T), v) =0. The claim says that the length p of the
curve y on [0, T] is at least .

Case 1. Assume y(0) = —y(7"). Then the shortest curve between
y(0) and y(7T) remaining on S is a semicircle with radius 1, so p is
at least .

Case 2. Assume y(0) = —y(T"). Write y°=v(0), ¥yT =y(T), v =y°+97,
m=9"—yT. Then (y, m) =“y°H2—HyT“2 =0. Let a(t) ={v(@), v)/{v, v)-
Then a(T) ={{(y—m)/2, v)/{v,¥)=1/2. From the definition of a(¢),
y(t) —a(t)y =h(t) for some function k(t), where (v, %(t))=0. Hence
a(t)yy+h(@) and —a(t)y+£i(t) have the same norm (=1). Recall
%" =Ny=Nh+Nay and [{x'dt=x(T) —x(0) = —m and (m, v)=0, so
JENa=0. Since a(-) is continuous there exists 7€ (0, T) such that
a(T,) =0. Define

31 (8) = y(t) for t € [0, T]
= h(t) — a(t)y fort E [T, T].

Then y; is continuous, and ¥:(¢) €S for all ¢ and the arc lengths for
y and y; on [0, T'] are the same. Note that y(T)=h(T)—a(T)y
=[yT—iy]—3v=(v—9") —y = —9°= —9:(0). Therefore the shortest
path from %1(0) to y:(7) in S is half a great circle, which has the
length w. Hence the length of y; (and y) is =, proving the claim.

The length of y on [T, p] (that is, of the other half of the trajec-
tory) is also = since this is the length that would be estimated if
we had started at x(7") instead of x(0). Hence the length of y on
[0, p] is at least 27 and the lemma is proved.

REMARK. In R?, x(¢) can be knotted. In this case Milnor [2] essen-
tially proved when Fis C! that [} f,’”y’ H >4m. Applying this instead of
the lemma, we get the theorem that p >4w/L when x(¢) is a knotted
periodic solution.

Remark on the case p=2w/L. If x(t) is a periodic solution of (1)
with period p and if p=2n/L, then (i) ||#'(t)|| is constant; (ii) the
trajectory of x is a circle, (with radius Hx'(t)”/L and center x(¢)
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+x""(¢)/L?); and (iii) the two-dimensional disc D whose boundary is
the trajectory of x is the union of concentric periodic orbits with
period p (with F=0 at the center), provided F is defined on D.
Partial sketch of proof of remarks: if p=2w/L, then where we had
inequalities, we get the equalities
T
[ llylar
0
L.

D
) 2 = f Iyl =

0
®) Iyl = llsll/&
From the first half of (8), since ||f'|| = |3’ N||2+||yN'||2, we get ||y N'||2
=0=N’, so N is constant, and from (7), in the proof of the lemma
we must have the length of the curve y; is 7; hence y; (on [0, T'] and
on [T, p]) describes half a great circle on .S, and in fact one can see
that v describes half a great circle. Since N4y = [3x’ =0, the path y
is a great circle on [0, p]. Therefore the trajectory of x(¢) is a planar
“convex” curve. Since N'=0=(x’, x’’), and ||x"’|| is constant (a.e.),
the planar convex curve is a circle whose diameter is the (circum-
ference)/m, which =pN/m, i.e. 2N/L; hence |x(t) —x(t—p/2)|| =2N
/L. Since f(t) = —f(t+£/2),

[F((0) — Fa( + p/2)|| = 2N = Ll|x(®) — =t — p/2)|;

that is, the Lipschitz inequality in (2) is an equality for two points
of the circle which are diametrically opposite. It follows that on the
line between the points, i.e., points given by

= sx(t) + [1 — sle(t — p/2)  for some s € [0, 1],
F(z) = sF(x(t)) + [1 — s]F(x(t — $/2)).

Any other choice of F(z) would contradict (2). We now have an equa-
tion (on the disc D) which has concentric circles for solutions.
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