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S H A R P E S T I M A T E S O F T H E D I M E N S I O N O F I N E R T I A L M A N I F O L D S

F O R N O N L I N E A R P A R A B O L I C E Q U A T I O N S

U D C 517.95

A. V. ROMANOV

ABSTRACT. Sufficient conditions are obtained for the existence of a fc-dimensional
invariant manifold that attracts as / —» oo all solutions u(t) of the evolution equa-
tion u = —Au + F(u) in a Hilbert space, where A is a linear selfadjoint operator,
semibounded from below, with compact resolvent, and F is a uniformly Lipschitz (in
suitable norms) nonlinearity; these conditions sharpen previously known conditions
and cannot be improved.

§ 1 . I N T R O D U C T I O N

S e m i l i n e a r p a r a b o l i c e q u a t i o n s ( S P E ) h a v e r e c e n t l y a t t r a c t e d a l o t o f a t t e n t i o n ,

p r i m a r i l y i n c o n n e c t i o n w i t h t h e i r r o l e i n t h e d e s c r i p t i o n o f v a r i o u s s e l f o r g a n i z a t i o n

p h e n o m e n a i n n a t u r e , o f t e n c o m b i n e d i n t h e t e r m " s y n e r g e t i c s " .

A v e r y i n t e r e s t i n g effect w h i c h i s i m p o r t a n t f o r a p p l i c a t i o n s i s t h e asymptotic finite-

dimensionality o f a S P E , w h i c h i n t h e s t u d y o f s t e a d y - s t a t e r e g i m e s a l l o w s u s t o p a s s

f r o m , s a y , p a r t i a l d i f f e r e n t i a l e q u a t i o n s t o o r d i n a r y d i f f e r e n t i a l e q u a t i o n s ( O D E ) i n

R f c . T h u s , o n e c a n r e d u c e ( i n s o m e s e n s e ) a n i n f i n i t e - d i m e n s i o n a l p h y s i c a l s y s t e m

t o a s y s t e m w i t h a finite n u m b e r o f d e g r e e s o f f r e e d o m a n d u s e k n o w n p r o p e r t i e s o f

O D E s i n R * f o r t h e q u a l i t a t i v e a n a l y s i s o f t h e b e h a v i o r o f s o l u t i o n s o f t h e o r i g i n a l

e q u a t i o n f o r l a r g e t i m e .

In this paper for SPEs in a Hilbert space Ε we obtain constructive conditions that
ensure the existence and (under some conditions) the uniqueness of a ^-dimensional
(i.e., homeomorphic to R fc) invariant manifold Η c Ε, which attracts as t —*
+oo all the solutions of the equations; such manifolds are now customarily termed
inertial manifolds. These conditions improve similar results (see [2]-[5], [7], [8] and
also fl 1J—[15], [17], [21]) and are sharp in a certain sense. Here, in contrast to the
majority of the above-mentioned papers, the property possessed by Η to attract the
phase space is established in a form that allows us to really reduce the description
of stable limit regimes of a SPE to the analogous problem for its restriction to Η,
i.e., actually for some ODE in R* . In particular, the presence of a ^-dimensional
inertial manifold allows us to obtain results about the stability of stationary and
periodic solutions of the SPE (especially for k = 1 and k — 2).

The construction of the inertial manifold used here is based on a nontrivial gen-
eralization of an approach originally developed for ODEs by Smith [1].

A natural class of objects on which the effect of asymptotic finite-dimensionality
manifests itself is the class of nonlinear diffusion equations (NDE); a corresponding
example with concrete conclusions about the stationary and periodic solutions of an
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32 Α. V. ROMANOV

e q u a t i o n i s g i v e n i n §4. T h e resu l ts o f t h i s p a p e r turn o u t t o b e m e a n i n g f u l a l s o w h e n

w e d e a l w i t h a n O D E f r o m t h e start; t h e n w e ta lk a b o u t t h e p o s s i b i l i t y o f r e d u c i n g a

dynamical system in R" to a dynamical system in Rk with k < η .
The main results of the paper (in a somewhat less final form) were announced in

[6].
All the information about semilinear parabolic equations that are used below can

be found in the monograph [11].
In §2 we give definitions and statements of results. The proof of theorems on the

inertial manifold is given in §3. Finally, §4 applies these results to NDEs.

§2. STATEMENTS OF RESULTS

We consider equations of the form

(1) U = -Au + F{u), u{0) = u0,

in a real separable Hubert space Ε with norm || · || and scalar product ( · , · ) · Here
u — u(t) e Ε, ii(t) is the derivative with respect to t e R, and A and F are a
linear and a nonlinear operator in Ε, respectively.

We assume that A is selfadjoint and semibounded from below, and that it has
a compact resolvent and eigenvalues X\ < Xj < •• • (including multiplicities). If
λ\ > 0, then for ϋ > 0 we can define the power Αϋ with a dense domain of definition
E$ in Ε; here E$ is a Hubert space with scalar product («, M)# = (A^u, A6u) and
norm ||M||# = \\A^u\\ (£o = Ε, Ea D Εϋ for α < ϋ). We assume that for some
ϋ e [0, 1) the nonlinearity F: E$ -* Ε satisfies the following uniform Lipschitz
condition:

(2) \\F(u)-F{u')\\<L\\u-u'h

for u, u' e Εϋ . For ϋ = 0 it is possible that Ai < 0.
Under these conditions solutions u{t) of the SPE (1) exist for t > 0 for all

«o € Ef,. Moreover, for t > 0 we have u{t) e E\ c E$, and ii(t) e Ea with an
arbitrary α < 1 is a smoothing action of the parabolic equation.

In the case aim. Ε = η < oo equation (1) is an ODE in R" .
In the phase space E$ equation (1) generates a completely continuous semiflow

{Φ«}(>ο: Φ((«ο) = " ( 0 , and the evolution operators Φ, are completely continuous
in Εϋ for t > 0.

We distinguish the stationary (u{t) = «o) and periodic (u{t + p) = u(t)) solutions
of( l) .

We assume further that equation (1) has at least one stationary solution u e E$.
We say that a set 91 c E6 is invariant if Φ,91 - "ί\ for t > 0, and that 9ΐ is

positively invariant if Φ,91 c 91 for t > 0. A standard object in studying steady-state
regimes of dynamical systems is compact invariant (CI) sets in phase space. We say
that a CI set 91 c Εϋ is stable if there exists an open set Σ) in Εϋ , Σ) D 91, such
that dist(9l, u{t)) -> 0 as f -> +oo for u0 e 2).

It is known that CI sets of equation (1) have finite Hausdorff dimension. In
case F c C this follows from the (by now classical) result of J. Mallet-Paret on
nonlinear completely continuous mappings of Hubert space (see [16]). Recently
various estimates of the dimension of CI sets have been obtained for a wide class of
evolution equations (see the survey [18] and references therein).

We proceed to give precise statements.
In what follows for an estimate of solutions of equation (1), in addition to the

phase space norm || · \\ϋ we shall also use the norm || · ||Q with a = ϋ/2. We note
that ||κ||β > λ°Ί|Μ||α for u e Εϋ .
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Definition 1. For γ e R we denote by Z{y) a set in E$ consisting of trajectories
of solutions u(t), existing for t e R and such that

\\u(t)\U = O{e-V) a s / ^ - o o .

We start from the orthogonal sum decomposition Ε = Χ φ Υ of Ε, where X
and Υ are subspaces of Ε and Χ Φ {0} , Υ c E$, dim Υ = k (1 < k < oo). Such
a decomposition is called an orthopair (X, F ) , and we always denote by Ρ and β
the orthogonal projections in Ε onto F and Χ, χ = Qu, y = Pu for u e Ε. In
particular, we can take Υ = Yk, X = X^ — Y^ , where Yk is the eigensubspace of
the linear operator A corresponding to the part {λ\, ... , λ^} of its spectrum.

If dim Ε = oo, we restrict ourselves to the case Υ — Y^; if dim Ε < oo, we
assume ϋ + 0 (except for the counterexample in Lemma 3).

Suppose also that ξ, ξ' > 0 and that σ: Υ -» Χ Π £# is a mapping such that

(3a) lk(y)-ff(/)ll«

(3b) ||σω~σ(/)||*<ίΊ!.ν-/ΙΙ*
for y,y' eY.

Definition 2. The set

(4) Η = {u e Εΰ : u = y + a{y) ,yeY}

is called a k-dimensional inertial manifold of equation (1) in the orthopair (Χ, Υ),
dim Υ = &, if it is invariant, attracts £# and consists of trajectories of solutions
with bounded exponential growth as t —• — oo :

(A) for UQ e Η there exist solutions u{t) for t eR and w(i) e Η;
(Β) for every UQ e E# there is a UQ e Η such that

(5a) IlKW-

for t > 1, and
II«0 - Oolla < Q \\X0 - O(y0)\\a ,

where the constants C, C\, and γ > 0 do not depend on M0 or UQ ;
(C) # = Z{y') with ?'<}>.

Remark. Property (C) turns out to be important in establishing the uniqueness of an
inertial manifold.

The inertial manifold Η is homeomorphic to R*. The mapping ψ(γ) = y +
a(y): Υ -> E# is called the generating function of Η. We have ψ{Υ) = Η, P{H) =
Υ and u - ic(>>) = χ - a(y) for Μ = χ + y e Ε. It follows from the invariance of
Η and the smoothing action of the parabolic equation that Η e E\.

A consequence of the definition of inertial manifold is the convergence of the
solutions u\t) to their natural projection w(y(t)) on H. Indeed, u{t) — y/(y(t)) =
x{t) - a{y{t)) = x{t) - X(t) + x(t) - a{y{t)). By (3b) we have | |*(0 - a{y{t))h <
£'\\y(t)-y(t)\\i>, and from (5) we deduce (for t > 1) :

\\u(t) - v{y(t))h < \\x(t) - x{t)h + {'IMO -y(t)U

< C2||MO -

Definition 3. Equation (1) is said to be asymptotically k-dimensional if there exists
a A>diniensional inertial manifold in E$ .

Let 0Ί be a CI set of equation (1), u € 9T, and / > 0; then u = Φ<(«ο) for
«o e 0ΐ. Since 91 is bounded in Εϋ, and, a fortiori, in Ea, by property (B) of
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the inertial manifold Η the quantity ||« - 0,(MO)|U (βο ε Η) becomes arbitrarily
small as t grows, i.e., u 6 Η. Thus, the inertial manifold contains all the CI sets of
equation (1).

\ΐ Η is a fc-dimensional inertial manifold and «o e Η, then u(t) = y{y{t)), and
y{t) = Pu(t) satisfies the following ODE in Υ ~ Rk :

(6) y = -PAi?{y) + PF(yr{y)), y(O)=yo = Puo.

Under our hypotheses the right-hand side of (6) is uniformly Lipschitz. Indeed, for
Ρ¥ψ this follows from conditions (2), (3b) and the equivalence of the different
norms in Υ. The mapping ΡΑψ is uniformly Lipschitz in the case dim is < oo,
and ΡΑψ = PA if d i m £ — oo, where PA is a bounded linear operator in Υ.

Actually equation (6) is the restriction of the SPE (1) to Η; we denote by η CI
sets of (6). The mapping ψ establishes a one-to-one correspondence between the CI
sets of equations (6) and (1): ^(n) = 91, P9t = η, and the rather strong nature of
the attraction of the phase space E6 by Η easily allows us to reduce the problem
of describing the stable CI sets of the SPE (1) to the analogous problem for the ODE
(6) in R fe.

Lemma 1 (reduction principle). If there exists a k-dimensional inertial manifold Η
in the orthopair (X, Y), then the CI sets 9t of equation (1) and the CI sets η = P9t
of the ODE (6) are simultaneously stable.

Proof. The stability of η clearly follows from the stability of 9ΐ. Now suppose that
η is stable. This means that there exists an open set 0 D η in Υ such that for yo €Ό
the solutions y(t) of the ODE (6) tend to η for large time. We shall assume that
the £a-norm is defined in Υ ~Rk . We set

J> = {ueE9:u = x + y,y€i>,\\u- y/(y)\\6 < Af C f 1 ^ ) } .

where p(y) is the distance from y e δ to the boundary of ί>, and Q is the constant
from (5b). The open set Σ) D 9t = ψ{η) and, by property (5a) of inertial manifolds,
for M O € 2 we have \\u(t) - u(t)\\ -> 0 as t -> +oo with 80 € Η. Using (5b), we
find that

\\yo - yo\\a < I N - flolU < Cill«o - VOO)IL < V C I | | M 0 - y(yo)h < p(yo);

hence, J>o e δ and y(t) - » n a s t —» +oo. Since U(t) — y/(y{t)), it follows that
u{t) —> 91 and dist(9t, u{t)) -»0 as i-> +oo. This proves the lemma.

The main results of this paper, the existence and uniqueness of inertial manifolds,
are stated in the following way.

Theorem 1 (existence). Let k > 1 and suppose that the conditions

(7a) kk+x-kk>2L, Xk+l>L

hold for ϋ = 0, or the conditions

(7b) kk+x-Xk>{ki+x-Xt)L, A , > 0

hold for ϋ > 0. Then there exists a k-dimensional inertial manifold of equation (1)
in the orthopair (Xk , Yk).

Theorem 2 (uniqueness). For each k > 1 there exists at most one k-dimensional
inertial manifold in Εϋ .

The meaning of the relations (7) is that the nonlinearity F must be "sufficiently
small" in comparison with the gap kk+\ - Xk between adjacent eigenvalues of the
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operator A. Various results of this kind, containing undetermined constants, can
be found in £11]—f 15], [17], [21]; these are, for example, conditions of the type
4 + i —λ/c > Μ, λχ > 0 (ϋ - 0, and Μ > 0 does not depend on k), guaranteeing the
existence of a finite-dimensional inertial manifold for the SPE (1), when supAfc+j —
Xk — oo (k > 1). If it is necessary to establish the existence of an inertial manifold
of a given dimension, then sufficient conditions are needed that depend explicitly on
the data of the problem, say, on the parameters ϋ, L, {Xk} •

The first constructive conditions of the type (7) were obtained in [2]. A very
general (but not very concrete) theorem on inertial manifolds is given in [11], Chapter
6; by modifying the proof from [11] somewhat, one can obtain (see [3]) sufficient
conditions for the existence of a A:-dimensional inertial manifold for (1) for ϋ = 0
in the form

4 + i - 4 > 4 L , λ ι > 0 .

Finally, in [4], [5] (see also [7]) these conditions (also for ϋ = 0) were improved
to

and it was shown that the constant factors of L cannot be less than 2 and 1, respec-
tively.

We note that in many papers (including [4] and [5]) the attracting property of the
inertial manifold Η is formulated in a weaker form than condition (5):

lim dist(#, u(t)) = 0
t—>+oo

for all «o € Εϋ; in general this does not allow us to establish the reduction principle
(Lemma 1), which in turn makes it difficult to use properties of ODEs in Rk to study
steady-state regimes of equation (1).

In [8] results that partially overlap with the conclusions of Theorem 1 are given.
Here, however, there are differences both in the restrictions on the nonlinearity F
(significantly more special in comparison with (2)), and in the very definition of
an inertial manifold. Namely, in [8] the inertial manifold Η is constructed as a
local (contained in some ball) positively invariant (but not invariant) manifold, and,
moreover, the attracting property of Η is defined in the weak form (8).

Various aspects of the theory of invariant manifolds for ODEs with a small pa-
rameter were considered in [10], but the question of sufficient conditions in the form
(7) for the existence of such manifolds was not explicitly raised there.

In what follows the existence theorem for inertial manifolds will be stated and
proved in more general terms. Thus, the following proposition allows us to explicitly
express the constants that characterize the inertial manifold, in terms of the param-
eters ϋ, L, {kk} .

Theorem 3. Let k > 1, 0 < h < 1, ω(Α) = (h2 + h~2)/2, and suppose that the
conditions

(9a) Xk+l-Xk>{\ + (o(h))L, Ak+i>L,

(9b) 4 + i - 4 > (i£+ 1 + Q)(A)A?)L, A, > 0

hold for ϋ = 0 or ϋ > 0, respectively. Then there exists a k-dimensional inertial
manifold Η in the orthopair (Xk, Yk) with constants

ξ = h, 7=Ak+l-kf+lL, y'=Xkl

Remark. The constant ξ' from (3b) is expressed in a more complicated way.
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Of course, Theorem 1 is a special case of Theorem 3 (with the same constants γ,
/ and with ξ < 1).

We also note that, by replacing A by A + Τ and F by F + Τ in equation
(1), where Γ is a bounded linear selfadjoint operator in Ε (for example, a scalar
operator), one can sometimes make conditions (7), (9) hold if they do not hold with
Τ = 0. In particular, this approach allows us to treat the case ΰ > 0, λ\ < 0, not
considered here, if we set Τ — bl with b > -X\ (I is the identity operator in E).

It turns out that conditions of the type (7) for the existence of a fc-dimensional
inertial manifold are already the best possible in a certain sense (for more about this
see also [4], [5]).

Lemma 2. If ϋ = 0 and c\, c2 > 0 are constants such that under the conditions

^•k+ι - λ-k > C\L, Xk+ι > c2L

there always exists a k-dimensional inertial manifold for the SPE (1), then c\ > 2

and C2 > 1.

Proof. Let Ε = R 2 , u = {u\, u2), Au = {X\U\, X2u2) with λ\ < X2, and F(u) =
(«2, -Mi). Then L = 1, and if A2 > ci but C\ < λι - λι < 2, then the stationary

p o i n t Μ = 0 i s a f o c u s , a n d h e n c e , t h e r e d o e s n o t e x i s t a o n e - d i m e n s i o n a l i n e r t i a l

m a n i f o l d f o r t h i s O D E .

Now suppose .F(w) = («ι, ui). Then L — 1, and if λ^-λ\ > c\ but ci < λ.2 < 1,
then the point u + 0 is an unstable node and in this case there does not exist a
one-dimensional inertial manifold either. This proves the lemma.

Lemma 3. If ϋ > 0, and c\, Ci > 0 are constants such that under the conditions

4+1 - 4 > (ci^+i + c2X
6

k)L, Ai > 0

there always exists a k-dimensional inertial manifold for the SPE (1), then c\ > 1
and ci+C2>2.

Proof. Let Ε = R2 , u = (u\, U2), Au — {X\U\, X2u2) with 0 < λι < Α2, F(u) =
(M2 , -Mi). Then L = X~U , (ciAf + c2Af)L = c\K + c2 , where κ = {k2jX{f > 1, and
if κ is close to 1, but C\ + c2 < C\K + c2 < λ2 - λ ι < 2, then the stationary point
u = 0 is a focus, and hence, there does not exist a one-dimensional inertial manifold
for this ODE.

Now let F(u) — (A*Mi, Af u2) and A2 < 1; then L = 1. Assume that C\ < 1
and that c2 is arbitrarily large. If λχ is sufficiently close to 0 and A2 is sufficiently
c l o s e t o 1 , t h e n ( c i A f + c 2 k \ ) L < X 2 - X \ , b u t Μ = 0 i s a n u n s t a b l e n o d e , a n d i n t h i s

c a s e t h e r e d o e s n o t e x i s t a o n e - d i m e n s i o n a l i n e r t i a l m a n i f o l d e i t h e r . T h i s p r o v e s t h e

l e m m a .

In the majority of the cited papers the mapping σ: Υ -* X whose graph is the
inertial manifold Η, has been constructed as a fixed point of a certain transformation
in the metric space of Lipschitz mappings from Υ into X, most often with the use
of the classical Krylov-Bogolyubov scheme (see [9], [10] for ODEs and [11] for SPEs).
Here we have used an essentially different approach (different from the one presented
in [7], [8] as well), which develops and generalizes the techniques for lowering the
dimension of dynamical systems in R" , proposed in [1], to the problem (1), (2) in
an infinite-dimensional phase space.

In the orthopair (X, Y) equation (1) is written in the form

(10) x = -A2x + QF{x + y), y = -Axy + PF{x + y),
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where A\ = PA, A2 = QA. For ξ > 0 on E$ we define an indefinite quadratic
form

νξ{η) = {χ,χ)α-ξ2{γ,γ)α (α = ϋ/2)

in the orthopair (X, Y). We denote the corresponding negative and positive cones
by

^ - - { « 6 £ s : νζ(η) < 0} , ψ = {u € Εϋ : νξ{μ) > 0}.

The following result (with the natural change of statement) is, in particular, proved
in [1].

Theorem 4. Let Ε — R", and let F: R" -»R* be a locally Lipschitz mapping.
Suppose that all solutions of equation (1) exist for t 6 R, and there is a stationary
solution U e Ε. Then if in some orthopair {X, Y), dim Υ — k > 1, the inequality

(11) ^{e

2rtVi{u{t) _ u'{t))) < -ee2y'\\u(t) - u'(t)\\2

a

holds with ϋ = 0, ξ — \, y > 0, and ε > 0, for solutions of (I), then in Ε there
exists a k-dimensional invariant manifold Η of the form (4) with Lipschitz constant
1 in (3), containing all the CI sets of the ODE (1).

Later on, relation (11) will be used in the somewhat weaker form:

(12) V((u(t) - «'(/)) < V((UQ - u'0)e-2?'

or even (in case u! = 0 is a solution of (1))

(12a) V((u(t)) < F i(Wo)e-2>"

for t > 0.
We shall show that in our situation inequality (12) is a consequence of conditions

(9) in Theorem 3. We note that (u, u)a = (u, A®u) for u G E$.

Lemma 4. Suppose conditions (9) hold with k > 1 and h < 1, ω(Α) - (h2 + h~~2)/2,
and the form V^ is defined in the orthopair (Xk, Yk). The inequality (12) holds for
the solutions of (1) for ξ e [h, A~'] and γ €[γο, 7ι] with

(13) Y0 = kk + (o(h)XtL, y, = \

Remark. If (9) holds, we have γ0 < γι and γι > 0. For ϋ > 0 we always have
yo > 0; for # = 0 we may possibly have γο < 0.

. We set X = Xk , Υ = Yk, and for u = x + y, u' = x' +y' €Εϋ we set

/ = (F(x +y)- F(x' + y1), Αϋ(χ -χ'- ξ2{γ - / ) ) ) .

We write equation (1) for u(t) and u'{t) in the form (10). Then

*-*' = -A2(x - x') + Q(F(x + y)- F(x' + y')),

Taking the scalar multiple in Ε of the first of these relations by Αϋ{χ - χ') and of
the second by A*(y - y'), and denoting the left-hand side of (11) divided by 2e2yt

by Z(t), we have (omitting the dependence on t):

Ζ = yV((u -u') + (x-x',x- x')a - ξ2{γ - y', y - y%

= γνξ(η - u') - (A2(x -x'),x-x')a + ξ2{Αι(γ -y'),y-y')a + J.

From condition (2) on the nonlinearity F we find that

\J\ < L\\x -x'+y-y'h · \\x - x'- Z2(y -y')h-
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Using the orthogonality of X and Υ in Εϋ and the elementary inequality ((a + b)
x(a + cb))1'2 <a + cxb with cx = (1 + c)/2 (and a = \\x - x'\\l, b = \\y - y'\\l,
c = ξ4), we obtain

\J\<L{x- χ1, χ - x% + I4x{y -y' ,y -y')t>

with ξι = (1 + £ 4 ) / 2 . Furthermore, for u € E& we have ( ^ u , u)a — (u, u)$ and
Ax = A2x, Ay = A\y, so that

Ζ <y{x - χ', χ - χ')α-γξ2ψ -y' ,y -y')a

+ (T2(x -x'),x-x')a + (r,(y - / ) , y - / ) α ,

where T2 = ΖΛβ - Λ and Tx = Ι4{Α
ϋ + ζ2A (A0 = I) are linear self-adjoint

operators. We see that μ = Ι4\λ% + ξ2λιί is the maximal eigenvalue of Γι in Υ, so
that [Txy, y)a < μ(γ, y)a for y e Υ. Moreover, let μ] = LX^ - kj {j > k + 1) be
the eigenvalues of T2 in X, and let κ, = ^j^kli · Then μ^ = Lkf+lKJ - Xk+lKj, and
since kk+l > 0 and /ifc+1 < 0 in (9), it follows that κ} > 1, //7 < μ^\Κ^ < μ^+ι,
and hence, (T2x, x)a < μιί+ι(χ, x)a in X.

Finally we conclude that

z<(x-x',x-χ')α(γ + LX6

k+x - x k + l ) + (y-y',y-y'U-γξ2 + L£i*£ +ξ2^) < 0

in view of the estimates (13) for γ and the condition ξ e [h, h~l] (from which it
follows that ξ\ξ~2 = ω(ξ) < ω(Λ)). The inequality Z{t) < 0 is equivalent to (12),
and the lemma is proved.

The constructions of [1] make significant use of the finite-dimensionality of the
phase space. In the proof given below, this technique is essentially revised, which
allows us to cover the case dim Ε = oo, to obtain sufficient conditions for the ex-
istence of the inertial manifold Η in the form (7) suitable for applications, and to
establish the attracting property for Η in its strongest form (5) (including the case
dimE < oo).

§3. EXISTENCE AND UNIQUENESS OF THE INERTIAL MANIFOLD

Theorems 1 and 3 start from a given representation of the right-hand side of (1) as
a sum of a linear operator and a nonlinear one, and also from a prescribed orthogonal
decomposition of Ε = Χ θ Υ with Χ = Xk and Υ = Yk . Here we prove a more
general assertion.

Theorem 5. Suppose 0 < h < 1, yo < 3Ί. 7i > 0, and suppose that inequality
(12) holds in some orthopair (X, Y), dim Υ = k > 1, for the solutions of (I), with
ξ e {h, h~1}, γ — yi, and ξ = 1, γ — γο· Then there exists a k-dimensional inertial
manifold Η in the orthopair (X, Y) with constants ζ = h, y = j \ , y' — JO·

Remark. The parameter ξ2 is included linearly in relation (12), and thus in the
hypotheses of the theorem inequality (12) also holds for all values of (ξ, γ\) with
ξ € [h, h~l], including ξ = 1, γ = y\. In the sequel, we use the notation q — h~l .

Theorem 3 is a consequence of Theorem 5 and Lemma 4. Indeed, under the
conditions of Theorem 3 inequality (12) holds (by Lemma 4) for ξ e {h, A" 1},
y, = Xk+l - Xf+lL and for ξ = 1, yo = Xk + ^L, and hence by Theorem 5 there
exists a fc-dimensional inertial manifold with constants ξ = h , γ = y\, y' = yo-

Without loss of generality we assume that equation (1) has the stationary solution
Μ = 0 ( i . e . , F ( 0 ) = 0 ) .

B e f o r e p a s s i n g d i r e c t l y t o t h e p r o o f o f T h e o r e m 5 , w e e s t a b l i s h s o m e e s t i m a t e s .

For ξ e (0, 1) we set Κς = {\- ξ2)'1 .
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Lemma 5. Let (X, Y) be an orthopair, 0 < <̂  < 1, η = ξ~ι, U\, ui, u3 Ε Εϋ, and
y\=yi, ux - M3 Ε Τη

+, U2-U3E 2 ^ ~ . Then

| | * 1 ~ * 3 | | α < Α : ί | | Χ ι - Χ 2 | | α .

Proof. W e h a v e

11*1 - *3lU < 11*1 - *2||α + 11*2 ~ *3lU

< 11*1 -*2lU+'^l|j ;2-> ;3||a < ||*1 - * 2 | | α + ί 2 | | * 1 ~*3||α

(since y\ =yi), from which the desired estimate follows.

Lemma 6. Let (X, Y) be an orthopair, 0 < ζ < η, and u Ε Ψ^. Then

ιι .ιι? ^ 1 + tf

in particular, for ξ < 1 and η — ξ~ι we have \\u\\l < ΚζVj^(u).

In fact, for u e Ύη

+ we immediately deduce

and the lemma is proved.

The following assertion reflects the compactness property of the semiflow {Φ,}
and, apparently, is well known (although we have not been able to find an exact
reference).

Lemma 7. For M0 , u'o e E&, α = ϋ/2, and t > 0 we have

\\u(t)-u'(t)U<M\\uQ-u'0\\a,

where Μ - M{t, ϋ).

Proof. Let δ = λ\. For β e [0, 1) and t > 0 the operator A^e'At is bounded in
Ε and \\A^e~At\\ = \\β'Αί\\β < MprPe-*' (see [11], p. 27). From this, for ueE#,

\\e-A'uU = \\Aae-MAau\\ < Mar
ae-St\\u\\a.

We set b = \\u0 - u'0\\a , φ(ί) = eot\\u(t) - u'(t)\\#. Writing the SPE (1) as an integral
equation, we have

u(t) - u'(t) = e-At(uQ -«{,)+ f e-Al'-sHF(u(s)) - F(u'(s)))ds.
Je

Multiplying this equation by edt, we obtain, using (2),

ft
<p(t) < bMar

a + LM6 / (t-s)-*<p(s)ds.
Jo

Now applying the generalized Gronwall inequality (see [11], p. 188), we find that
φ{ί) < bM'{t, ϋ), and hence, the assertion of the lemma is also true with Μ =
M'e~s'.

The proof of Theorem 5 is divided into four steps:

construction of the manifold Η in the form (4) (§3.1);
invariance and Lipschitz property of Η (§3.2);
attraction of the phase space E6 by Η, in the form (5) (§3.3);

γ0) (§3.4).
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3.1. Construction of the manifold Η in the form (4). Following [1], for τ > 0 and
y 6 Υ we set

gx(y) = ΡΦτ(γ),

and we show that under certain conditions the mapping gT is a homeomorphism of
Υ onto itself.

Lemma 8. If in some orthopair (X, Y) inequality (12) holds for solutions of equation
(1) with ζ > 0 and γ e R, then the mapping gT: Υ —> Υ is a homeomorphism for
all τ > 0.

Proof. We have f2||y|[i; = -K {(y) for y e y and <E2||y||2 > -*£(u) for Μ € Εϋ.
From this and inequality (12) (multiplied by -1) we find that

(14) \\gr(y)-gAy')\\a>e^\\y-y'L·

for y, y' 6 Υ. The mapping gx of Υ ~ Rfc into itself is continuous, since the
semiflow {Φ,} is continuous in 2?#, and from (14) we see that gx is one-to-one and
the inverse map g~l is uniformly Lipschitz. Hence, using Brouwer's invariance of
domain theorem we deduce that g~' is bounded on all of Υ, and the lemma is
proved.

We may assume that inequality (12) for solutions of (1) holds with ζ e {h, 1, q} ,
γ = 7i and with ξ = 1, γ = γο . Here it follows from UQ-U'O e 3^~ that u(t)-u'(t) €
2^~ for t > 0, and, conversely, w(i) - w'(i) e 2£+ for some ί > 0 implies that

MO - U'o G V+ .

For t > 0, ί e R, and y 6 Γ we set ζ(τ, y) = g~l(y) € y ,

(15) X(t,y)= Km OT+,(z(T,y)),
τ—>+oo

w h e r e t h e e x i s t e n c e o f t h e l i m i t i s st i l l t o b e es tab l i shed . W e n o t e t h a t b y t h e d e f i n i t i o n

of gT, ΡΦ τ (ζ(τ, y)) = y .

Lemma 9. For ί e R and y eY the limit (15) exists in the Εϋ norm.

Proof. Passing to Cauchy sequences and using Lemma 7, we find that the convergence
of (15) for t = to in the Ea norm implies the existence of the limit for t > i 0 in
the E6 norm as well. Thus, it suffices to prove that for t < 0 and y e Υ the
mapping τ -+ Φ τ + ,(ζ(τ, y)) satisfies the Cauchy criterion in Ea for τ —» +oo. Let
T2 > Ti > τ > - i , and let Μ = χ + y, Μ' + χ' + y' be solutions of (1) with

We have y(ri) = y'(ii) = y, JC0 = 0, and for t < 0

since M(TI) - u'{x\) € X c 2^+ . Applying (12) with ξ = 1 and y = )Ί , we obtain

(16) K!(M(TI + t) - Μ'(τ, + ί)) < e-2ri(tl+l)(l|JColla ~ ΙΙ3Ό - Λ ) ·

Now setting ξ = 1, y = 7o in (12a), we see that

and since F,(w0) = -||yolla a n d ^(«(τΟ) >- | | y | | 2 , it follows that

(Π) \\yul<e2y^\\y\\l·
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Using the elementary Hubert space relation \\y0 -yo\\l ^ (IIJOlU - ΙΙ̂ όΙΙ»)2 a n d t n e

fact that u'Q e ^"h~ , since z{x2, y) e Υ c 2^~ , in the right-hand side of (16) we
have

(18) \\x'0\\l - \\yo-y'o\\l < h2\\y'0\\l - {\\yo\\a - Wy'oL·)2 < Φο\\1

if κ = κ(/ι) > 0 is so large that the quadratic trinomial (1 - h2)(2 - 2ζ + κ + 1
is positive definite (we write ζ = H^OIU/ll̂ ollo; for yo = 0 inequality (18) holds
trivially). Since φ = u(x\ +1) - u'{%\ +1) e cZ/

q

+ , by Lemma 6 with ζ = 1 and η = q
we have \\φ\\2

α < M'(q)Vy{f).
Finally, combining relations (16)—(18), we obtain

| |«(τ, + /) - K'(TI + t)\\2

a < Me-**-** \\y\\l

with Μ > 0 independent of τ ι , τ2 . Moreover, this inequality is true with x\ re-
placed by τ < Τι on the right-hand side, and thus the mapping Φτ+Ι(ζ(τ, y)): R+ ->
Εa actually satisfies the Cauchy criterion as τ -» +oo. This proves Lemma 9.

Now we set y/{y) = #(0, y), a{y) = Qy/{y) for y e Υ, and from (15) it follows
that Py/(y) = y. We denote by Η the manifold of the form (4) with defining
function y/{y) = y + a{y), and the first step of the proof of Theorem 5 is complete.

3.2. Invariance and Lipschitz property of Η.

Lemma 10. For t € R and y e Υ we have χ(ί, y) e Η.

Proof. We set x(t,y) = u', Pu! = / ; then u' - y/{y') e X. Further, y/(y') =
χ(0, y'), and we can replace τ by τ + Mn the definition (15) of χ(0, y'). Hence

u' - ψ(γ') = £mJ<t>T+t{z{x, y)) - ΦΤ +,(ζ(τ + /, / ) ) ) 6 Th~ ,

because z(x, y)-z(x+t, y') e Υ c T~h~ ; since Ι η 2 ^ " = 0, we have u'-i//(y') = 0,
and the lemma is proved.

Now let «o = ^o + yo 6 Η, Uo = χ(0, yo), and / > 0. Using the continuity of
the evolution operators Φ, in E$, we find from (15) that Φ/(«ο) = X(l» yo) € Η.
In exactly the same way, «o = Φί(χ(-ί, yo)), where x(-t, yo) e Η, and we have
proved the invariance of Η.

For y, y' e Υ we have

y(y) - y(y') = J i m j o ^ T , y)) - Φτ(ζ(χ, / ) ) ) .

Since z(x, y) - z(x, y') e r C 3^" , we also have Φ τ (ζ(τ, y)) - Φτ(ζ(χ, / ) ) e 2^- ,
from which i//(y) - ψ{γ>) e T"h~ , i.e., \\a{y) - a{y')\\a < h\\y - y'\\a , and we have
obtained the estimate (3a). For u, u' e Η and ( = 1 we now set u = Φ<(«ο) and
u! = Φ/(«ό) with «o, u'Q € Η. Applying inequality (12) with ξ = 1 and γ — JO , we
find that

II* - *ΊΙϋ - \\y - y'Wl < ̂ °(ll-*o - x'oWl - HJO - y'oWl),
from which, in view of (3a),

{\-h2)e-2*>\\yo-yO\\l<\\y-y'\\l

Using this estimate and Lemma 7 with t = 1, Λ/ = Λ/(#) and inequality (3a) again,
for u, u' € Η we have

II* - *'ll* < II" - «'He < M(u)\\uo - u'0\\a

γο - y'Q\\a < ξ'\\γ - y%,
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where ξ' does not depend on >Ό , y'o (we have also used the equivalence of norms
in Y). Thus, the Lipschitz conditions (3) have been completely established.

Remark. In particular, we have proved that u - u' e 2^~ for u, u! e Η, and since
M' = 0 is a solution of (1), Η c 2^~ .

We note that on the invariant manifold Η the semiflow {Φ/}<>ο restricts to a
flow {OJreR; q = h~l for h e (0, 1).

3.3. Attraction of the phase space by Η. We recall that in the hypotheses of The-
orem 5 we set a = ϋ/2 and Kh = (1 - A2)"1 for h e (0, 1) and q = h~l.

Let u(t) = x(t)+y(t) be an arbitrary solution of equation (1) for t > 0 with «o =
xo + yo £ Εϋ • Since i/ is an invariant manifold, we may set tto(t) - Φ-^ψ^ίή)),
and wo(O e # . Since u(t) - y(y(t)) e X c 2^+ , we also have M0 - fio(i) € 2^+ .
Now we can apply Lemma 5 with U\ = UQ, U-I = y/{y<j), t/3 = fio(O · Indeed,
«ι - «3 G 2^+ , yi = ̂ 2 = yo, and u2 - "3 e 2^~ , since «2, «3 e Η. By the lemma,

(19) ll*b-^(Olla<K*l|xb-ff(yo)l| a.

We need to prove the convergence of an arbitrary solution u(t) as t —• +00 to
a certain solution U{t) e //. Since «0 - Qo(O e 2^+ , the uniform boundedness of
||xo - *o(*)lla f ° r ί > 0, established above, implies the uniform boundedness of the
set {yo{t)}t>o in the finite-dimensional subspace Υ. Following a well-known scheme
(see [11], pp. 150-151), we single out a sequence %{tv) —* j?o as tv -* +00; since
Qo(i) € Η c 2^~ , we also have xo{tv) -• Xo > So(iv) - » « ο € ^ in the £ a norm. We
denote by Q(i) a solution of (1) with β(0) = «ο • From the invariance property of
Η we see that U{t) e Η for t > 0, and, using Lemma 7, we find that, for t > 0,

(20) o ( 0 = lim Φ,(θο(ίν))

in the E# norm. Furthermore, for tv > t we have

Φ».(«ο) -Φ 4 ,(βο(^)) = u(tv)- ψ{γ%)) e l c ^ + ,

and hence, «(0 - Φ*(ΜΟ(Μ) e Tf . It now follows from (20) that w(0 - S(0
for ί > 0. According to (12) with ξ = h and y = y\

vh(u(t) - o(0) < KA(Mo

 2 '

for t > 0. By Lemma 6

and since Vh{u0 - M0) < IN - «olla »

\\u{t)-a(t)\\a<Kl

h

/2\\u0-a0\\ae-^

for t > 0. By Lemma 7,

| |«(0-θ(0ΙΙβ<Λ/| |Μ(ί-1)-β(ί-1) | |α

for t > 1 with Μ = Μ(ϋ) , and property (5a) is proved.
Now passing to the limit in (19) as t = tv -> +00 and Jco(iy) —* Xo, we see that

||*o - *olU ^ ^AII*O - ^(yo)lla · Since w0 - "o e ^ + , it follows that

ll«o - "ί,ΙΙ̂  < (1 + Λ2)||χ0 - xoll̂  < ̂ ( 1 + Λ2)||χ0 - σ(γο)\\2

α,

i.e., we have obtained estimate (5b), which completes the third step of the proof of
Theorem 5.

In particular, it has been shown that we always have u(t) - U{t) e 2^+ for t > 0
for «ο € Εϋ .

3.4. Η
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Lemma 11 (see also [1, p. 345]). Let 0 < h < 1, yo < Vi, and suppose that inequality
(12) with ξ = h, γ = γι and ξ = 1, γ - y0, holds in the orthopair (X, Y) for
solutions of (1). Then for any two solutions u(r) and M'(T), existing for r e R ,

(21) \\u(T)-u'(T)h = O(e-^h - r ^ - o o ,

if and only if u(z) - «'(τ) e 'V' for τ < 0.

Proof. From Lemma 7 and the estimate || · ||# > λ"\\ · ||Q we see that the -E^-norm
can be replaced by the £"a-norm in (21). For W(T) - «'(τ) with τ < 0 relation (12)
gives

(22) K{(«o - u'o) < β2

If W(T) - M'(T) 6 2^~ , then, setting ξ = 1 and γ = y 0. we find from (22) that

j - ^ Ι Μ τ ) - u'(T)\\2

a < e-2n\yo -y'oWl

Conversely, let ||«(τ) - «'(τ)||α < ce~w for τ < 0. Setting ξ = h, γ = γι in (22)
and using the fact that ^ ( M ) < \\u\\l for u e Εϋ we have

for τ < 0, from which Vh(uo — u'o) < 0; making a shift in time, we obtain V/,(U(T) —
w'(f)) < 0 for τ < 0 in the same way, and the lemma is proved.

Corollary. Since u' = 0 is a solution of (I), under the hypotheses of the lemma
u{t) e Z{y$) is equivalent to u{t) e Ψ^ for every solution u{t) that exists for t e R.

We continue the proof of Theorem 5. It has already been shown that Η c
and according to the corollary, Η c Z(y) with γ = γ0 . Now suppose UQ €
and «Q = y{Puo) e H; then u0 - u'o e X. On the other hand, it follows from
«o € JT(y) and u'o e 5£{y) that u(t) - u'{t) satisfies the estimate (21) for t < 0, and
by Lemma 11, UQ- u'oe 2^~ . Hence «o - u'o — 0, i.e., / / = ^ ( J O ) , and Theorem
5 is completely proved.

It remains to establish the uniqueness of an inertial manifold of a given dimension.

Proof of Theorem 2. Let Η and H' be A:-dimensional (k > 1) inertial manifolds
in orthopairs (X, Y) and {X', Y') with defining functions ψ and ψ', Η = Z(y)
and H' = %{y'), and let Ρ and P' be the orthogonal projections onto Υ and Y'
m E. If y = / , then Η = H'. Let γ' < γ; then JT(y') C J2*(y), and hence
H' c Η. The mapping Ρ ψ': Υ' -> 7 is continuous; we show that it is one-to-one.
If y\,yi& Y' and yi ^ y 2 , then ^'(j;,), y/'{y2) e H' c Η and ^'(>Ί) / V'iyz),
Py'iyi) Φ Pw'{yi) • Actually Ρψ' is a mapping from Rk to R* , and by Brouwer's
theorem its image is an open set. For u e H' c Η we have ψ{Ρύ) — u, and hence
Ρ'ψ: Υ —> Υ' is a left inverse for Ρψ', and since Ρ'ψ is uniformly Lipschitz,
(Ρψ')(Υ') = Υ, Ρ Η' = Υ, and Η' = Η. The case γ' > γ is examined analogously.
This completes the proof of Theorem 2.

§4. SOME SUPPLEMENTS AND APPLICATIONS

We assume that the above-described apparatus can be used for the qualitative
analysis of steady-state regimes of partial differential equations as well as for ODEs.
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I n c o n n e c t i o n w i t h t h i s i t i s n e c e s s a r y t o m a k e t h e s t a n d a r d r e m a r k s c o n c e r n i n g t h e

g l o b a l n a t u r e o f c o n d i t i o n ( 2 ) o n t h e n o n l i n e a r i t y F, w h i c h d o e s n o t s e e m t o b e

a rea l i s t ic c o n d i t i o n f o r spec i f ic p r o b l e m s . W e a s s u m e t h a t t h e L i p s c h i t z c o n d i t i o n

( 2 ) h o l d s o n l y l o c a l l y ( o n b o u n d e d s e t s i n E&), b u t t h e r e e x i s t s a c l o s e d c o n v e x

bounded positively invariant set Ω in E$, on which (2) holds with the constant
Ζ,(Ω). We note that for SPEs describing real physical processes without peaking
regimes (i.e., without solutions that go to oo in finite time), such a set Ω usually
exists. We extend F from Ω to E$ to a uniformly Lipschitz mapping F\ (ideally
with the same constant £(Ω)). Then equation (1) is equivalent in Ω to the equation
Μ = -Au + F\(u), where F\ already satisfies a Lipschitz condition in the whole
space E$, and the theorems on inertial manifolds can be used in the study of steady-
state regimes of the semiflow {Φ,} in Ω. In particular, one can speak about the
asymptotic /c-dimensionality of equation (1) on the positively invariant set Q c £ j .

We now consider applications of our approach to nonlinear diffusion equations
(NDEs), restricting ourselves to the case ϋ = 0 to start with. Consider the problem

(23a) ^ = dAU + BU + f(U), U(O,x) = uo(x)
at

in a bounded domain G c THN {N > 1) with a sufficiently smooth boundary Γ.
Here U = U{t, x) = {U\, ... , Um), m > 1; ί > 0 and χ e G; Β is a symmetric
scalar (mx m) matrix, / : Rm -> Rm is a locally Lipschitz mapping, and /(0) = 0;
d is a diagonal scalar matrix with elements di > 0 on the diagonal, and Δ is the
Laplace operator. The boundary condition is

(23b) ( 1 ^

where η is the exterior normal to Γ, β (χ) a sufficiently smooth function on Γ, and
0 < β(χ) < 1.

We let {fij}j>\ denote the eigenvalues of the operator (-Δ) with boundary con-
dition (23b).

Usually in the study of NDEs one attempts to establish the existence of stationary
or periodic solutions U(t, x) which are stable as t —• +oo and inhomogeneous for
χ e G. Here it is natural to consider the convergence of solutions in C-norms, not
in L?-norms.

Let Π = {χ € Γ : ρ (χ) = 1} , and let

Ε = L2(G; R m ) , Co = {u e C(G; Rm): u\r, = 0}

be spaces of vector-valued functions. The problem (23) can be written (formally) as
an equation of type (1) in the Hubert space Ε:

( 2 4 ) Μ = { d A + B ) u + F ( u ) , w ( 0 ) = « 0 ,

w i t h u ( t ) = U ( t , · ) a n d F ( u ) { x ) = f ( u { x ) ) . M o r a [ 3 ] , [ 1 9 ] s h o w e d t h a t e q u a t i o n

(24) generates a local semiflow St: «o -> «(0, 0 < t < ω(Μο) < oo in the Banach
space Co C Ε. Here, if «o belongs to Ω, a bounded domain in Co, positively
invariant for {St} , then the solutions u{t) exist for t > 0, the semiflow {5(},>o is
completely continuous in Ω, and the corresponding semitrajectories are relatively
compact in Co.

If there exists an invariant manifold Η c Ε for equation (24) in the Hubert space
Ε, then Η c Co, which is a consequence of the smoothing action of the parabolic
equation and the appropriate embedding theorems (see [11], Example 3.6, for an
instance of similar arguments).
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We now assume that the domain

2 = {v e Rm : at < υ,· <bif 1 < / < m}

is positively invariant for the ODE ν = Bv + f(v) in Rm , and Ο e 2 . The usual
arguments of maximum principle type for parabolic equations show (see also [20])
that the domain

Q = {ueC0:u(x)e2, χ e G}

is positively invariant for the semiflow {St} . Let {Xk)k>\ denote the eigenvalues of
the family of matrices (ί/μ7 — Β) (j > 1), in increasing order, and let

(25)

where / ' is the Jacobian matrix of / , and | · | s p is the spectral norm of matrices.
Let /i be a uniformly Lipschitz extension of f(v) from 2 to Rm with the same

Lipschitz constant Ζ,(Ω) (it is not hard to construct such an extension via reflections).
Here Ζ,(Ω) is a Lipschitz constant for the nonlinear mapping F\(u)(x) = f\(u(x))
in the Hubert space Ε. Now if there exists a ^-dimensional inertial manifold H\
for the SPE u = (dA + B)u + Fx{u) in Ε, then Hi c Co and Hx 9 0. In this
case we call the local manifold Η = Η\ Π Ω c Co (H 3 0, since Ω 9 0) an
inertial manifold of the problem (23) in the domain Ω c Q , and we say that
the NDE (23) is asymptotically ^-dimensional in Ω. Simple arguments, based on
the relative compactness of semitrajectories of the semiflow {St} in the positively
invariant domain Ω, show that the manifold Η attracts Ω not only in L2 , but also
in the C-norm.

From Theorem 1 we now get an assertion that strengthens similar results in [3],
[4]-

Theorem 6. For the problem (23) suppose that k > 1 and

Then in Ω there exists a k-dimensional inertial manifold attracting Ω in the C-
norm.

We exhibit these results using the example of the system of equations (see also [4])

+ U\ - {\ + δ)ϋϊ + dU\Uj,

= d2AU2 + U2-(l+ <J)C/2

3 - 5U\V2.
u ι

H e r e

5 = 1 / 1 2 , Ux(t,0)

/?(0) = 0, β(π) = 1, Γ{ = {π},

a = {ueC0:\ul(x)\<l, \u2(x)\ < 1}.

In Ω there is one homogeneous stationary solution u — 0. We write this system in
the form of a SPE (24) with Β - κΐ, where / is the (2 χ 2) identity matrix, and
κ is a real parameter chosen in order to minimize the value of Ζ-(Ω) in (25). For
κ = -15/24, L{Q) < 15/8. We also set d- = min{d\, d2), d+ = max(di, d2),
r= 15, s = r/S.

Applying Theorem 6, we find that the NDE (26) is asymptotically one-dimensional
in the domain Ω for d- > s, d+ - d- > r and asymptotically two-dimensional in
Ω for d- > s, d+ + r < 9d- and for d->s/2, d+-r> 9d- .
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N o w u s i n g t h e e l e m e n t a r y p r o p e r t i e s o f O D E s i n R 1 a n d R 2 , a n d a l s o t h e fac t

t h a t t h e h o m o g e n e o u s s t a t i o n a r y s o l u t i o n u = 0 i s u n s t a b l e for rf_ < 4 , w e c o m e t o

t h e f o l l o w i n g d e d u c t i o n s a b o u t l i m i t r e g i m e s o f t h e s y s t e m ( 2 6 ) :

1) Let s < d- < 4 and d+ - d- > r. Then in Ω there are no periodic solutions
and there are at least two stable nonhomogeneous stationary solutions; moreover, the
number of such solutions is even.

2) Let s < d- < 4, d+ + r < 9d- , d+ - d- < r or s/2 < d- < s, d+ - r >
9d- . Then in Ω there is at least one stable nonhomogeneous stationary or periodic
solution.

We point out that these deductions are generically true in the parameters {d\, di).

§5. CONCLUSION

Conditions (7) and (9) for the asymptotic ^-dimensionality of semilinear parabolic
equations proposed in this paper appear to be rather constructive in the sense that
all the parameters (ϋ, L, {%}) appearing in them are computable in principle or,
in any case, lend themselves to estimates. Results about nonhomogeneous stationary
or periodic solutions of NDEs, obtained via the construction of inertial manifolds
of small dimension, can be complemented (but not in general overlaped) using the
traditional methods for studying SPEs: bifurcation theory, rotations of completely
continuous vector fields, et al.

We also note that the method of inertial manifolds can be used not only for the
qualitative study of steady-state regimes, but also for the numerical solution of non-
linear parabolic equations (see [21] and references there).

Shortly after this paper was submitted for publication, the author learned of the
paper [22], in which a construction of an inertial manifold was given that is similar
to ours. However, the sufficient conditions presented in [22] for the existence of
a fc-dimensional inertial manifold with an "asymptotic completeness" property (of
type (5a)) turn out to be more rigid in comparison with our conditions (7).

Very recently an interesting paper by Miklavcic [23] appeared, in which a result
analogous to Theorem 1 is obtained (by an absolutely different method).
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