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All this activity based onan unproved conjecture (with
sometimes paradoxical consequences) reminds me of the
work of Lobachevskii, who constructed a beautiful the-
ory of his geometry, undeterred by having an unproved
hypothesis at the foundation. Now we know that there
are two geometries, one where Lobachevskii’s hypothe-
sis is satisfied and one where it is not. They simply de-
scribe the geometry of different surfaces.

American universities boast about what fa-
mous Russian mathematicians they have re-
jected.

It seems doubtful that there can be a mathematics
that contains exponentially hard problems (impossible
to solve without combinatorial search) and another that
does not. In any case, various aspects of deterministic,
randomized, and derandomized algorithms provided
many interesting lectures at Zurich (the section on com-
puter science).

Most talks at the Congress, however, were like ser-
mons. The lecturers plainly didn’t expect that listeners
would understand anything. Sometimes they went so
far as to state obviously false theorems to the respect-
fully silent auditorium. The sermon mood was so per-
vasive that most of the introducers didn’t even ask for
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questions at the end. And when some old-fashioned pro-
fessors, like J. Moser (Director of the Mathematical Insti-
tute of ETH Zurich, the principal mathematical center
in Switzerland), did urge people to ask questions, very
few listeners overcame fear of exposing their ignorance
sufficiently to do so.

The talks differed from sermons, however, in not being
free. For those not registered as participants, the fee to
attend a talk was considerable, as for a concert or a play.

[ take pleasure in reporting that representatives of the
Russian school generally were on the more comprehen-
sible side. It is part of our tradition that a survey talk
should emphasize new ideas and illuminating examples
and not technical details.

I find rather worrisome the distinct shift in interests
of our younger researchers (especially those working in
the West) from directions long pursued by us to those
fashionable in the USA. Such a shift of interests (doubt-
less related to the difficult conditions of job-hunting in
American universities, some of which boast about what
famous Russian mathematicians they have rejected) is
inevitably negative. World leaders in one field leave it
to race in a pack of jostling competitors following some
other leader. Could this explain the distinct decrease in
the proportion of our mathematicians among speakers
at Congresses?

It is a pleasure to note also the large number of
young Congress participants, including graduate stu-
dents, from Russia and other countries of the former
Soviet Union. Their attendance was made possible by
generous support from the Swiss Organizing Commit-
tee of the Congress and the Soros Foundation.

Swiss mathematicians did everything possible to make
our stay pleasant: participants were offered trips all
over Switzerland (Lucerne, Interlaken, Bern, etc.), trips
to the mountains (to Rigi Kulm overlooking the Vier-
waldstétter See), to the Rhine waterfall (comparable to
Niagara), concerts of classical and folk music. I was im-
pressed by the small and little-known Biirlet art gallery
in Zurich— Rembrandt and Franz Hals, El Greco and
Goya, Canaletto and Tiepolo, Greuze and Ingres, Corot
and Courbet, Cézanne, van Gogh, Matisse, Pissarro, Pi-
casso.

After the tiring Congress, I spent a day at the home
of my old friend A. Haefliger near Geneva. We climbed
from 1500m to 3000m in the mountains near the Rhone
valley, about halfway between the Jungfrau and the Mat-
terhorn, and I got to swim in a glacial lake. On the return
I picked mushrooms, sorrel, blueberries, and wild straw-

berries, and made my hosts a dinner from these giftSIOf :
ne

nature (overcoming their doubts as to their edibility). T
next day I returned to Moscow.
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A Nobel Prize for John Nash

John F. Nash created an impressive array of exciting
mathematics during the 10 years of his mathematical ac-
tivity. Tosome, the brief paper written atage 21, for which
he has won a Nobel prize' in economics, may seem like
the least of his achievements. Nevertheless, [ applaud
the wisdom of the selection committee in making this
award. It is notoriously difficult to apply precise math-
ematical methods in the social sciences, yet the ideas in
Nash’s thesis are simple and rigorous, and provide a firm
background, not only for economic theory but also for
research in evolutionary biology, and more generally for
the study of any situation in which human or nonhu-
man beings face competition or conflict. According to
P. Ordeshook [O], p. 118,

The concept of a Nash equilibrium n-tuple is perhaps
the most important idea in noncooperative game theory.
.. .Whether we are analyzing candidates’ election strategicé,
the causes of war, agenda manipulation in legislatureé, or
the actions of interest groups, predictions about events re-
duce to a search for and description of equilibria. Put simply,
equilibrium strategies are the things that we predict about
people.

The first section of this article will describe this prize
ork. After a short digression, the third section will out-
e some of the work for which Nash is famous among

1a‘thffmaticians‘., and the last will briefly describe events
ince 1958,

e .

hOmpare [P]. This is the third Nobel
‘Mathematics graduate,

hn Bardeen,

1 prize to be awarded to a Prince-
The first two were physics prizes, both to

John Milnor

Game Theory

In the framework set down by von Neumann and Mor-
genstern [NM], an n-person game can be described as
follows. There are n agents or players, numbered from 1
ton. Foreach i between 1and n, the ith playerhasaset S;
of possible strategies, and chooses some element s; €55,
where these choices are to be made simultaneously. The
outcome of the game is then a function of the n choices
STy sn- The ith player also has a preference ordering
for the set of possible outcomes. This is conveniently de-
scribed by a real-valued function ’

PGy x o x 8y — R

John Milnor

John Milnor was educated at Princeton. He has worked
in topology, geometry, algebra, dynamics, and (long ago)
game theory. Since 1989, he has been Director of the Insti-
tute for Mathematical Sciences at SUNY Stony Brook.
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John Nash in September 1994.

called his payoff function. Each player’s objective is to
make his own choice s; in such a way as to maximize
his payoff p;(s1, ..., s,), with the understanding that for
each j # i, the jth player is simultaneously choosing s;,
trying to maximize the value of his own payoff p;.

In interpreting this mathematical model, the various
“players” can be individual persons. However, there are
many other possibilities: The players can be nations, cor-
porations, armies, teams, human-programmed comput-
ers, or animals. For the study of evolution, one considers
competition between species or between genes. (Com-
pare [MSP], [IMS], and [D].) In the case of a game which
extends over time, the “strategies” chosen by the play-
ers should be thought of, not as individual choices, but
rather as comprehensive prescriptions of what to do in
every conceivable situation which may arise during the
course of the game. For example, a strategy for the game
of chess might consist of a computer program which se-
lects a move for every possible chess position. The “pay-
off” functions are usually not measured in something
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simple and objective, such as money, but rather are sup-
posed to incorporate every relevant motivation which
the players may have, whether selfish, altruistic, or what-
ever.

Although von Neumann and Morgenstern developed
a beautiful theory of two-person games which are zero-
sum, in the sense that p; + po = 0, their theory for the
more general case was complicated and unconvincing.
Nash’s theory, on the other hand, is direct and elegant:

Definition. An n-tuple of strategies (s1,...,s,) consti-
tutes an equilibrium point for the game if no player can in-
crease his payoff p;(s1, . .., 5,,) by changing only s; while
the other s; remain fixed.

It is not claimed that an equilibrium point is a particu-
larly desirable outcome for a game. Indeed, it may well
be disastrous for all parties. (As an example, it is not diffi-
cultto describe a game of “atomic warfare” with only one
equilibrium point, which requires each player to annihi-
late the others.) Rather, we must think of an equilibrium
point as a description of what is likely to happen in a
completely noncooperative situation, in which the play-
ers pursue their individual goals without any coopera-
tion, either because they cannot communicate or because
they have no mechanism or no will for cooperation. This
contrasts with the von Neumann-Morgenstern work,
which considered only cooperative games.

I am indebted to Hector Sussmann for two examples
which show that equilibrium points are relevant even in
everyday life:

Example 1. Ataboring party, all of the guests want to go
home early, but no one is willing to leave before midnight
unless someone else leaves first. There is just one equi-
librium point: everyone stays until midnight. (Compare
[Sch].)

Example 2. A group of 20 is going to dinner, and each
one has the choice of an adequate meal for 10 dollars or
an excellent meal for 20 dollars. If paying individually,
each one would choose the cheaper meal. However, they
have decided to split the bill. Since the marginal cost of
the more expensive meal for each person is only 50 cents,
everyone chooses it.

Before stating Nash’s basic existence theorem, we
must introduce probabilities, via the von Neumann-
Morgenstern theory of mixed strategies. To see why this
is necessary, consider the following.

Example 3. A simple combination lock has 1000 possi-
ble combinations; the owner is free to choose any one of
them. A would-be thief will have just one chance to guess
the combination. Thus, we could take S; and S, to be fi-
nite sets, with 1000 elements each. However, with this
mathematical model, no equilibrium point would exist.

What we must rather do, in order to obtain a reasonable
theory, is to allow randomization in making choices. In
fact, we take Sy and S; to be 999-dimensional simplexes,
with 1000 vertices each. A point of the simplex S or of
S, is to be construed as a probability distribution over
the 1000 possible combinations. Now there is a unique
equilibrium point (s1, s2), where each s; is the probabil-
ity distribution which assigns each choice of combination
the probability 1/1000. The thief then has just 1 chance in
1000 of making the correct guess. (This is an example of a
two-person zero-sum game, so a Nash equilibrium point
in this case is the same thing as a pair of optimal strate-
gies in the sense of von Neumann and Morgenstern.)

Following von Neumann and Morgenstern, such a
weighted average of finitely many pure strategies, where
the weighting coefficients are interpreted as probabil-
ities, is called a mixed strategy. The set of all mixed
strategies for a given player forms a finite-dimensional
simplex.

EXISTENCE THEOREM. If the space of strategies S; for
each player is a finite-dimensional simplex, and if each payoff
function p;(s1, ..., sy,) is continuous as a function of n vari-
ables, and is linear as a function of s; when the other variables
are kept fixed, then at least one equilibrium point exists.

To prove this statement, we embed each $; in a Eu-
clidean space R% of the same dimension, and consider
the Cartesian product

K=58 % xS, CR"x ... x R%.
We can then construct a continuous vector field
(81y+ -+, 8n) = (V1,...,0,) € RY x ... x R™ ()

as follows: The component v; in the R* direction is to
be the gradient vector dp;/ds; for the function p; when
considered as a linear function of s;, with s; kept fixed
for every j # i. We will need the following:

LEMMA. If K C R? is a compact, convex set, and v: K —
R is any continuous function, then there exists at least one
point § € K where the vector field v either vanishes, or points
out of K in the sense that every point of K lies in the half-space

{seR% s v(3) <5 v(8)}

Proof Outline. (See Figure 1) Let p : R — K be the
canonical retraction, which carries every point of R*
to the closest point of K. Then the composition s
p(s+wv(s)) maps K into itself and hence, by the Brouwer
Fixed Point Theorem, has a fixed point

&= p(&+v(9)).

It is easy to check that v(3) either vanishes or points out
of K. )

Applying this lemma to the vector field (+), we obtain
an n-tuple § = (8;,.... &, ), which is the required equi-
librium point. O

Commentary. As with any theory which constructs a
mathematical model for some real-life problem, we must
ask how realistic the model is. Does it help us to under-
stand the real world? Does it make predictions which can
be tested?

In the case of Nash’s equilibrium-point theory, we
might first ask whether this is intended as a descriptive
theory which tells us how people actually act in a com-
petitive situation, or a normative theory which tells us
how rational people ought to act in order to achieve the
best possible outcome. The answer is probably both, and
neither. In fact, the two aspects can never really be sepa-
rated, since a descriptive theory of how the other players
are making their choices may be crucial for making one’s
own choice.

First let us ask about the realism of the underlying
model. The hypothesis is that all of the players are ratio-
nal, that they understand the precise rules of the game,
and that they have complete information about the ob-
jectives of all of the other players. Clearly, this is seldom
completely true.

One point which should particularly be noticed is the
linearity hypothesis in Nash’s theorem. This is a direct
application of the von Neumann — Morgenstern theory of
numerical utility: the claim that it is possible to measure
the relative desirability of different possible outcomes
by a real-valued function which is linear with respect
to probabilities. In other words, if the strategy s yields
a 50% chance of an outcome with utility @ and a 50%
chance of an outcome with utility b, whereas the strat-
egy s yields a 100% chance of an outcome with utility
(a + b)/2, then the player should be indifferent between
sand s'. This concept has been studied by many authors.

Figure 1. Examples of vectors pointing “out” at a boundary
point of a compact convex set.
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(See for example [HM].) My own belief is that this is quite
reasonable as a normative theory, but that it may not be
realistic as a descriptive theory.

Under what conditions does equilibrium-point the-
ory really apply? A game may have many equilibrium
points, some better than others for one player or even for
all of the players. If the game is played only once, with
no communication at all between the players, how will
they know which of these equilibrium points is relevant?
If the players do communicate, at what point does it cease
being a “noncooperative” game? Another common sce-
nario would be a game which is played over and over
again, perhaps gradually settling toward some equilib-
rium. In this case, there is the added complication that
the players’ utility functions may not remain the same
for each play.

Evidently, Nash’s theory was not a finished answer
to the problem of understanding competitive situations.
Rather, it was a starting point, which has led to much fur-
ther study during the intervening years. In fact it should
be emphasized that no simple mathematical theory can
provide a complete answer, since the psychology of the
players and the mechanism of their interaction may be
crucial to a more precise understanding.

Games

Nash entered Princeton as a graduate student in 1948,
the same year that I entered as a freshman. T quickly got
to know him, since we both spent a great deal of time in
the common room. He was always full of mathematical

ideas, not only on game theory, but in geometry? and
topology as well. However, my most vivid memory of
this time is of the many games which were played in the
common room. I was introduced to Go and Kriegspiel,
and also to an ingenious topological game which we
called Nash, in honor of the inventor. In fact it was later
discovered that the same game had been invented a few
years earlier by Piet Hein in Denmark. Hein called it
Hex, and it is now commonly known by that name. An
n % n Nash or Hex board consists of a rhombus which is
tiled by n? hexagons, as illustrated in Figure 2. (The rec-
ommended size for an enjoyable game is 14 x 14. How-
ever, a much smaller board is shown here for illustrative
purposes.) Two opposite edges are colored black, and
the remaining two are colored white. The players alter-
nately place pieces on the hexagons, and once played,
a piece is never moved. The black player tries to con-
struct a connected chain of black pieces joining the two
black boundaries, while the white player tries to form a
connected chain of white pieces joining the white bound-
aries. The game continues until one player or the other
succeeds.

2 Here is one question asked by Nash. Let Vj be a singular algebraic
variety of dimension k, embedded in some smooth variety My, and
let M, = Gj(M;) be the Grassmann variety of tangent k-planes to
M. Then Vj lifts naturally to a k-dimensional variety Vi C Mj. Con-
tinuing inductively, we obtain a sequence of k-dimensional varieties
V) e Vj «= Vi « ---, Do we eventually reach a variety V5 which is
nonsingular? Even today, this has been proved only in special cases.
(Compare [G-S], [H], and [Sp].)

Figure 2. A typical situation in the game of Hex. Problem: Black to move and win. Alter-
nate Problem: White to move and win. (Solution on page 56.)
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Figure 3. On an asymmetric board, as shown, white can win even if black moves first. The
winning strategy can be explicitly described by “doubles”: Whatever move black makes,
white responds by playing in the hexagon which is marked with the corresponding sym-
bol, where the correspondence (for example, a « A) is a glide reflection which flips the

left half of the board onto the right half.

THEOREM. On an n x n Hex board, the first player can
always win.

Nash’s proof is marvelously nonconstructive and can
be outlined as follows.

First Step. A purely topological argument shows that,
in any play of the game, one player or the other must
win: If the board is covered by black and white pieces,
then there exists either a black chain from black to black
or a white chain from white to white, but never both.

Second Step. Since this game is finite, with only two
possible outcomes, and since the players move alter-
nately with complete information, a theorem of Zermelo,
rediscovered by von Neumann and Morgenstern, asserts
that one of the two players must have a winning strategy.

‘Third Step, by symmetry. If the second player had a
winning strategy, the first player could just make an ini-
tial move at random, and then follow the strategy for
t}}e second player. Since his initial play can never hurt
him, he must win. Thus, the hypothesis that the second
player has a winning strategy leads to a contradiction.
(This is a well-known argument which applies to some
other symmetric games, such as Five-in-a-Row.) 0O

Note that this proof depends strongly on the symmetry
of the board. On an n x (n + 1) board, the player with the
shorter distance to connect can always win, even if the
other player has the first move. (Compare Fig. 3.)

Geometry and Analysis

After receiving his doctorate, Nash moved to M.LT,
where he produced a remarkable series of papers. The
first was a basic contribution to the theory of real alge-
braic varieties.

THEOREM. Given any smooth compact k-dimensional
manifold M, there exists a real algebraic variety V < R**+!
and a connected component Vy of V so that Vo is a smooth
manifold diffeomorphic to M.

He complemented this theorem by giving an abstract
characterization of such manifolds 1 by means of a suit-
able algebra of real-valued functions.

As one example of the power of this result, let me
describe an important application. A basic problem in
dynamics is to understand how the number of periodic

points of period p for a smooth map can increase as a
function of p.

THEOREM OF ARTIN AND MAZUR. Any smooth map
from a compact manifold to itself can be approximated by a
smooth map such that the number of periodic points of pw:iod
p grows at most exponentially with p.

The only known proof of this result makes essential
use of Nash’s work, in order to translate the dynamic
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problem into an algebraic one of counting solutions to
polynomial equations.

Two years later, he attacked one of the fundamen-
tal unsolved problems in Riemannian geometry, namely,
the Isometric Embedding Problem for Riemannian mani-
folds. In other words, he considered the system of differ-
ential equations

ox  Ox

o = gl uk),
Ou;  Ouy H

where the u; are local coordinates for some given k-di-
mensional Riemannian manifold, where g;;(u1, ..., ux)
is the prescribed Riemannian metric, and where
x(uy, ..., uy) is the unknown isometric embedding into
Euclidean n-space. This is a system of k(k +1)/2 nonlin-
ear differential equations in n unknown functions, to be
solved globally, over the entire manifold. He first tackled
the C'-case.

Every student of differential geometry knows that a
compact surface without boundary in Euclidean 3-space
must have points of positive curvature. (Proof: Enclose
the surface in a spherical balloon, and then move the
balloon until it first touches the surface. Then both prin-
cipal curvatures at the point of contact must be nonzero,
with the same sign. Hence, the Gaussian curvature at this
point is strictly positive.) As an example, it follows that
a flat torus S x S2 © R? x R? has no smooth isometric
embedding into 3-space.

Nash ignored such difficulties. Incorporating a later
improvement by Kuiper [K], we can state his result as
follows.

THEOREM. If a compact Riemannian manifold (M, g) can
be smoothly embedded in the Euclidean space R", then it can
be C'\-isometrically embedded in R™.

Hereis a very rough outline of the proof. Start withany
smooth embedding and shrink it uniformly until all dis-
tances in the induced metric are shorter than distances
in the given metric g. Next introduce small sinusoidal
ripples in the embedded manifold so as to increase the
Euclidean lengths of curves in one coordinate patch after
another. Now repeat this process, keeping careful control
of first derivatives at every stage, so that the Riemannian
metric induced from the embedding will increase mono-
tonically toward the required metric g.

The catch in this construction is that there is no way
of keeping control of second derivatives. Thus, the em-
bedding which is constructed will never be C2-smooth.
Since the concept of curvature involves second deriva-
tives in an essential way, any argument involving prin-
cipal curvatures simply will not apply to the resulting
embedding.

Next he attacked the much more serious C'-
embedding problem, forr > 1.
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THEOREM. If n > k(k + 1) (3k + 11)/2, then every
k-dimensional Riemannian manifold of class C™ can be (-
isometrically embedded into R" for 3 <r < oc.

To prove this result, he introduced an entirely new
method into nonlinear analysis. As later generalized by
Moser, this method can be roughly described as follows.
We are trying to solve some system of equations in an
infinite-dimensional space of functions f. Given an ap-
proximate solution f, we can apply some linear approx-
imation procedure analogous to Newton’s method, to
produce a better approximation go. The difficulty is that
this linear procedure typically involves differentiation,
so that g is less differentiable than fo. The trick is then
to apply a smoothing operator, approximating go by a
function f; which has better smoothness properties. We
can then continue inductively, constructing a sequence
of approximations fo, f1, fay ..., with extremely careful
estimates at every stage. With appropriate hypotheses,
these will converge to the required solution. (For further
development of these ideas, see [Gr] and [Giil)

At this time he began a deep study of parabolic and el-
liptic differential equations, proving basic local existence,
uniqueness, and continuity theorems (and also specu-
lating about relations with statistical mechanics, singu-
larities, and turbulence). This work has been somewhat
neglected. In fact, a 1957 paper by De Giorgi [DG] has
tended to dominate the field. The methods were quite
different, but both authors were strikingly original, and
made real breakthroughs. De Giorgi considered only the
elliptic case, whereas Nash rather assigned a primary role
to parabolic equations. His methods, based on a moment
inequality for the fundamental solution, are quite power-
ful. (Compare [FS].) Here are some quotations (abridged
and mildly edited) from his paper on “continuity of solu-
tions” (Nash [12]), which help to describe his vision and
goals in 1958.

The open problems in the area of non-linear partial differ-
ential equations are very relevant to applied mathematics
and science as a whole, perhaps more so than the open prob-
lems in any other area of mathematics, and this field seems
poised forrapid development. Little is known about the exis-
tence, uniqueness and smoothness of solutions of the general
equations of flow for a viscous, compressible, and heat con-
ducting fluid. Also, the relationship between this continuum
description of a fluid and the more physically valid statis-
tical mechanical description is not well understood. Proba-
bly one should first try to prove existence, smoothness, and
unique continuation (in time) of flows, conditional on the
non-appearance of certain gross types of singularity, such
as infinities of temperature or density. A result of this kind
would clarify the turbulence problem.

Successful treatment of non-linear partial differential equa-
tions generally depends on ‘a priori’ estimates, which are
themselves theorems about linear equations. ... The meth-
ods used here were inspired by physical intuition, of dif-
fusion, Brownian movement, and flow of heat or electrical
charges, but the ritual of mathematical exposition tends to
hide this natural basis.

Epilogue

In 1958, at the age of 30, Nash suffered a devastating
attack of mental illness. (Compare [N1].) There followed
many horrible years: periods of confinement to mental
hospitals, usually involuntary and often accompanied
by shock treatments, interspersed with periods of par-
tial recovery. During a brief respite in 1966, he published
one further paper, showing that his isometric embedding
theorem, and more generally the Nash - Moser implicit
function machinery, can be extended to the real-analytic
case. There followed an extremely long fallow period.
I lost touch with him during this time; however, [ was
very happy to hear that in recent years his illness has
abated, and that he has regained interest in major un-
solved problems. This year, Nash not only attended the
award ceremonies in Stockholm but also gave a seminar
in Uppsala on his recent work in mathematical physics.

I conclude by congratulating John Nash, not just for
his prize, but for his many contributions to human know-
ledge, and offer him all best wishes for the future.
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