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ABSTRACT. In this paper we prove the existence of a global attractor, an
(H, F) global attractor, and an exponential attractor for the cubic autocatalytic
reaction-diffusion systems represented by the reversible Gray-Scott equations.
The two pairs of oppositely signed nonlinear terms feature the challenge in con-
ducting various estimates. A new rescaling and grouping estimation method
is introduced and combined with the other approaches to achieve the proof of

- dissipation, asymptotic compactness, and discrete squeezing property in all the
stages.

"1. Introduction. In recently published papers [51,52,54] by this author, it has
been proved that for a class of nonlinear reaction-diffusion systems in the form

5 .

8—?: = d1Au + a1u+ blv"‘f(’u'?v) + 91,
ov

E = dzAv+a2u+bz'0 - f(u,v) + g2,

where the nonlinear reaction term f(u,v) = u?v represents the type of cubic au-
tocatalytic chemical or biochemical reactions, with homogeneous Dirichlet or Neu-
mann boundary condition on a bounded, locally Lipschitz domain 2 C %", n < 3,
there exists a global attractor in the phase space L?(£2) x L?(2), whose Hausdorff
and fractal dimensions are finite. :

This class of reaction-diffusion systems includes some significant pattern forma-
tion equations arising from modeling of kinetics of chemical or biochemical reactions
and from biological and cellular pattern formation. The following four model equa-
tions are typical in this class:

Brusselator equations:

ou

ov

yn =diAu+a— (b+ Du+ vy, ot = dyAv + bu — vv.
Gray—Scott equations:
% = dyAu— (F + k)u + v’o, %—: =d2Av+F(i—v) —u?v.
Selkov equations:
% = dlAu+pfau+kv+uzv, %11 = dyAv + b — kv — v?v.
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Schnackenberg equations:

?9_:: = diAu+ p — au+ u?v, %—?
In these four systems, all the involved parameters are positive constants.

The Brusselator system is originally a system of ordinary differential equations
as the reaction rate equations proposed by the scientists in the Brussels school [32].
The Gray—Scott system was originated from describing an isothermal, autocatalytic,
continuously fed, unstirred reaction and diffusion of two chemicals [16,17]. The
Selkov system was proposed [38] as a simplified model of the phosphofructokinase
reactions in glycolysis involving ATP, ADP, and AMP. The Schnackenberg system
originally formulated in [36] serves as a simplified model of pattern formation in
embryogenesis and in skin analysis [5,40].

It is known that several examples of real autocatalytic reactions can be modeled
by the aforementioned reaction-diffusion systems, such as acidic bromate oxida-
tion of cerium, chlorite-iodide-malonic acid (CIMA) reaction, ferrocyanide-iodate-
sulphite reaction, iodate oxidation of arsenite, and some enzyme catalytic reactions
in biochemistry [1,6,15,23,24]. '

These mathematical models of the cubic autocatalytic reactions did not attract
much attention until 1993 when J. E. Pearson [31] discovered self-replication of spot-
like patterns and some other interesting patterns in numerical simulations of the 2D
Gray-Scott equations. Since then, researches on these types of cubic autocatalytic
reaction-diffusion systems on 1D and 2D domains have been reported in many
aspects such as Turing patterns, spike patterns, stripe patterns, ring-like patterns,
mesa-type patterns, and Hopf bifurcations by experiments [18,22-24], numerical
simulations [31,33,37], and mathematical analysis [8,9,20,21,26,28,29, 35,45-48].

However, we have not seen substantial research results in the front of. global
dynamics for this type reaction-diffusion systems, especially in space dimension
n < 3, until recently. The following proposition states the results in [51,52, 54] on
the global attractors for these nonreversible cubic autocatalytic reaction-diffusion
systems.

=dyAv+b —‘uzv‘ ,

" Proposition 1.1. For the solution semiflow of each of the Brusselator equations,
Gray-Scott equations, Selkov equations and Schnackenberg equations on any bounded,
locally Lipschitz domain of space dimension n < 3 with homogeneous Dirichlet or
Neumann boundary conditions, and for any respectively involved positive parame-
ters, there exists a global attractor o/ in the phase space H = L?(Q) x L%(Q) and
the global attractor & has finite Hausdorff dimension and finite fractal dimension.

In this paper, we shall study the asymptotic dynamics of the reversible cubic
autocatalytic reaction-diffusion systems. These are more realistic and more precise
model equations. In order to fix the idea, we take the reversible Gray-Scott equa-
tions as the representative. Let us briefly describe the derivation of the reversible
Gray—Scott equations based on the simplified stoichiometry and the reduced scheme
of chemical reactions:

2A+B 534, AP
ko1
Here A is an autocatalytic reactant which decays to form a product P in the ir-
reversible second reactions shown above, while B is a reactant for which higher
concentrations beyond a certain level increase the rate of its own removal, and the
first reaction is the key autocatalytic reaction and is in general reversible, even
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is the generator of a linear analytic Cp-semigroup {eAt} >0 on the Hilbert space H.

By the fact that H'(Q) — L5() is a continuous embedding for n < 3 and using
the generalized Holder inequality,

lu?oll < lullZellvllze and [lu*(| = fulZe, foru,v e L°(Q);
one can verify that the nonlinear mapping
—(F + k)u + v?v — Gu®
flu,v) =
F(1—v) —v?v+ Gud

is well defined on E and locally Lipschitz continuous. Then the initial-boundary
value problem (3)—(6) is formulated into an initial value problem of the Gray—Scott
evolutionary equation:

):E—>H (8)

M Aw+ fw), t>0, (9)

w(0) = wo = col (ug, vo) € H,
where w(t) = col(u(t,),v(t,-)), or simply written as (u(t,-),v(t,-)). Accordingly
we shall write wo = (ug, vo)- ;

By conducting a priori estimates on the Galerkin approximate solutions of the
IVP (9) and the weak convergence, we can prove the local existence and uniqueness
of the weak solution w(t) of (9) in the sense specified in [7, Section XV.3], which
turns out to be a local strong solution for ¢ > 0. Moreover, by taking the H-
inner-product of (9) with this strong solution w(t) itself and conducting a priori
estimates, one can prove the continuous dependence of the solutions on the initial
data and the following property satisfied by the strong solution,

w € C ([0, Tmax) ; H) N C* ((0, Trmax) ; H) N L? (0, Trnax; E) , (10)

where [0, Tinax) 1s the maximal interval of existence.
For the Dirichlet boundary condition (5), the Poincaré inequality holds,

IVel® > nllel®,  for any ¢ € Hp(Q), (11)

where 1 > 0 is a uniform constant.
We refer to [39] and [43] for the concepts and basic facts in the theory of infinite
dimensional dynamical systems. Below just mention few for clarity.

Definition 1.2. Let M be a complete metric space. A time-dependent family
of mappings {S(t)}¢>0 is called a semiflow (or semigroup) on M, if the following
conditions are satisfied:

(i) S(0)w = w, for all w € M.

(i) S(t+s)=S5(t)S(s) on M, for all t,s > 0.

(iii) The mapping S(-) : (t,w) + S(t)w is continuous from [0, c0) x M into M.

Definition 1.3. Let {S(t)}:>0 be a semiflow on a cdmplete metric space M. A
bounded subset By of M is called an absorbing set in M if, for any bounded subset
B C M, there is some finite time ¢y > 0 depending on B such that S(t)B C B for
allt > to.

Definition 1.4. Let {S(¢)}s>0 be a semiflow on a complete metric space M whose
metric is denoted by d(-,-). A subset & of M is called a global attractor for this
semiflow, if &7 has the following properties: ‘
(i) & is a nonempty, compact, and invariant set in the sense that S(t)& = &
for any t > 0.
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though the rate constant k.1 of the reverse reaction might be relatively small. Let
a = [A] and b = [B] be the concentrations of the reactants A and B, respectively.
The law of mass actions and the Fick’s law of diffusion yield the following equations

da

5 = D1Aa — \a — kya + kb — k_1a®, (1)
% = D2Ab+)\(b0 —b) — k1a2b+k:*1a3, ‘ (2)

where D; and D, are the diffusive constants, k1, k—1 and kg are the respective
reaction rate constants, A is the constant rate of feeding of the reactant B with
reference to & constant concentration by and also the rate of removing product P
out.

By nondimensionalization, define

a b ' Dl . _DQ
u bO y U bO ) 1097, 1 klb% ’ 2 k’lb% 3
A ko k.1
F = e = — = e——
’ klb%’_ k‘lbg, k1 ’

where k is called the effective production rate constant, 1/F is the mean residence
time in dimensionless time units, and G is the ratio of the reverse versus forward
reaction rates. Then the system of equations (1) and (2) is reduced to the dimen-
sionless form of the reversible Gray-Scott equations (briefly called RGSE)

%:dlAu—(F+k)u+u2v—Gu3, t>0, e, . (3)
%:dgAv+F(l—v)—uzv+Gu3, t>0, z €N (4)

where dy, dg, F, k and G are positive constants. Consider the homogeneous Dirichlet .
(non-slip) boundary condition

ult,z) =0, v(t,z)=0, t>0,z€dN (5)
For the initial condition
U(O,LC) = UO(Q’,‘), U(O: x) = ’Uo(m), T e Qv (6)

we do not assume initial data (ug,vo) to be nonnegative or bounded.
To formulate this initial-boundary value problem of RGSE into an evolutionary
equation, define the product Hilbert spaces

H=L*Q) x L*(Q),
E = Hy(Q) x Hy(Q),
Z = (H*(Q) N Hy () x (H*(Q) N H(Q)).-
The norm and inner-product of H or L%(Q) will be denoted by | - || and (),
respectively. The norms of E and Z will be denoted by ||| g and ||-]|z, respectively.
The norm of LP(§2) will be denoted by || - [|[r-. We use | - | to denote an absolute
value or a vector norm in a Fuclidean space.

It is easy to check that, by the Lumer—Phillips theorem and the analytic semi-
group generation theorem [39], the densely defined, sectorial operator

(B 0N
=) ga)PAE2 )
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(ii) & attracts any bounded set B of M in the sense that, in terms of the Hausdorff
semidistance,
dist(S(t)B, %) = sup inf d(S(t)z,y) =0, ast— oo.
zeBYESL

Definition 1.5. A semiflow {S(t)}+>0 on a complete metric space M is asymptot-
ically compact if for any sequences {u,,} which is bounded in M and {t,} C (0, c0)
with t,, — 0o, there exist subsequences {un, } of {u,} and {t,,} of {t,}, such that
klim S(tny, Yin,, exists in M.

—00

The next proposition [39,43] stateé concisely the basic result on the existence of
a global attractor for a semiflow.

Proposition 1.6. Let {S(t)}:>0 be a semiflow on a Banach space X, which has the
following two properties:

(i) there exists a bounded absorbing set By C X for {S(t) }t>0, and
(i) {S(t)}e>0 s asymptotically compact on X. _
Then there exists a global attractor & for {S(t)}i>0 in X, which is the w-limit set
Of BO; K
o =w(Bo) € ) Cix | (S(t)Bo) .

>0 t2T

In this work we shall investigate the asymptotic dynamics for the reversible Gray-
Scott equations, as a representative of all the other reversible cubic autocatalytic
reaction-diffusion systems. Specifically, we shall prove the following main results for
the solution semiflow of the reversible Gray-Scott evolutionary equation (9), which
are also valid for the reversible Brusselator equations, reversible Selkov equations,
and reversible Schnackenberg equations with the homogeneous Dirichlet boundary

" conditions. ‘

Main results:

1. There exists a global attractor & in H. It is shown in Theorem 4.2.

2. The global attractor & is an (H, E) global attractor shown in Theorem 5.6.

3. There exists an exponential attractor & in H. It is shown in Theorem 6.5.

The common feature shared by these reversible cubic autocatalytic reaction-
diffusion systems and by the corresponding non-reversible reaction-diffusion systems
(with G = 0) is that the asymptotic sign condition or called the dissipative condition
on the nonlinear vector function f(u,v),

limsup f(u,v) - (u,v) <C
) | (u,v)|—o00 .
for some positive constant C' is not satisfied due to the pair of oppositely signed,
cubic terms +u?v. 7

Beside this common difficulty, there are more serious difficulties in analyzing
the reversible cubic autocatalytic reaction-diffusion systems, which do not occur in
treating Brusslater equations [51], Gray-Scott equations [52], and Selkov equations
[54]. The new challenge is that due to the second pair of oppositely signed terms
T Gu® in the two equations we can no longer make dissipative and bounding a
priori estimates on the v-component first by using the v-equation alone separately
and then use the sum y(¢,z) = u(t, z) + v(t, x) to deal with the u-component in
proving absorbing property and proving asymptotic compactness and so on for the
solution semiflow as we did in [51,52,54]. The novel feature in this paper is to



1420 YUNCHENG YOU

overcome this obstacle and to make the dissipative and bounding a prior: estimates
for u-component and v-component together by. the new rescaling and grouping
estimation method, that will be shown in Sections 2, 3 and 5.

We emphasize that the aforementioned Main Results on the existence of global at-
tractor, (H, F) global attractor, and exponential attractor is unconditional, neither
assuming that initial data or solutions are nonnegative, nor imposing any restriction
on any positive parameters involved in these equations.

In Section 2, we shall prove the absorbing properties in the product spaces L? x
L?, 1 < p < 6, for the solution semiflow of the reversible Gray-Scott evolutionary
equation by introducing the rescaling and grouping estimation method. In Section 3
and Section 4, a decomposition approach combined with the rescaling and grouping
estimation method will be exploited to show the asymptotic compactness via the
uniform smallness with respect to a truncation of the u-component and through
the k-contracting property. In Section 5, it is shown that the global attractor is an
(H, E) global attractor through the ultimate boundedness in transition from H to
E. In Section 6, the existence of an exponential attractor in H is proved based on
the existence of the (H, E) global attractor.

2. Absorbing property. In this section first we show that for any initial data
wo = (up,vp) € H, the unique strong solution of (9) exists globally and defines a
semiflow. Then we address the absorbing properties of this reversible Gray-Scott
semiflow in the space H and in the spaces LP(Q) x LP(Q2), for 1 <p < 6.

Lemma 2.1. For any initial data wo = (uo,vo) € H, there exists a unique, global,
weak solution w(t) = (u(t),v(t)), t € [0,00), of the reversible Gray—Scott evolution-
ary equation (9). Moreover, there exists a bounded absorbing set Bo in H for the
* solution semiflow of this reversible Gray—Scott evolutionary equation,

Bo = {(ip,¥) € L*(Q) x L2() : o ()II* + 19 ()I* < Ko}, (12)
where Ky is a positive constant.

Proof. Taking the L? inner-products ((3), Gu(t,-)) and ((4),v(t,-)), then summing
up the resulting equalities, by the boundary condition (5), we get

1d
5 (Gllull® + [[0]|*) + di G| Vu]|? + do|[ Vv |?
= / Fvdz — ((F +k)G|u|?> + Fv]|?) - / (G*u* - 2GuPv + v*v?) da
_ / Fode — ((F+ k)Gllul? + Fllv]?) - / (G — w)? da
Q Q
Flo| 1
IO (F + Ol + Flol?)
Then we have the following two differential inequalities,
d
pr (Gllul® + [vl1?) + F (Gllu)? + vl*) < FlQ, (14)
and p :
- [Gllul® + |[v]?] + 2 (G| Vul? + do||Vol1?) < FIQ. (15)

The differential inequality (14) yields
Gllu(t, )P + ot )P < ™7 (G lluol® + [[ooll”) + 192, for ¢ € [0, Tuna) . (16)
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This inequality (16) shows that the weak solution w (t; wo) = (u(t,-),v(t,-)) of (9)
will never blow up at any finite time, so that Tpa.x = oo for any initial data in
H. Combined with (10) and the joint continuous dependence of the weak solution
on time ¢ and the initial data -wo, cf. [39], we see that the family of all the weak
solutions defines a semiflow {S(¢)}:>0 on the Hilbert space H,

S(t)w0=w(t;wo), t>0, wg € H.

We shall call this semiflow as the solution semiflow of the reversible Gray-Scott
equations, or simply the reversible Gray-Scott semiflow.
Moreover, the inequality (16) also shows that

timsup (|lu(t, I + ot )I) < ;n%ﬁ +1 a7)

and there is a bounded absorbing set for the reversible Gray-Scott semiflow {S(t)}+>0
in the phase space H = L?(Q) x L*(12),

Bo = {(,9) € L(Q) x L*(Q) = lp()II* + ¥ () I1* < Ko}, (18)
where the constant K is given by ’

1
Ko=——F7—+1.
0= (G} T
The proof is completed. ' ‘ O

Let dp = min {d1,ds2}. Note that (15) implies
t d t . 1 .

/ et2s L (@) + u(s)]2) ds + / e, G| Vu(s)|Pds < —— e F|Q),
0 ds 0 dan

and from (15) we have

_ F
Gllutt, P + o, P < = (G ol + o) + 719 (19)
Therefore,
t 1 edmt |
dams 2 < 2 2 e r
[ e ivute ds < g (Gl + eol) + G0

227 dans | g—dons (G ugll? Y 2) + —|2]] ds.
T e e T D
This is for the later use.

In the next lemma we shall prove that the reversible Gray—Scott semiflow {S(t)}+>0
possesses the absorbing property in the space L¥(Q) x LP(2) for 2 < p < 6. For
p = 2, it has been shown in Lemma 2.1.

For this purpose, we shall use the rescaling and grouping estimation method. Let
U(t,z) = u(t,z) and V(t,z) = v(t,#)/G. Then the reversible Gray-Scott system
(3)—(4) is equivalently written as

ou

o =d,AU — (F +k)U + GU?*V - GU®, t>0,z€Q, (21)
%%:dzAV—I-—g—FV—UzV—kU?’, t>0, z€. (22)

The same Dirichlet boundary condition as (5) is satisfied by U(¢,z) and V (¢, z).
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Lemma 2.2. There exists a constant K1 > 0 such that the solution semiflow
{S(t)}s>0 of the evolutionary equation (9) satisfies the following dissipative inequal-
ity in the space L8(Q) x L8(Q),

Limsup || S(£) (o, vo)|%e () £o() < K1, for any wo = (uo,v0) € H.  (23)
t—00
Therefore, the reversible Gray—Scott semiflow {S(t)}+>0 has the LP x LP absorbing
property for p=4 and p = 6.

Proof. According to the solution property (10) of the reversible Gray—Scott evo-
lutionary equation (9), in which Tyax = oo for all solutions, we see that for any
wo = (ug,vo) € H there exists a time ¢y € (0,1) such that S(tg)wo € E ="
HY(Q) x HY(Q) C L8(Q) x L5(£2). Then by the regularity of solutions of parabolic
evolutionary equations shown in [39, Theorem 47.6], it holds that

S(ywo-€ C (fto, ), E) € C ([to,o0), L8(2) x L8(Q)).

for space dimension n < 3. Based on this observation, without loss of generality, we
assume that wo = (ug,vo) € L8(2) x L8(Q). Then by the same reason of parabolic
regularity we see that S(t) (ug,vo) € Z C L8(Q) x L8(Q), for ¢ > 0.

Taking the inner-product {(21), U®(t, ")) r2(q), We obtain

/U6 (t,2) dz + 5dy ||[U2 (5, ) VU (R, )| = F+k)/ Us(t,z) dz
6 dt Q
(24)
+G/ U'(t,z)V(t,2) d:c—G/ US(t,x)dzx, t>0.
Q Q
Then taking the inner-product ((22), GV°(t,-)) 12(q), we see that for any ¢ > 0,

5 dt/vﬁ (t,2) dz + 5Gd, |V2(t, )VV (1, )| v/QFV5(t,Vx)d.7: o)
—FG/ Ve(t,x)dx——G/ UQ(t,x)Vﬁ(t,x)dx—l-G/ U3(t,2)V®(t,z) dx
Q - Jo Q

Add up the above two equalities (24) and (25) to obtain that for ¢t > 0,

1 d
&2 (16 oy + GV o)

+5do (U2 (2, )VU (5, )|1P + G VA, )9V ()7
—(F+k)/QU6(t,x)dx+/QFVS(t,:z:)da:—FG/Qij(t,x)dz
- G/ (UR(t,2) — U (t,2)V (t,z) — U(t, 2)V5(t,2) + U>(t,2)VO(t,z)) dar
Q
~-—(F+k)/QUG(t,x)da:—}—/Q.FVE’(t,x)dx—FG/QVG(t,a;)dx

+ G/Q U2(t,z) [-USt, z) + UP(t, 2)V (L, 2) + U(t, 2)V° (L, z) — VO(t,z)] da.
(26)

By Young’s inequality, we have

U+ UV 4+ UV - VO < —U° + (%Uﬁ + %v6> + (%Uﬁ + %VS) ~-Ve=0,
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and
/ FV5(t,z)dz — FG/ Ve(t,z)ds < —lFGHV(t Moy + FSYy
q o > =6 ’ L8(Q) 6G5
Substituting the above two inequalities into (26), we obtain
d ‘
= (10 Ss0) + GIV N o) .
27
: FIQ
< = F (UG uiay + CIV (o) + s 620,
This Gronwall inequality yields the following estimate,
- Q
10t Segay + CIVE Mooy < 7 (1Tl oy + G Vollfoqey) + iG—' t>0.

Since U(t,z) = u(t,z) and V(¢,z) = v(t,z)/G, this inequality can be written as

' 1 _ 1 Q
lult, Moo+ g5l Mo < e (nuonie(m + & ||U0||6LG(Q)> 8 s
(28)
for any (ug,vg) € E. From (28) it follows that, for any wo = (uo,vo) € H,
lim sup [|.S(¢) (UO7UO)HGLG(Q)><LG(Q) = lim sup (||U(tay‘)\|%6(n) + [lv(®, ')“%6(9))
t—roo t—o00
2] ]
SN L SIS N | ——
S w51 T T mm(L, e T
Let K; be the constant ,
€2 ’
Ki=———F—=+1 2
' min{1, G5} + (29)
Therefore, (23) is proved with K given by (29). O

Note that the absorbing property (23) shown in Lemma 2.2 is a little weaker
than the existence of an absorbing set in L8(Q) x L5(Q) for the semiflow {S(t)}+>0
on H since we did not claim a uniform absorbing time for any bounded set in H.
However, by the same approach we can prove even more as stated in the following
proposition.

Lemma 2.3. For any positive integer p > 1, there exists a universal constant
K, > 0 such that the solution semiflow {S(t)}t>o0 of the evolutionary equation .(9)
satisfies the following inequality,

liinSUP IS(t) (u01U0)||L2P(Q)xL2P(Q) < JCP, for any wo = (UO;UO) €H.
—00

Thus the reversible Gray—-Scott semiflow {S(t)}s>0 has the L? x L*F absorbing
property for any p > 1.

3. Decomposition for asymptotic compactness. According to the basic ex-
istence theory of global attractor stated in Proposition 1.6, we need to show that
the reversible Gray-Scott semiflow {S(¢)}+>0 is asymptotically compact in H. How-
ever, due to the two pairs of oppositely opposite-signed cubic terms in (3)—(4), it is
challenging for this attempt. Here we shall adaptively use a generic result shown
in [51,52,54] through a new decomposition approach to proving that the semiflow
generated by a system of two coupled reaction-diffusion equations is asymptotically
compact. o
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Kuratowski measure of noncompactness for bounded sets in a Banach space X is
defined by

k(B) L nf {5 : B has a finite cover by open sets in X of diameters < 5},

If B is an unbounded set, then define x(B) = o00.

Definition 3.1. A semiflow {S(¢)}:>0 on a Banach space X is called s-contracting
if for every bounded subset B in X, one has

lim £(S(t)B) = 0.

The basic properties of the Kuratowski measure can be found in [39, Lemma 22.2]..
The following lemma provides the connection of the x-contracting property to the
asymptotic compactness and the existence of a global attractor for the semiflow,
cf. [39, Lemma 23.8].

Lemma 3.2. Let {S(t)}+>0 be a semiflow on a real Banach space X. If the followmg
conditions are satisfied:

(i) {S(t)}+>0 has a bounded absorbing set in X, and

(i) {S(t)}+>0 is k-contracting,
then {S(t)}¢>0 s asymptotically compact and there exists a global attractor & in X
for this semiflow.

A generically good idea in dealing with the issue of asymptotic compactness
or k-contracting property is through a decomposition. There have been different
decomposition methods used in different settings [39,41-44,49, 50].

Here we present a new decomposition method, which is stated in the next lemma
and will be used to check the k-contracting property of the reversible Gray—Scott
semiflow.

We shall use the notation

Q= Qlu®)| = M) ={z € Q: |u(t, z)| > M},
Quum = Qu(t)| < M) ={z €Q: |ult,z)| < M}.
Lebesgue measure of a subset £, of Q is denoted by m (925) or Q.
Lemma 3.3. For the reversible Gray—Scott semiflow {S(t)}+>0, there exists a global

attractor o i H if and only if the following two conditions are satisfied:

(i) There ezists a bounded absorbing set Bo in H for this semiflow.
(ii) For any ¢ > 0, there are positive constants M = M(e), T = T(g), and a
uniform constant C > 0 such that

/ IS(t)wo|® dz < Ce, for any t > T, wo € Bo, (30)
(lu(t)| > M)
and .
k& ((S{)Bo)a(u<r) — 0, ast — oo, - (31
where o '
(S(t)go) Qju@®)|<M) = L L(SE)wo) (Y0ar (-3 t,w0) : wo € Bo}, (32)

in which Oy (z;t,wo), x € Q, is the characteristic function of the subset
Q|u(t)] < M), and u(t) = u(t,z;wo) is the u-component of the strong solu-
tion of the reversible Gray—Scott evolutionary equations (9).
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The proof of Lemma 3.3 is similar to the corresponding result in [52, Theorem
2] as well as in [51,54], with the only difference that the truncation in terms of
v-component used in [51,52,54] is replaced by the truncation in terms of the u-
component. Therefore the proof is omitted.

Here the decomposition in terms of the truncation of the u-component instead
of the v-component makes a nontrivial difference in view of the new feature of
appearance of the & Gu® terms in the reversible Gray-Scott equations, which are
not involved in the nonreversible systems in [51,52,54].

For reversible cubic autocatalytic reaction-diffusion systems, the process of check-
ing the first condition (30) and the second condition (31) in part (ii) of Lemma 3.3
is more challenging than and quite different from what was done for the correspond-
ing nonreversible systems. Here we shall use the rescaling and grouping estimation
method to show that the conditions (30) and (31) in Lemma 3.3 are satisfied.

Recall that U(t, z) = u(t,z) and V(t,z) = v(t,z)/G satisfy the rescaled systems
(21)—(22). . ) .

Lemma 3.4. For any € > 0, there exists positive constants M; = Mi(e) and
Ty = Ti(e) such that the u-component u(t) = wu(t,x;wo) of the solution of the
RGSE (3)—(4) with the boundary condition (5) satisfies

/ [u(t)|2d:6 < 018, fOT’ t‘> Ty, wo = (Uo,vo) < Bo, (33)
Q

w
My

where By is the absorbing set shown in Lemma 2.1, and Ci =0 (Ko)‘ i$ a positive
constant. ’ ’

Proof. Since By attracts itself, there is Tp = Tp (Bo) > 0 such that
{St)wo : t > Tp,wp € Bo} C Bo.

Thus ||[u(t)||?> < ||S()wol® < Ko for t > Ty and wg € Bo.
For any given € > 0, there is a sufficiently large M = M (e) > 0, such that

m(@Qu()] > M) < % <e fort>To,wo€Bo.  (34)

Let M be the constant given by (34). Define

o—M, ifp>M,

— M), = |
=) {0, if o < M.

Taking the inner-product {(21), (u(t)—M)4)ax, = ((21), (U({t)-M)+)qy,, we obtain

1d \
5 EN(U — M)4|Z2 gy, + dillVU — M)4|32p) < —(F +R)IU - M) +|72as,)
+ / CGUYHV — M) (U — M), dx + MG U(U — M) 1dzx
lu(t)=M) | Qlu(t)|=M) ~
e UAU — M) de — MG/ UP(U — M) da.
ju(t)| M) Qlu(t)] M)

(35)
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Taking the inner-product ((22), G(V(t) — M)1)qz,, where M is the same as above,
we getb . ‘

G d :
5 dt”(v M)+ 72 (qy,) + dGIVV — M) 4|72 )

< / F(V — M) dz — FG V(V - M)+d:c
ju(t)2 M) Qju(t) [ 2M)

- /  GUX(V — M)2dz — MG (v M)+d:c
(ju($)>M) Ju(t)|> M)

+G [ U(U — M) (V- M), dz + MG UV — M) dz.
Q(lu(t)| > M) Q(lu(t)|=M)
' (36)

Recall that dy = min {d,d>}. Add up the above two inequalities (35) and (36) (in
each of them the two 1ntegrals with the coefficient MG are cancelled out) to obtain

1d
2 2 (10 = M)l + IV = M) ey,

+do (VW — M) Pagay,) + GIVEY = M) laay,)
< / F(V — M),dz — FG V(V — M) dx (37)
Q(|lu(®)|ZM) Qlu(®)|2M)

-G [UU - M)y — UV — M), de
Q(|u(t)|=M)

g/ F(V — M) dz — FG/ V(V — M) dz
Qju(t)[2M) Ju(8)[2M)

By Young’s inequality, we have

: 1
/ F(V — M)dz < —— Iﬂ |+ 340Gl (V = M) |32y,
QJu(t) = M)
1 2
< d G IQ |+ZdOGHV(V—M)+”L2(Q}tJ)'

Using (16) and noting that V(¢,z) = v(t,z)/G, we can get

F2G 1
~FG VIV = M) < TV gy + 3GV = M)l
Q(Ju(t)|2M) ( )+ Vi @) T 3% IV ( )+llz2y,)
2F
= BGn doGn 19 |+ dOG“V(V M)+“L2(Qu )

provided that ¢ > 79, where 7o > 0 is such a constant that

e TR, < 0%
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Substitute these two estimates into (37) to obtain
1 d
5 22 (10 = M) gy + GIV = M)y, )
+%@vw-Mnﬁmmyuwwv—Mnﬁm%Q
F?
- d Gn
E? 2F
<_— U
“dGIQ|+dG
3F
d G

By (34), |2%| < . It follows that

2% | + HVHL2(Q“)+ dOG“V(V M)+ 1132, (38)
%]+ d0G|| (V= M)+ )20z,

IQu ‘ + doGHV(V M)+HL2(Q” ) for ¢t > max {T(),To}.

& (10~ M)+ Baiag,) + GIV = M)slzqay,y)

(39)
+d0 (HV(U - M)+||L2(QLAL/I) + G”V(V — M)+||L2(Q}t/!)> _<_ Cg £,

where
_ 6F?
27 doGr
is a positive constant 1ndependent of M. By Poincaré 1nequahty (11) and Gronwall
inequality, from (39) we get,

(U — M)+NL2(Q )+ GV = M)+l 22as,)

- Che
< g (“(Uo = M)4||Z2ay,) + Gl (Vo — M), ||2L2(Q“M)> + dzﬂ
<(1+ G)Koe~ %" + Cb;

do

Hence, there exists a time T’y () (> max {To, 79}) such that for any t > T, and any
wp € By, one has .

202 €

1T = M)+ lZ20, < U - M)+||Lz(nu)+GH(V M)lliz@y,) < = don - (40)

By the symmetric argument we can show that there exists a time 7_(g) such.
that for any ¢ > T and any wg € By, it holds that

202 g

<222 41
dor (41)

H(U+M)_H%2(WM) <||(U+ M)—”iz(ﬂ}fl) +G(V + M)—Hzm(%)
where | .
p(e)+ M, ifp(z) <M,

‘ if o(z) > —-M.
By (40) and (41), for any ¢ > T1 (e) = max‘{T_,_,T_} and any wg € By, it holds that

4 .
[ -y < 2 )
Q(lu(®)|=M) don -

)

W+ML:{
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Then .
/ U ()2de < 2 / (@) = M)2dz + 2MPm(Q(lu(t)] > €M)
Qu(t)|=£LM) Q(|u(t)|=M)

802 £ 2M2K0 8028

don T EME " dm ' °
_ (43)
for a sufficiently large £ = £(¢). Finally, since the rescaling preserves U(t) = u(t),
(33) is proved with C; = 1+ 8C3/ (don) and M (g) = £(e) M (z). o

Although [(V—M)4 || T2(0y,) and (V+M)_|J2. (@x,) &re involved in the grouped
. estimates (40) and (41) in the proof of Lemma 34 we cannot draw the same
conclusion on V (t,z) = v(t,z)/G as in (43) and (33), because unlike (U — M), =
U—M onQY, (V—M); and V — M (which can be nonnegative or negative) may
not be identical on the subset Q% = Q(Ju(t)| > M) so that

/ (V- M)idz and f (V — M)3dz
Qlu(t)|>M) Qlu(®)|>M)

may not be equal, and same for the integrals of (V + M)2 and (V + M)? on
Q%,. Thus we need a different treatment for the v-component in order to prove the
following lemma.

Lemma 3.5. For any € > 0, there exists positive constants My = Ma(e) and
Ty = Tz(e) such that the v-component v(t) = v (t,x;wo) of the solution of the
RGSE (3)—(4) with the boundary condition (5) satisfies

/u o(t)|?dz < Cse,  for t > Ty, wo = (uo,vo) € Bo, (44)

where By is the absorbing set shown in Lemma 2.1, and C3 = C3 (Ko) is a positive
constant.

Proof. We work on the sum y(t) = u(t,z;wo) + v (t,z; wo), where (u,v) is the
solution of (3)-(4) with the boundary condition (5) and the initial data wo =
(u0,v0) € Bo. Indeed, y() satisfies the equation

Bt = daAy + (dy — dg) Au — Fy + F — ku. (45)
Taking the inner—product ((45),y(t))ay,, we have

e Wizgay,) + d2llVy(®) 1220y, + FllyOl 720y,

2 dt
— (ds — dy) / Vu(t)Vy(t)dz + F y(t) da
Q(|u(t)|>M) Q(|u(t)|>M)
— k/ u(t)y(t) de
Q|u(t)| > M)

F, .. F,_ k2 , F
<3 || + §||y(t)||L2(ngl) + ﬁ““(t)“m(nxd) + 5”@’( )HLZ(Q )

d
+ 1Ty gy + L )y



REVERSIBLE REACTION-DIFFUSION SYSTEMS 1429

It follows that

d : dy — da)?
SO g + VYO ey <D 2L ITuOl e, "
+ F Q| + f”u(t)“%z(n;w
An exponential multiplication on (46) yields |
d [ dont 2 |d1_d2‘2d |, 2
7 (@M IO ag)) < VUl Eaqay, "

k2 .
e () + 1951

Similar to the inequality (15), we have

d
(Gl Baag,) + VO Baay,) ) + do (GIVuEaayy + 19O Faqa,)
‘ < FlQyl,
which implies that
W) ey < & (luolZaqay,) + T IwolBacay,) ) + 2 198 (49)
llu r2y) =€ ||u0||L2(Q}¢4) llvo L2(QY) don Mi-
From (47) and (48) It follows that
ly®IZ2q,) ;
—dant 2 |d1 _d2|2 —dant ' dans 2
<e fluo + UOHLZ(Q;(J) + TG A e[ Vu(s)lz2(qy,) ds (49)

4o X (Juallagag, + G lonlEamy)) + 2 (o + F ) 1234
ja ollzz(0y,) ollz2(0y,) Mls

dom \ don
where
¢, ’ if dy = do;
t elda—dom)t
a®=AeW%WwS @;@ﬁwﬁ@>w
EAE AT if dy < do.

For the integral term in (49), similar to (20), we have

t 1 eB2nt
dans 2 wids < ( 2 N 2‘ . Qu
[ 1T g ds < g5 (Glluollacagy + leolaag) + s 198

dan (" dyns [ —doms F o ou
+ ﬁé A et [e dort (G||UOH%Q(Q}{4) + ||U0[|?ﬂ(%)> + don |QM|} ds.
‘ (50)
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Substitute (50) into (49) to get
(e HLZ(Q )

' 1 /[ k
< e g + 0P + 0 (ol +G1\|vo||) d—»(d—w) 2]

n
ldy — da|* e [ 1 2 2
+ Bt | (Gl + o) + e 50

'dl — d2| e—dant 2271 dan * dams | ,—dom 2 2 F
ol > s —1Q||d
8T T8 [ e e (G ol + o) + i ds

' K2 -
— e g -+ w2 + e~dwta<t>;v— (uoll® + G o)

|dy — da|?
Ty, ©

|dy — da|* n o—dat 2 2
MR a(t) (6 ol + o)

1 [k Fidl—dzﬁ(r 1)
+l—(——+F)+————F =+ ]| O]
[dzﬂ (don > LG \& " dy) |1
(51)

Note that e~%"q(t) — 0 as t — co. Therefore, there exists two positive constant
Cy = C4(Kp) and Cs, where Kj is determined by the absorbing set Bo in (12),
such that

—'dz‘r]t
— (Gllual” + ")

)+ Cs [4y] (52)
and Ms(g) = M given by (34),

)32,y < Cae™™™ (1 +aflt

which implies that there exist sufficiently large T3 (e
such that

)
)

/ ly(t)|?dz < (Cy + Cs)eg, fort > Ty, wo = (uo,vo) € Bo. (53)
i,

Finally, since v(t) = y(t) — u(t), combining (33) and (53), the inequality (44) is
valid with C3 = 2 (Cy + C4 + Cs). Thus the lemma is proved. O

By Lemmas 3.4 and 3.5, we have proved that the condition (30) in Lemma 3.3
is satisfied with i '
C=C1+C3 M =max{M/e) M(e)}, and T = max {T}(g), T2(e)},

by the solution semiflow {S(¢)}+>0 of the reversible Gray—Scott evolutionary equa-
tion (9).

4. The existence of global attractor. In this section we shall check that the
k-contraction condition (31) in Lemma 3.3 is also satisfied by the solution semiflow
of the reversible Gray-Scott evolutionary equation (9). Then by Lemma 3.3, the
existence of a global attractor is proved for the reversible Gray—Scott semiflow

{S®)}ez0-

Lemma 4.1. For any given M > 0, the solution semiflow of the reversible Gray-
Scott evolutionary equation (9) satisfies the k-contracting property (31),

K ((S®)Bo)aguwi<an) — 0 as t = oo,
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where By is the absorbing set in (12) and (S()Bo)q(ue)<m) z’skdeﬁhed in (32).

Proof. Taking the inner-product ((3), —Au)q, ,,, we have

1d
3 EIIVU(t)H?au,M +di||Aut)ll?,

=—(F+ k)HVU(t)”?zu,M - / uvAudz + G usAy dx

u, M Q'u.,M

< GM3/ |Au(t)| dz — (F + k)| Vu@)|a, ,, + M‘-"/ [o(t)|| Au(t)| de.
QoM ' Qu,m
By the Cauchy-Schwarz inequality and a subsequent cancellation of the terms
d1]|Au(t)|d, ,, on both sides, it follows that
d o G2M6 M4 .
T ITut) I, oy + 2+ DIVE@, < 5 Rl + I
1
< (G*M®)Q| + M*Ky)
1 .
for wg € By and t > Ty, where Ty = Tp (Bg) is given in the beginning of the proof

of-Lemma 3.4. ‘
From (15) we can get that, for ¢ > 0 and any wp = (uo,v0) € H,

t+1 t+1 - 1 ‘
/t Va3, ,, ds < / [Vl ds < 2 [(Glu(®I + [(©)) + FIe].

Here for any initial data (ug,vo) € By, it holds that

t+1
1

/ VU3, ds < 7 (G + DKo+ FIR), fort>To  (55)

t ’ 1
By the uniform Gronwall inequality [39,43], from (54) and (55) we can deduce that

IVu)l3, ,, < e (Ce+Cr), for t>Ty+1, wo € Bo, (56)
where 1
[Ep—— 1 F|Q
Co = 37 (G + DKo + FI0)

and

Cr = di (G2M6\Q| + M4K0)
1

are positive constants, and C; depends on the given constant M.
Next we can take inner-product ((4), —Av(t))q, » to get

1 2

s eI, + AV,

= —/ FAvdz — F|Vv@®)|3, ,, + / u?vAvdr — G/ udAv dzx
Qu,m ' Qo M Qu, M

< (GM*+ F) / Av()| dz — FVo(®)]3, ,, +M2/ ()| Av(?)] da.

w, M ’ Qu,M

Similarly by using the Cauchy—Schwarz inequality and the uniform Gronwall in-

equality we can prove that there exists a uniform constant Cs = Cg (Ko, M) > 0

such that

IVo()3, , < Cs, for t>To+1, wo € By (57)
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Due to the compact Sobolev imbedding HZ (£2) <> LQ(Q) for space dimension n < 3,
(56) and (57) together show that for any fixed ¢ > Tp + 1,

(S(t)‘BO)Q(‘,,:th)‘<M) is a precompact set in L*(1).

Therefore, by the property of Kuratowski measure, in the product phase space H
we have ) o

K ((S(t)Bb—)Q(|u(t)|<M)) =0, fort>Tp+1..
Thus the lemma is proved. ’ ‘ ‘ O

Now we can prove the first main result stated in the following theorem.

Theorem 4.2. For any positive parameters dy, dg, F, k and G, there exists a global
attractor & in H for the solution semiflow {S(t)}i>0 generated by the reversible
Gray-Scott equations (3)—(4) with the Dirichlet boundary condition (5). Moreover,
the global attractor & has a finite Hausdorff dimension dg (&) and a finite fractal
dimension d (). ' ' :

Proof. By Lemma 2.1, the solution semiflow {S(¢)}+>0 of the reversible Gray—Scott
equations (3)—(5) has a bounded absorbing set By in H and the condition (i) in
Lemma 3.3 is satisfied. Then by Lemma 3.4, Lemma 3.5, and Lemma 4.1 this
solution semiflow {S(t)}:>0 satisfies the conditions (30) and (31), so that the con-
dition (ii) in Lemma 3.3 is also satisfied. Thus by Lemma 3.3, there exists a global
attractor o/ in H for the reversible Gray—Scott semiflow {S(¢)}i>0.

The proof of the finite dimensionality dg (&) < oo and dy (&) < oo is parallel
to the proof of the corresponding results in [52, Theorem 3] and [54, Theorem
2], based on the L*(Q2) x L*(Q) boundedness of the global attractor &/ (which
is the consequence of Lemma 2.2 and the invariance of &), and shown by the
Kaplan—Yorke formula and the estimation of Lyapunov exponents by the global
trace formula. Here the detail of that proof is omitted. O

Furthermore, based on Lemma 2.3 and the invariance property of the global
attractor, we can prové the following result on the regularity of the global attractor.

- Corollary 4.3. The global attractor & of the reversible Gray—-Scott semiflow
{S(t)}+>0 is a bounded set in the space Hoo = L>®(Q2) x L™®(Q).

The proof of this corollary is similar to the proof of Lemma 19 in [53] combined
with the invariance of the global attractor &/. The detail is also omitted.

5. The (H, E) global attractor. The following definition of (X,Y’) global attrac-
tor for a semiflow on a Banach space X, where Y is a compactly imbedded subspace
of X, was initially introduced by A. V. Babin and M. I. Vishik [2,3]. This concept’
actually plays a role of bridge linking a global attractor and an exponential attractor
in X, as will be shown in this paper.

Definition 5.1. Let {S(¢)}i>0 be a semiflow on a Banach space X. Let Y be a
compactly imbedded subspace of X ,-denoted by ¥ < X. A subset & of Y is called
an (X,Y’) global attractor for this semiflow, if &7 has the following properties:
(i) & is a nonempty, compact, and invariant set in Y.
(ii) o attracts any bounded set B C X with respect to the Y-norm, namely,
there is a finite time 7 = 7(B) such that S(¢t)B C Y for t > 7 and

disty(S(f)B,Jz{) = sup inf |S{t)z —ylly =0, ast— oo
o rcBYEA
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The following two lemmas address the ultimate boundedness of trajectories in £
and the (H, E) absorbing property of the reversible Gray-Scott semiflow {S(¢) }+>o.

Lemma 5.2. The reversible Gray-Scott semiflow {S(t)}+>0 has the following prop-
erty: for any R > 0 there exists a constant M(R) > 0 such that if the initial data
wo = (ug,vo) € E and ||w0||i~ < R, then S(t)wo = (u(t,-),v(t,-)) € E for allt >0,
and ,

IS(®)wol3 < M(R), for t>0. (58)

Proof. ‘Ta,king the L2($2) inner-product ((3), —Au) and {(4), —Awv), by the homoge-
neous Dirichlet boundary condition, we have

L 4y Gul2 + dy | Aall? + (F + &) Val? = / wvAuds + / G Audo
2 dt Q Q
< ﬁ—i—é ]|Au||2+—1—/ (u*v® + G*u®) dx
1 /2 1 ' | (59)
< 2 6 6 2,,6
dif|Aul” + 2 (3/ dac+3/0v dcc+/QGu dw)
= dll!Au||2+L ((2+302)/u6dm+/vﬁdx), t>0,
6d, a - Ja
and

5 dt[leHZ+d2|lAv[|2+FHVUI|2 /FAvd:c+/

Q

S (d22 d2) ”A H2 / (u4v2+G2u6) dx

< dpf| Avlf? + 6¢11 ((2-1-302) Quﬁdx+/0v6d:c), t> 0.

wvAvdz — / GuPAvdz
o)

(60)
By Lemma 2.2 and (28), we have

/us(t,w)da:—i-/ WO (8, x) do < Koe ¥ (/ ugd:v+/vgd$>—(—K1, t>0, (61)
Q Q. Q Q

for any wo = (uo,v0) € E, where K; is the positive constant given in Lemma 2.2
and (29), and

Ky =max{1,G™°} /min {1,G~ 5}
Substituting (61) into (59) and (60), we get .

2+ 3G2 . ’
_|[Vu||2+2(F+k)]|VuH2 < +3 (Kze—” (/ ud dz +~/ v§ dw> +K1),
dt 3d; Q Q

2 .
4ol + 2| vo? < 222 (KF (f wdat [ vc‘?dm) +K1>’
dt 3d; Q Q v
(62)

for t > 0 and wo = (ug,v0) € E. By Gronwall inequality and obviously F +k > F,
(62) implies that

it 9ot D < ZCEEI ([ s [ i)+t (69
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where
K1 (24 3G?)

3doF |
Finally, combining (63) and (16) we conclude that, for t > 0 and any (ug,vo) € E,

2K, (2+3G?)~°

K3(R) = R+

et ) vt 1 e | B o v0) P+ T sl
+K0+K3(R),
| (64)

where v > 0 is the universal constant of the continuous imbedding inequality
lwll L @yx ey < vllwle- (65)

Therefore, if |wol|3 = [lwol|? + |[Vwo||? < R, then the strong solution S(t)we =
(u(t,-),v(t,-)) € E forall t > 0, and

IS@)woly < M(R), for >0,
where M (R) is the constant given by .

max{1, G}R N 2K, (2+3G?) 7S
min{1, G} 3do F

Thus (58) is proved. O

M(R) = R® + Ky + K3(R). (66)

Lemma 5.3. For the reversible Gray—Scott semiflow {S(t) }1>0, there exists a uni-
versal constant K* > 0 with the property that for any R > 0 there is a T(R) >0
such that if wo = (uo,vo) € H with ||wo||> < R, then the solution of the reversible
Gray-Scott evolutionary equation (9) satisfies S(t)wo € E for t > T(R) and

IS@wolls = ll(ult, ), 0(t, )% < K™, for t = T(R). (67)

Proof. From the inequality (15), for any to > 0 we have

to+1
2dy / (I9u(s, )2 + [Vo(s, )|2) ds

n (63)
<2 w0, o DI + o

By the absorbing property shown in Lemma 2.1, there exists a time to(R) > 0
such that for any wo = (ug,vo) € H with |wp||> < R we have

It ), vt NI < Ko, for ¢ = to(R). (69)

According to the Mean Value Theorem, since the solution regularity of the par-

abolic evolutionary equation (9) implies that (u,v) € C([to(R),0),E), by (68)
there exists a time ¢1(R) € [to(R), to(R) + 1] such that’

IV (R ) v R DIP < oy (BB 4 V). o)

Combining (69) and (70) we get

I (), ) (0 (), DI < Ko+ 5 (%%K%{{'—?‘G—}) (71)
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Finally, we utilize Lemma 5.2 to conclude that for T(R) = to(R) + 1, -

1

| (ult, ), vt )% < M (KO L [max{l,G} FlQ

2dy | min(1, G} 0T WD , t=2T(R),

where M (-) is the function given in (58) or specifically by (66). Thus (67) is proved
with K* given by

1 [max{1l,G} Flo| |
K*=M|Ky+ — K, 2
< 0T 24, [min{l,G} ot (LG (72)
which is a universal positive constant. The proof is completed. |

Lemma 5.4. Let {wn,}>°_, be a sequence in E. Assume that {wn} converges to
wo € E weakly in E and {wm} converges to wq strongly in H, as m — 00. Then
the sequence of solutions {S(t)wy}or_, of the Gray-Scott evolutionary equation 9)
with the initial data S(0)wy = wm, has the convergence property that for eacht > 0,

lim S(t)wm = S(t)wo strongly inE (73)

m—>0Q
and the convergence is uniform on any compact interval [to, 1] C (0,00).
Proof. Let [tg,t1] be any fixed compact_ihterval in (0, 00). Since the weakly conver-

gent sequence {wy,} is a bounded set in E, by Lemma 5.2 there exists a constant
K > 0 such that

[1S@)wmllp < K and  [[SE)wollp < K- (74)
Let Nk be the bounded ball in the space E of radius K centered at the origin. Let
L > 0 be a Lipschitz constant of the Nemytskii mapping f : £ — H defined by

(8) relative to this bounded ball Ng. Since any strong solution of (9) is a mild
solution, we have :

t
St wm = e wpm, +/ A=) £ (S(0)wp)do, te€[0,t], m=0,1,2,---. (75)
0

By the smoothing property of the analytic Co-semigroup {e*} oo cf. [39, Theorem
'37.5], there is a constant M; > 0 such that N

HeAtHL(H,E) < Myt~V?%, fort >0,

since the generator A : D(A)(= Z) — H is a nonpositive, self-adjoint operator and
E=D ((—A)l/z). Thus, from (75) it follows that C

1S @) wm — SE)wollp < Mit™? |lwm — wol g

—+ MlL/Ot(t - G)_l/z 1S () wm, — S(0)wol g do, tE [0,21].
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By the Gronwall-Henry inequality, cf. [19, Lemma 7.1.1] and [39, Lemma D.4], the
above inequality implies that there exists a positive constant C' (M1, L, t;) such that

1Sty ~ S@woll < Mit™? o, — woll

+C (M, L, 1) /Ot (1 + (t'— a)—l/z) (Mla—l/z lwm — wO”H) do

t
=M, <t‘1/2 +C (M, L,tl)/ (14t —0)/2) 0—1/2dg> lwm — woll
’ (76)

t
=M (t“l/z + C (My, L, ;) [2751/2 + / (t— d)_1/2a_1/2d0]) [
A |
=M; (£712 4 C (M, L) [2642 + T(1/2)?] ) wm — woll
<0 (M, L) (14 £72) fwm — wol

where I'(-) is the Gamma function (here we used B(1/2,1/2) = |T'(1/2)|? = ), and
C* (My, L,t) is a positive constant given by

C* (My, L, t1) = My max{l, C (M, L, t1) (2t}/2 —|—7r)}.
By the condition that
|wm —wollg — 0, as m — oo,

from (76) it follows that, on any compact interval [to, 1] C (0, 00),
S 1@~ S@uolz < O (43, L,2) (14 ™7%) m = wolly =0, (77
ost1
as m — 00. Thus the proof is completed. | O
Based on the above lemmas, we can show the asymptotic compactness of the
solution semiflow {S(t)}+>0 of the reversible Gray-Scott evolutionary equation (9)

not only in the space H as already proved in Section 3 and Section 4 but also in
the space E.

Lemma 5.5. The reversible Gray—Scott semiflow {S(t)}+>0 is asymptotically com-
pact in E with respect to the strong topology of E.

Proof. Let T > 0 be arbitrarily given. For any time sequence {t,},- ;, t, — 00, and
any bounded sequence {wn}ff=1 C E, there is an integer ng > 1 such that t,, > T
for all n > nyg. .

Since {wy}oo, is bounded in E, by Lemma 5.2,

{8 (tn — T)wn},>,, is also a bounded set in E. (78)

Since E is a Hilbert space, (78) implies that there is an increasing sequence of
integers {ny}y. ;, with ny > ng, such that

(weak) Jim § (tny —T)Wn, =w* € E. (79)
00
By the fact that F — H is a compact imbedding, we can choose a further subse-
quence of {ng}re;, but relabel it as the same as {ny }re;, such that

(strong) kli}ngo S (tn, —T)wp, =w* € H. : (80)
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Then by Lemma 5.4, we obtain the convergence
(strong) klim S (tn,, ) wn, = (strong) klim S(T)[S (tn, — T)wn,) = S(T)w* € E,
—00 —00

with respect to the strong topology of E. According to Definition 1.5, the lemma
is proved. O

Now we can assemble these lemmas to prove the existence of an (H, E) global
attractor and to identify it in the following theorem. This is the second main result
of this paper.

Theorem 5.6. For the reversible Gray-Scott semiflow {S(t)}+>0, the global attrac-
tor & in H is an (H, E) global attractor.

Proof. By Lemma 5.2 and Lemma 5.3, there exists a bounded absorbing set B; C £
for the reversible Gray—Scott semiflow {S(t)}:>0 and the absorbing is in the £-norm.
By Lemma 5.5, the reversible Gray—Scott semiflow {S(t)}:>0 is asymptotically com-
pact in E. Therefore, by the basic theory shown in Proposition 1.6, there exists a
global attractor @/ for the reversible Gray—Scott semiflow in the space E.

According to Definition 5.1, Lemma 5.3 also shows that this global attractor &g
is an (H, F) global attractor. Since @/g attracts any bounded set in H with respect
to the E-norm and, on the other hand, the global attractor & is a bounded set in
H, we have

g attracts & in E. (81)

Since & is an invariant set, (81) implies that &/ C @/g. Moreover, by definition we
also have

& attracts &g in H. (82)

Since & is also an invariant set, (82) implies that &z C /. Therefore, it holds
that &/ = &/. The proof is completed. O

" Corollary 5.7. For the reversible Gray-Scott semiflow {S(t)}1>0, there ezists a
compact, positively invariant, absorbing set Bg in H.

Proof. As indicated in the proof of Theorem 5.6, by the definition of the (H, E)
attractor &z, there exists a bounded absorbing set B; C E, which not only absorbs
any bounded set in E but also absorbs any bounded set in H as well. Thus there
is a finite time Tg = Tx (B1) > 0 such that

S(t)Bl C By, fort>Tg.

Let )
Br= |J S®B:. “ (83)

t€[0,Tx]

We can verify that this set B is a compact, positively invariant, absorbing set in H.
Indeed, the compactness of B in H follows from the fact that Bg = TL{[0, Tg] X B1),
where II(t,w) = S(t)w is a continuous mapping on R x H and [0,Ts] x By is a
compact set in'R x H. The positive invariance of Bg can be easily verified. That
Bpg absorbs any bounded set in H can be checked by using Lemma 5.3 and the

absorbing property of B;. Thus the corollary is proved. |
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6. The existence of an exponential attractor. In this final section, we shall
prove the existence of an exponential attractor for the reversible Gray—Scott semi-

flow {S( )}t>0

Definition 6.1. Let X be a real Banach space and {S(t)}+>0 be a semiflow on X.
A set & C X is an exponential attractor for the semiflow {S(t)};>0 in X, if the
following conditions are satisfied:
(i) & is a nonempty, compact, positively invariant set in X,
(ii) & has a finite fractal dimension, and ‘
(iii) & attracts every bounded set B C X exponentially: there exist posmve con-
stants u and C(B) which depends on B, such that

distx (S(t)B,&) < C(B)e #, for t >0.

The basic theory and construction of exponential attractors were established
in [12] for discrete and continuous semiflows on Hilbert spaces. The existence the-
ory was generalized to semiflows on Banach spaces in [10,11] and extended to some
nonlinear reaction-diffusion equations on unbounded domains in [4,13,14] and oth-
ers. The existence of exponential attractors has also been shown for chemotaxis
equations [30] and for some quasilinear parabolic equstions [25]. More references
and results in this area can be found in [12,27, 34].

Global attractors, exponential attractors, and inertial manifolds are the three
major research topics in the area of infinite dimensional dynamical systems. For a
continuous semiflow on a Hilbert space, if all the three objects (a global attractor
4/, an exponential attractor &, and an inertial manifold .# of the same exponential
attraction rate) exist, then the following inclusion relationship holds,

G CEC M.

Since the structure of an exponential attractor is to some extend more constructive
and informative than a global attractor and, on the other hand, the existence of an
exponential attractor is less restrictive than the existence of an inertial manifolds
(due to the hurdle of the spectral gap condition for the latter), in recent years
more attentions have been focused on the topics of exponential attractors and its
approximations.

Here we can take either the Hilbert space approach or the Banach space approach
as aforementioned to show the existence of an exponential attractor for the reversible
Gray-Scott semiflow {S(¢)}+>0. To fix the idea, we shall tackle it by the argument
of squeezing property [12,27].

Definition 6.2. For a spectral (orthogonal) projection Py relative to a nonneg-
ative, self-adjoint, linear operator A : D(A) — H with compact resolvent, which
maps the Hilbert space H onto the N-dimensional subspace J{y spanned by a set
of the first N eigenvectors of the operator A, we defined a cone

Cpy =1{y € X ¢ [|(I = Px) W)llac < 1PN ®)ll9c} -

A continuous mapping S, satisfies the discrete squeezing property relative to a set
B C K if there exist a constant § € (0,1/2) and & spectral projection Py on H
such that for any pair of points yo, 20 € B, if

5. (30) — 5. (20) & Frn,
then
1S (y0) = Su (20)llg¢ < 6 llyo — 20ll5¢ -
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We first present the following lemma, which is a modified version of the basic
result [27, Theorem 4.5] on the sufficient conditions for the existence of an exponen-
tial attractor of a semiflow on a Hilbert space. In some sense, this lemma provides
a more accessible way to check these sufficient conditions if we are sure there exists
an (W, V) global attractor, such as the (H, E) global attractor for the reversible
Gray—Scott semiflow in this paper.

Lemma 6.3. Let W be a real Banach space and V be a compactly embedded subspace
of W. Consider a semilinear evolutionary equation

%%U + Aw = g(w), t>0, (84)

where A : D(A) — W is a nonnegative, self-adjoint, linear operator with compact
resolvent, and g : V(= D(AY?)) — W is a locally Lipschitz continuous mapping.
Suppose that the weak solution of (84) for each initial point w(0) = wo € W uniquely
exists for allt > 0 and it turns out to be a strong solution fort > 0, which altogether
form a semiflow denoted by {®(t)}i>0. Assume that the following four conditions
are satisfied:

(i) There exist a compact, positively invariant, absorbing set Be in W.

(ii) There is a positive integer N such that the norm quotient Q(t) defined by

2
_ A2 () — we ()l
= p)
lwa(t) — w2 ()l
for any two trajectories w1(-) and wa(-) starting from the set B\Cpy satisfies -
a differential inequality
d
T <pmyQm, >0
where p (B.) is a positive constant only depending on Be.

(i) For any given finite T > 0 and any given w € B, ®()w : [0,T] = B
is Hélder continuous with exponent 0 = 1/2 and the coefficient of Holder
continuity, K(w) : B — (0,00), is a bounded function.

(iv) For any t € [0,T) where T > 0 is arbitrarily given, ®()(-) : Be — B is
Lipschitz continuous and the Lipschitz constant L(t) : [0,T] — (0,00) is @
bounded function.

Q) (85)

Then there exists an exponential attractor & in W for this semiflow {®(¢) }+>0-

Proof. The proof of this lemma can be made parallel to [27, Theorem 4.5] except
the following modifications. All the other details are omitted here.

First modification is that here the condition (ii) on the norm quotient Q(t) im-
plies that the semiflow {®(t)};>o satisfies the discrete squeezing property (instead
of directly assuming this property) relative to the nonempty, compact, positively
invariant set B, in W. The proof of this implication can be seen in the proof
of [27, Theorem 4.7] or in the proof of [12, Proposition 3.1].

Second modification is that the condition (iii) requires the uniform Hélder con-
tinuity with exponent # = 1/2 for the mapping ®(-)w : [0,7] — B, instead of the
uniform Lipschitz continuity. This modification works through because the condi-
tion (iii) is used only in proving that the fractal dimension of the set ® ([0,%.] x &)
is finite, cf. [27, Theorem 4.5], by using the fractal dimension (d#) property

ds (® ([0,t4] x &) < ds (@ ([0, |w € &) + dg (B (&t € [0,T])),
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where &, is the exponential attractor for the discrete semiflow generated by the
mapping S (t.). Originally the uniform Lipschitz continuity implies that

dz (2 ([0,t.] |w € &) < dg ([0,%]) -

Here, by the following auxiliary lemma, the uniform Holder continuity with expo-
nent 1/2 can also guarantee dg (® ([0,t4] |w € &,)) to be finite. O

Lemma 6.4. Let X and Y be real Banach spaces and let X be any given compact
set in X. If a continuous mapping ¥ : X — Y is uniformly Hélder continuous with
ezponent 6 = 1/2 on the set K, then the fractal dimension of the image set ¥(X)
in'Y is finite. ‘ ‘

Proof. Let 0 < § < 1. One can cover the set X with exactly the smallest number
N5(X) of balls of diameter 4. By the described uniform Hélder continuity, the image
set U(X) can be covered by NZ(X) balls with diameter /6. Hence, the smallest
number N /(¥ (X)) of balls of diameter at most /4 that can cover ¥(X) satisfies

N /5(¥(%)) < NF(K).
Ther_efofe, by definition of fractal dimension, we have

log N /5(¥(X) _ logd  log N3 (X)

dg (¥ (X)) = limsu lim'su :
7(7(%)) \/g_mp —logVvé ~ Pkt logv/s  —logd
. log NZ(X) :
= 2limsup ——2-— = 4d4(X) < o0,
nsup = s | 7(X)
which proves the conclusion. : O

The next theorem is the third main result in this paper.

Theorem 6.5. For any positive parameters di, do,; F, k and G, there exists an
exponential attractor & in H for the solution semiflow {S(t)}+>0 of the evolutionary
equation (9) generated by the reversible Gray-Scott equations (3)~(4) on a bounded
domain of space dimension n < 3 with the Dirichlet boundary conditions (5).

Proof. By Theorem 5.6, there exists an (H, F) global attractor &/, which is ex-
actly the global attractor of the reversible Gray-Scott semiflow {S(¢)}:>0 in H. By
Corollary 5.7, there exists a compact, positively invariant, absorbing set Bg in H
for this semiflow.

Next we prove that the second condition in Lemma 6.3 is satisfled for this re-
versible Gray-Scott semiflow. Consider any two points wi(0), w2(0) € Br.and let
w;(t) = (uwi(t),v:(t)), © = 1,2, be the corresponding solutions, respectively. Let
y(t) = wi(t) — wa(t), t > 0. The associated norm quotient of (wy,ws), where
w1(0) # wy(0), is given by

— A2y )|
lcareuol

Q) = TwolE 0 2

Directly we can calculate
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% %Q(t) = m (=4 2y (1), (~ ) 2y [y = || (- 4) /2y e H y(t), m ]
— oz (A0, )~ Q) (o). w)
= Hy(i)l\z (A () = QL) Ay(t) + f (w1 (b)) — f (wa(t)))
= a7 (AW ~ QOU(D, Av() + QW) +F (i (1)) — £ (wa (1)
= =7 [~14vE) + QI — (Au(0) + QOO 1 (w1(0) =/ (w2(0)]
< s (~3140(0) + QU + 5 17 s - £ (a0 )

(86)
where we used the identity »
—(Ay(t) + Q)y(t), Q)y(1)) =

Note that B is a bounded set in E and that E < L¢(Q) x L5(f) is a continuous
imbedding so that there is a universal constant R > 0 only depending on Bg such
that

|l ’U)H%e(ﬂ) <R, for any (u,v) € Bg. (87)

‘We have , : ’
1f (wi(®) = F (wa)I < ||-(F + &) (w1 — uz) + (y?vx —ujvg) — G (4§ —uj)||

A [[=F (o1 v2) = (ufvr — udve) + G (uf —ud) |-

Using the Hélder inequality, the imbedding inequality (65 ) and Poincaré inequality
orderly, we have

lur — g |* < Q42 flur — u2“2L‘5 < QP (L +1) |V (w1 — ug)|?
= e (-2 WH
where ¢; = [Q*/342(1 +n) d;. Similarly, we have ' -
2

or = val® <o | (=4)2 (wr )|,

where cs = [Q2[2/342(1 + 1) do. Moreover, ‘
1/3 2/3
ot — 3’ < (/ fur = ugl® dm) (/ (o2 & wrug + 2] dm)
= [lr — uz“m(n) ““1 +urug + U2HL8(Q)
2 2 4 4
< 92 llus ~ uallfra gy - 8 (el Eaay + vzl Zogoy

<4 IV (1 1) P 168 = eo(8) (-4 n )
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where c3(R) = 16(1 +n)y2d1R?. By the generalized Holder inequality and (87), we
have

2 2 2 2
[|udvr — udve||” <2lur — ualze(qy lua + vallzs g llv2llze @)
2 4
+2Jo1 — v2ll7e(q) lluallpsoy

<8R? |lu1 — ua[ 7oy + 2R o1 — w2l Ze(e)

2

b

<ea(R)||(~A)2 (w1 — wn)

where cs(R) = 2v2(1 + 1) (4d1 + d2) R?.
Substituting these four inequalities into (88), we can get

S (wi(®) = f (w2(8)l
< (ﬁ(p FE) 4G F+2es(R) G+ 2@) “(—A)1/2y(t)H .

Then substitution of (89) into (86) yields

d 1
S @)= EOIE If (wi(®)) = f (w2(E)l < p(BE)Q(E), ¢>0, (90)

(89)

where

p(Bg) = Ve (F + k) + /2 F +2+/c3(R)G + 24/ c4(R)
is a positive constant only depending on R which depends on Bg. Thus the second
condition in Lemma 6.3 is satisfied.

Now check the Holder continuity of S(-)w : [0,7] — Bg for any given w € Bg
and any given compact interval [0,7]. Since w1 (0),w2(0) € B, wi(t) and wa(?)
are strong solutions, which must be mild solutions. By the mild solution formula,
for any 0 < t; <ty <T we get

12
1S (t2) w — S (t) w] < H (eA(tz_tl) . I) eAtle n /t HeA(t“’“’)f(S(a)w)” do

-/ ’
ap

By the proof of Corollary 5.7 and (83), By is a bounded set in E. Since Bp is
positively invariant with respect to the reversible Gray-Scott semiflow {S(¢)}:>o,
there exists a constant K5, > 0 such that for any w € Bg, we have

”S(t)w“E < K‘BE: t > 0.

Since f : E — H is locally Lipschitz continuous, there is a Lipschitz constant
Lg,, > 0 of f relative to this positively invariant set Bg. Moreover, by [39, Theorem
37.5], for the analytic, contracting, linear semigroup {e t}4>0, there exist positive
constants My and M; such that

||6Atw—w”H§M0t1/2||w|\E, fort >0, weE,
5.4)
< Myt~™'2, fort> 0.

(eA(tg—tl)_I) At1=0) £(S(o ”do‘

and (as used in the proof of Lemma

At

e “L(H,E)
It follows that .
” <6A(t2_t1) - I) GAtl’wH S MO (tg - t1>1/2 KBE
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and A
" © M Lg K
Altz—o) d </ 1B BE g0 — 9K /2
/tl H FS( H g y V-0 a Bplep My (ta —t1)/".
Moreover,
t1
Alta—t1) _ Alt1—0) 1/2 MILBEKBE
e 1 S(o do < M (ty —t do
JC ( ) FS( " olt2 — 1) T Voo

= 2K3EL3EM0M1\/—(t2 - t1)1/2 .

Substituting the above three inequalities into (91), we obtain
IS (t2)w = S (1) wl| < K <M0 +2Lp, My (1 + Moﬁ)) (ta—t)'?,  (92)

for 0 < t; < ty < T. Thus the third condition in Lemma 6.3 is satisfied. Namely,
for any given T' > 0, the mapping S(-)w : [0,7] — Bg is Hélder continuous with
" the exponent 1/2 and with a uniformly bounded coefficient independent of w € Bg.
We can use Theorem 47.8 (specifically (47.20) therein) in [39] to confirm the
Lipschitz continuity of the mapping S(¢)(-) : Bg — Bg for any t € [0,7] where
T > 0 is arbitrarily given. Thus the fourth condition in Lemma 6.3 is also satisfied.
Finally, we apply Lemma 6.3 to reach the conclusion of this theorem. O

As a remark, the results on the existence of global attractor, (H, E) global at-
tractor, and exponential attractor shown respectively in Theorem 4.2, Theorem
‘5.6, and Theorem 6.5 are also valid for reversible Brusselator equations, reversible
Selkov equations, and reversible Schnackenberg equations.
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