the phase portraits of this system for various values of (u, v) € R?. What is the form of
the degenerate singularity occurring at (x, %) = (0, 0) when (g, v) = (0, 0)? (The global
aspects of this problem are difficult and require the use of techniques discussed in
Chapters 4 and 7. See Section 7.3 in particular.)

Exercise 3.4.8 (For the computationally minded). For ¢ = 10, § = §, the nonzero
equilibria of the Lorenz equation undergo a Hopf bifurcation with 24 < p < 25.
Compute the cubic coefficient which determines stability in this example. (Cf. Marsden
and McCracken [1976] for a discussion of this problem, but beware, there are some
mistakes in their derivation.)

¢

We end this section by noting that Allwright [1977] and Mees [1981]
have obtained Hopf bifurcation criteria by means of harmonic balance and
the use of a Liapunov function approach.

Appendix to Section 3.4: Derivation of
Stability Formula (3.4.11)

If the reduced (approximate) system has a purely imaginary pair of eigen-
values A, 4 = tiw, then it can be conveniently represented as a single

complex equation:
2=z + h(z, 2), (34.17)
where
z=x+1iy and A= iw.
The normal form (3.4.8) becomes, at u = 0,
W= Aw + W + w3 + - 4 WL 4 O(|w [t 3)

aef Jw + h(w, W), (34.18)

where the complex coeflicients are of the form

and an overbar denotes complex conjugation.
EXERCISE 3.4.9. Check the assertions above.

Since in polar coordinates we have

F=ard+ar’+---,

0=w+byr?+byr* + -, (3:4.20)

the first nonvanishing coefficients a;, b; determine the stability (and local
amplitude growth) of the periodic orbit and the amplitude dependent
modification to its period.
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Thus far we have merely recast our system into complex form. Now,
following Hassard and Wan [1978], we will show how this form enables us to
calculate the leading coefficient,a, = Re(c,), relatively simply. The computa-
tions are considerably easier than those of Marsden and McCracken [1976].
To transform (3.4.17) to (3.4.18) we use the near identity transformation

z=w + Y(w, w), ¥ = 0(|lw]?). (3.4.21)

Substituting (3.4.21) in (3.4.17) and using (3.4.18) we obtain
AW = ) + Awihg = h(w + Y,  + F) — how, W)L + ) — FGw, W),
(3.4.22)

where subscripts denote partial differentiation. We now express Y as a
Taylor series (with y;, = ay/**/ow! ow*):
. wiigk
YOw, W)= ¥ Yy + O(lwlh). (3.4.23)
2<jthsa - J1k!
Next, using the fact that the normal form A(w, #) = c,w*w + O(|w|*) and
substituting (3.4.23) in (3.4.22), we obtain

2 2 2 =2

w 5 - W
M+ Rl + @ = Dl 5 = by 5+ i + i

2
+ O(|w]?). (3.4.24)
Equating coefficients yields the leading terms in the transformation
B ik, how _ihyg
N WL L.}
Vg = ormw __ i (3.4.25)
2i-21) 3w

We now carry out the expansion to one higher order and equate the
coefficients of the normal form term w2#W. The reader can check that, for
this term, the coefficient on the left-hand side of (3.4.22) vanishes identically
and the right-hand side therefore becomes

dud s hrv; }wwW
hwwl/IwW + hww(wn + ‘PwW) = h_ L + 1—‘- = C] = O’

;. w5 2
or, using (3.4.25)
i hwwﬁ‘
€1 = 2—(‘_;(hwwhw»—v . 2|hwﬁ?|2 iy %lhww'z) + ﬂz_ (34'26)
Hence we have
1
2a; = 2Re(cy) = hf 5 — (—I;(hﬁwhﬂ.w + hypht,,), (34.27)
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where the superscripts R, I denote real and imaginary parts, respectively.
A similar expression can be found for b,. In this way we see precisely how
the third-order terms are modified by our transformation ¢ = id + v,
with which we have removed the second-order terms. In Hassard and Wan’s
[1978] paper the second (fifth-order) coefficient ¢, is calculated, and the
system is embedded in a higher-dimensional problem, so that one also has
additional terms arising from the center manifold approximation.

We stress that these calculations can be carried out for the original
system in real variables, but that they are considerably more cumbersome in.
that form. However, since we are typically working with systems in real
form, it is convenient to express a, in terms of the real functions f, g of
Equation (3.4.8). Expanding f and g in Taylor series and taking real and
imaginary parts of the complex valued function h (and its series) we find
that the relevant terms in (3.4.27) may be expressed as

bows = $faxx + gy + sy + Gy
hw = 3(fex — [y + 294,
Mo = 3Gsx — Gy — 2 ) (3.4.28)
W = (S ex + foph
hiw = 4(gxx + Iyy)-

ExXERCISE 3.4.10. Verify (3.4.28) and find expressions for |, |, | hz|> and kL in terms
of f and g, so that you can calculate b, = Im(c,).

The stability formula (3.4.11) can now be derived by substitution of the
expressions of (3.4.28) into (3.4.27):

16“1 = (fxx.x + fxyy + gxxy + gyyy)

1
G ; [fxy(fxx + fyy) . gxy(gxx + gyy) s fxxgxx + fyygyy]' (3429)
We end by noting that the normal form for the parametrized Hopf
bifurcation is neatly expressed in complex variables as
W= Aw + c,w?w + O(|w]d), (3.4.30)
when 4 = p + iw; cf. Amold [1972].

3.5. Codimension One Bifurcations of Maps and
Periodic Orbits
In this section we consider the simplest bifurcations for periodic orbits.

The strategy that we adopt involves computing Poincaré return maps
and then trying to repeat the results of Section 3.4 for these discrete dynamical
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systems. There are some additional complications that introduce new
subtleties to some of these problems. In practice, computations of the
bifurcations of periodic orbits from a defining system of equations are
substantially more difficult than those for equilibria because one must
first integrate the equations near the periodic orbit to find the Poincaré
return map before further analysis can proceed. Thus, the results obtained
here have been most frequently applied:

(1) in comparison with numerical calculations;

(2) directly to discrete dynamical systems defined by a mapping; or

(3) in perturbation situations close to ones in which a system can be explicitly
integrated.

The third category will form the subject of Chapter 4. In view of these compu-
tational difficulties, in this section we shall focus upon the geometric aspects
of these bifurcations.

There are three ways in which a fixed point p of a discrete mapping
f:R" - R" may fail to be hyperbolic: Df(p) may have an eigenvalue +1,
an eigenvalue —1, or a pair of complex eigenvalues 4, 1 with |A| = 1. (If
Df (p) has an eigenvalue u at the fixed point p, we say p has eigenvalue u.)
The bifurcation theory for fixed points with eigenvalue 1 is completely
analogous to the bifurcation theory for equilibria with eigenvalue 0. The
generic one-parameter family has a two-dimensional center manifold
(including the parameter direction) on which it is topologically equivalent
to the saddle-node family defined by the map

fu() = x + p — x% (3.5.1

The same considerations of constraint and symmetry as discussed in Section 4
alter the generic picture, giving either transcritical or pitchfork bifurcations.
Rather than working out examples in detail, we leave the computation of
the following exercises to the reader:

EXeRrciSE 3.5.1. Show that the map x — u — x* undergoes a saddle-node bifurcation
at (x, ) = (—%, —3. On which side of the bifurcation value u = —% do the fixed
points lie?

EXERCISE 3.5.2. Show that the map x — ux(1 — x) undergoes a transcritical bifurcation
at (x, ) = (0, 1).
EXERCISE 3.5.3. Show that the map (x, y) — (v, —3x + uy — »*) undergoes a pitchfork

bifurcation at (x, y, ) = (0, 0, 3). Is it sub- or supercritical? Approximate a suspended
center manifold near (0, 0, ) and sketch the bifurcation diagram (cf. Exercise 3.2.8(c)).

Bifurcations with eigenvalue — 1 do not have an analogue for equilibria,
while the theory for complex eigenvalues is more subtle than that of the
Hopf bifurcation for flows.

Eigenvalues with —1 are associated with flip bifurcations, also referred
to as period doubling or subharmonic bifurcations. Using a center manifold



