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Introductory notes

Origin

Originally created to support online lectures of NMNV533.

Preliminaries
Basic notions of (numerical) linear algebra and programming
(software construction): matrices, vectors
Some knowledge of Cholesky and LU decompositions assumed.
Basic understanding of algebraic iterative (Krylov space) and
direct (dense) solvers (elimination/factorization/solve) is useful. (A
lot of these is repeated)
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Introductory notes

Limitations

Prevailably only purely algebraic techniques considered. Such
techniques often serve as building blocks for some more complex
approaches.
Some important techniques are only mentioned. Those include

▶ Multigrid/multilevel preconditioners,
▶ Domain decomposition,
▶ Row projection techniques.

Only preconditioning of real systems considered here, although
extension to complex field is typically straightforward.
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Introductory notes: resources / history

The main text resource is:
Jennifer Scott and Miroslav Tůma: Algorithms for sparse linear
systems, Birkhäuser- Springer, 2023, open access.

Traditional material was the course text in Czech (nowadays
outdated, not supported); see the web page of the course, or ask
me.
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Introductory notes: resources and history of the
course

A few other resources:
Davis, T. A. (2006). Direct Methods for Sparse Linear Systems.
Fundamentals of Algorithms. SIAM, Philadelphia, PA.
Davis, T. A., Rajamanickam, S., & Sid-Lakhdar, W.M. (2016). A
survey of direct methods for sparse linear systems. Acta Numer.,
25, 383-566.
Duff, I. S., Erisman, A.M., & Reid, J. K. (2017). Direct Methods for
Sparse Matrices (Second ed.). Oxford University Press, Oxford.
George, A. & Liu, J. W. H. (1981). Computer Solution of Large
Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs,
NJ.
Saad, Y. (2003b). Iterative Methods for Sparse Linear Systems
(Second ed.). SIAM, Philadelphia, PA.
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Motivation

Most of our activities around solving the systems of linear
algebraic equations

Ax = b

There are two principially different classes of the solution
methods:

▶ Direct methods
▶ Iterative methods
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Motivation

Direct methods

Direct methods: Transform A using a finite sequence of
elementary transformations
First step is a decomposition (factorization)
Standard factorizations:

▶ Cholesky factorization A→ LLT if A is symmetric and positive
definite

▶ LU factorization if A→ LU is factorizable

Second step uses the factorization to solve the system
(substitutions, formally applying factor inverses)
An example: Ax = b to be solved, A = LU , y = L−1b, x = U−1y

Similarly with other factorizations
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Motivation

Direct methods: further comments

Factorizations are the backbone of direct methods.
Most of the work is in the factorization. And the approaches to get
them are more complex than the substitution steps.
Solving systems with triangular matrices like L, U is generally
much cheaper and more straightforward that using A.
More reasons for different factorizations or their variations:

▶ Different matrix types
▶ Hardware (computer model) and software properties/capabilities
▶ For example: sequential versus concurrent processors, multicore,

GPU etc. decide about relative complexity of the two steps.
▶ But the latter may influence substitution steps strongly as well.

Factorizations: in principal = Gaussian elimination. Modern
(decompositional) form based a lot on the work of Householder
(end of 1950’s): from pointwise to matrix/vectorwise descriptions
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Motivation

Direct methods

Designed to be robust, designed to solve the systems of
equations.
If properly implemented, can be used as block-box solvers for
computing solutions with (often) predictable accuracy.
But, they can be expensive, requiring large amounts of memory,
which increases with the size of A.
A lot of effort should be used to make them compatible with the
steadily developing hardware/software.
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Motivation

Iterative methods

Compute a sequence of approximations

x(0), x(1), x(2), . . .

that (hopefully) converge to the solution x of the linear system.
Various approaches:

▶ Stationary iterative methods like

x(k+1) = (D − L)−1(b+ Ux(k)

▶ Here we have A = D − L− U for D diagonal, L strictly lower
triangular and U strictly upper triangular (no factorization)

▶ Typically more efficient Krylov subspace methods based on
projections, search space and constraints space
(x(k+1) ∈ Sk+1, r(k+1) = b−Ax(k+1) ⊥ Ck+1)

▶ (Some) convergence theory for both classes of methods
11 / 705
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Motivation

Iterative methods

Designed to approximate (not solve)
This may be an advantage (if only an approximate solution is
needed: can be terminated as soon as the required accuracy is
achieved) or a disadvantage (matrix properties may prohibit
achieving the required accuracy)
Another disadvantage: iteration counts may strongly depend on
the initial guess x(0), A and b

Potential advantage: A can be used only indirectly, through
matrix-vector products→ memory requirements are limited to a
(small) number of vectors of length the size of A
That is, A does not need to be available explicitly.
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Motivation

Direct versus iterative methods

To have direct methods faster, more memory efficient, using
specific computer architecture, the solution can be less accurate
due to possible relaxations.

Making solution accurate: use an auxiliary iterative method.

Simple auxiliary iterative method (iterative refinement (IR)):

Algorithm (IR of the solution x of Ax = b)

1: Solve Ax(0) = b ▷ x(0) is the initial computed solution
2: for k = 0, 1, . . . do
3: Compute r(k) = b−Ax(k) ▷ Residual on iteration k

4: Solve Aδx(k) = r(k) ▷ Solve correction equation
5: x(k+1) = x(k) + δx(k)

6: end for
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Motivation

Direct versus iterative methods

From the iterative side: pure iterative methods may not converge
fast. Or may have low final attainable accuracy.

Therefore, they should be accompanied by a problem
transformation based on a direct method called preconditioner.
Often representing a relaxed factorization.

Such transformation can be expressed in matrix form, for example
as :

MAx = Mb

M approximating A−1 can be then applied to vector quantities of
the iterative method.
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Motivation

Direct versus iterative methods

In practice, many variations, M can represent inverses of
approximate factors, or directly an approximation to A−1

(approximate inverse preconditioners). Many variations.

Consequently, practical boundaries between direct and iterative
methods are more and more fuzzy.
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Motivation

What else?

For example: matrices and resulting factorizations may look like
as follows (showing only nonzeros):
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Motivation

What else?

For example: matrices and resulting factorizations may look like
as follows (showing only nonzeros):
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Figure: The locations of the nonzero entries in a symmetrically permuted A
from above (left) and in L̄+ L̄T (right), where L̄ is the Cholesky factor of the
permuted matrix. 17 / 705
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Motivation

What else?

For example: matrices and resulting factorizations may look like
as follows (showing only nonzeros):

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 974

Figure: The locations of the nonzero entries in another symmetrically
permuted A (left) and in L̄+ L̄T (right), where L̄ is the Cholesky factor of the
permuted matrix. 18 / 705
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Motivation

Where is problem with direct methods?

Structure of zeros and nonzeros in A called sparsity needs to be
exploited
Sparse factorizations A = LLT , LU (exact up to the floating-point
model) needed

Where is problem with iterative methods?

They should be transformed (preconditioned)
By using as M (approximate/incomplete) factorizations A = LLT ,
LU needed like

▶ incomplete decompositions (A ≈ LLT , LU etc.)
▶ incomplete inverse decompositions (A−1 ≈ ZZT , WZT etc. )

Or specific (PDE-based, model-based) approaches may be used.
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Outline
1 Introduction
2 Introductory notation and terminology
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Basic Terminology

Matrices, vectors

Square matrix A ∈ Rn×n

Sometimes rectangular A ∈ Rm×n

Vectors denoted by small letters as b ∈ Rn, x ∈ Rn etc. (sparse or
dense)
Dimension notations n,m used throughout. We also assume

A = (aij), 1 ≤ i, j ≤ n.

Often using Matlab-like notation: nonzero (set a priori), A:,j , Ai,:,
Ai:j,k:l, A∗j , Ai∗.
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Basic Terminology

Matrices - special shapes

A is diagonal if for all i ̸= j, aij = 0;
A is lower triangular if for all i < j, aij = 0

A is upper triangular if for all i > j, aij = 0.
A is unit (lower, upper) triangular if it is triangular and all the
entries on the diagonal are equal to one.
Using also strictly (lower, upper) triangular shapes that have zero
diagonal entries.
A is structurally symmetric if for all i and j for which aij is nonzero
the entry aji is also nonzero.
A is symmetric if

aij = aji, for all i, j.
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Basic Terminology

Matrices - special shapes

Otherwise, A is nonsymmetric.
The symmetry index s(A) of A measures level of matrix
symmetry: the number of nonzeros aij , i ̸= j, for which aji is also
nonzero divided by the total number of off-diagonal nonzeros.
Small values of s(A): A is far from symmetric.
This motivates our terminology sometimes used later: weakly or
strongly nonsymmetric matrices.
Such distinctions may imply different algorithms for solving our
problems.
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Basic Terminology

Our problem

Solving systems of linear algebraic equations

Ax = b, (1)

A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular
b ∈ Rn, x ∈ Rn

In most of the text we are interested in direct methods. Within
them, factorization of A is the crucial operation
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Basic Terminology: special matrix classes

Matrix classes (by numerical properties)

A is symmetric positive definite (SPD) if it is symmetric and
satisfies

vTAv > 0 for all nonzero v ∈ Rn.

Sometimes mentioned redT symmetric positive semidefinite
(SPSD) matrices (not regular)
Other symmetric matrices mentioned here are symmetric
indefinite (if regular).
Remind: we deal the real case only.
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Basic Terminology: saddle-point matrices

Matrix classes (by numerical properties)

Symmetric and (typically) indefinite saddle point matrices have the
form

A =

(
G RT

R B

)
,

where G ∈ Rn1×n1 , B ∈ Rn2×n2 , R ∈ Rn2×n1 with n1 + n2 = n, G is
a SPD matrix and B is a symmetric positive semidefinite matrix
(that is vTBv ≥ 0 for all nonzero v ∈ Rn2). In some applications,
B = 0.
We do not focus specifically on this matrix class. It can be very
important to distinguish such matrices in applications and process
them specifically.
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Basic Terminology: sparsity

Sparsity

A is a sparse matrix if many of its entries are zero.
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Basic Terminology: sparsity

Sparsity: more formally

Attempts attempts to formalize matrix sparsity more precisely like:

Definition
Matrix A ∈ IRm×n is said to be sparse if it has O(min{m,n}) entries.
Another possibility: if A has row counts bounded by rmax << n and/or
column counts bounded by cmax << m.

Definition
Matrix A ∈ IRm×n is said to be sparse if its number of nonzero entries
is O(n1+γ) for some γ < 1.

Definition
(pragmatic, application-based definition: J.H. Wilkinson) Matrix
A ∈ IRm×n is said to be sparse if the fact that a part of its entries is
equal to zero can be (algorithmically) exploited.
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Basic Terminology: sparsity

Sparsity: patterns

The sparsity pattern S{A} of A is the set of nonzeros, that is,

S{A} = {(i, j) | aij ̸= 0, 1 ≤ i, j ≤ n}.

Related: sparse vectors The sparsity pattern of v ∈ Rn is given by

S{v} = {i | vi ̸= 0},

and |S{v}| is the length of v.
If S{A} is symmetric then A is structurally symmetric.
The number of nonzeros in A: denoted here by nz(A) (or |S{A}|).
A is structurally (or symbolically) singular if there are no values of
the nz(A) entries of A whose row and column indices belong to
S{A} for which A is nonsingular.
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Basic Terminology: sparsity

Rough comparison of dense and sparse (dimension, storage, time for
decomposition using simple algorithms)

Dense matrix
dim space dec time (s)

3000 4.5M 5.72
4000 8M 14.1
5000 12.5M 27.5
6000 18M 47.8

Sparse matrix
dim space dec time (s)

10000 40k 0.02
90000 0.36M 0.5

1M 4M 16.6
2M 8M 49.8

Clearly, considering matrix as sparse promises huge advantages.
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Basic Terminology

Factorizability

Matrix A is factorizable (or strongly regular) if its principal leading
minors (the determinants of its principal leading submatrices) are
nonzero: its LU factorization without row/column interchanges
does not break down.
SPD matrices are factorizable (means something a bit different).
For more general A we have

Theorem
If A is nonsingular then the rows of A can be permuted so that the
permuted matrix is factorizable. The row permutations do not need to
be known in advance. They can be constructed on-the-fly as the
factorization proceeds.

Sometimes, even more complex permutations are used.
Note: factorizability here relates to the exact arithmetic
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Basic Terminology: factorizations

Factorizations we will deal with:

For symmetric positive definite A, the (square-root) Cholesky
factorization A = LLT , where L is a lower triangular matrix with
positive diagonal entries.

▶ Rewritten as A = L̂DL̂T , where L̂ is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal
entries: square root-free Cholesky (LDLT) factorization.

For nonsymmetric A, the LU factorization A = LU , where L is a
unit lower triangular matrix and U is an upper triangular matrix.
Gaussian elimination is one process to put a matrix into LU form.

▶ Rewritten as A = LDÛ , where Û is a unit upper triangular
matrix and D is a diagonal matrix. This is called the LDU
factorization.
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Basic Terminology: blocks

Blocks: small ones

Symmetric block structure of A:

A = (Aib, jb), Aib, jb ∈ Rni×nj , 1 ≤ ib, jb ≤ nb,

that is,

A =


A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb
...

...
. . .

...
Anb,1 Anb,2 · · · Anb,nb

 .

Assuming nonsingular square blocks Ajb, jb on the diagonal.
Special cases: A is block diagonal if Aib, jb = 0 for all ib ̸= jb, A is
block lower triangular if A1:jb−1, jb = 0, 2 ≤ jb ≤ nb, block upper
triangular if Ajb+1:nb, jb = 0, 1 ≤ jb ≤ nb− 1.
Most useful; for us: small dense blocks
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Basic Terminology: blocks and reducibility

Reducibility: large blocks

Definition

Matrix A ∈ Rn×n is reducible, if there is a permutation matrix P such
that

P TAP =

(
A11 A12

A22

)
, (2)

where A11 and A22 are square nontrivial matrices (of dimension at
least 1). If A is not reducible, it is called irreducible. Matrices of
dimension 1 are considered to be irreducible.

A symmetric reducible matrix is block diagonal.
These blocks can be (for our problems) sparse or dense
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Basic Terminology: blocks and reducibility

Blocks and direct methods

Blocks are extremely important from the point of view efficiency
(fast block operations), standardization (use of efficient libraries)

Solving systems with symmetric reducible matrices reduces to
solving independent systems (since they are block diagonal as
stated above)

Solving systems with nonsymmetric reducible matrices can use
block substitution.

(
A11 A12

A22

)(
x1
x2

)
=

(
b1
b2

)
→ x2 = A−1

22 b2, x1 = A−1
11 (b1 −A12x2)
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Basic Terminology: blocks and reducibility

Blocks and direct methods

For small blocks: all our factorizations can be (and are in
production codes) formulated blockwise: entries→ submatrices

For large blocks: as we have seen above: typically another
algorithmic level

We will show ways to find some small blocks

Large blocks sometimes follow from applications, but there are
also ways to find them.
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Basic Terminology: computational environment

Computational environment

Basic sequential model: the von Neumann architecture: union of a
central processing unit (CPU) and the memory, interconnected via
input/output (I/O) mechanisms.

CPU

Memory

I/O

Figure: A simple uniprocessor von Neumann computer model.
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Basic Terminology: computational environment

Computational environment

Nowadays, nearly nothing is really sequential
CPU→ a mixture of powerful processors, coprocessors, cores,
GPUs, and so on.
Furthermore, performing arithmetic operations on the processing
units is much faster than communication-based operations.
But, there is a problem: improvements in the speed of the
processing units outpace those in other pieces of hardware
(memory, communication units).
Moore’s Law about this is an example of an experimentally
derived observation of this kind.
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Basic Terminology: computational environment

Computational environment

Important milestones in processor development have been
multiple functional units that compute identical numerical
operations in parallel and data pipelining (also called vectorization)
that enables the efficient processing of vectors and matrices.
Vectorization often supported by additional tools like instruction
pipelining, registers and by memory architectures with multiple
layers, including small but fast memories called caches.
Superscalar processors that enable the overlapping of identical
(or different) arithmetic operations during run-time have been a
standard component of computers since the 1990s.
The ever-increasing heterogeneity of processing units and their
hardware environment inside computers: expressing the code via
units of scheduling and execution called threads.
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Basic Terminology: computational environment

Computational environment

Computer-based limitations:
▶ Compute throughput, that is, the number of arithmetic

operations that can be performed per cycle.
▶ Memory throughput, that is, the number of operands than can

be fetched from memory/cache and/or registers each cycle
▶ Latency, which is the time from initiating a compute

instruction or memory request before it is completed and the
result available for use in the next computation.

Distinguishing in contemporary terminology: algorithms that are
compute-bound, memory-bound or latency-bound.
More ways to hide latency (using blocks, prefetch, threads)
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Basic Terminology: computational environment

Computational environment

Measuring computational intensity: the ratio of the number of
operations to the number of operands read from memory.

Most chips are designed such that dense matrix-matrix multiply,
which typically performs k3 operations on k2 data can run at full
compute throughput,

whilst matrix-vector multiply performs n2 operations on n2 data
(ratio 1) and is limited by the memory throughput.
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Basic Terminology: computational environment

Computational environment: libraries

Machine-specific optimized BLAS libraries available for a wide
variety of computer architectures.

procedure comm ops ratio
BLAS 1: AXPY: y = y + αx 3n+ 1 2n 2/3

BLAS 2: GEMV: y = Ax n2 + 2n n(2n− 1) 2

BLAS 3: GEMM: C = AB 3n2 n2(2n− 1) n/2

The development of basic linear algebra subroutines (BLAS) for
performing common linear algebra operations on dense matrices
partially motivated by obtaining a high ratio.

Using Level 3 BLAS in solvers (for both sparse and dense
matrices) can improve performance compared to using Level 1
and Level 2 BLAS.

Other important motivations behind using the BLAS
(standardization, portability).
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Basic Terminology: finite precision arithmetic

Computational environment: finite precision

The IEEE standard (1985) expresses real numbers as
a = ±d1. d2 . . . dt × 2k, where k is an integer and
di ∈ {0, 1}, 1 ≤ i ≤ t, with d1 = 1 unless d2 = d3 = . . . = dt = 0.
t = 24 (single precision), t = 53 (double precision), exponent k
satisfies −126 ≤ k ≤ 127 (single precision) and −1022 ≤ k ≤ 1023
(double precision).

Table: The number of bits in the significand and exponent, unit roundoff u,
smallest positive (subnormal) number xs

min , smallest normalized positive
number xmin, and largest finite number xmax.

t k u xs
min xmin xmax

bfloat16 8 8 3.91× 10−3 † 1.18× 10−38 3.39× 1038

fp16 11 5 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308
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Basic Terminology: finite precision arithmetic

Computational environment: finite precision

Floating-point (FP) operations:

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ϵ,

(op is a mathematical operation (such as =,+,−,×, /,√) and
(a op b) is the exact result), ϵ is the machine epsilon.
2× ϵ is the smallest FP number which when added to the FP
number 1.0 gives a result different from 1.0.
ϵ is 2−24 ≈ 10−7 (single precision), ϵ = 2−53 ≈ 10−16 (double
precision) (so far, most often used)
rounding errors, truncation errors.
catastrophic errors→ numerical instability
contemporary interest in low precision (AI, exascale computing)
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Basic Terminology: bit compatibility

Computational environment: bit compatibility

Bit compatibility essential for some users because of regulatory
requirements (such as within the nuclear or financial industries) or
to build trust in their software.
One critical issue is the way in which N numbers (or, more
generally, matrices) are assembled:

sum =

N∑
j=1

Sj ,

where the Sj are computed using one or more processors. The
assembly is commutative but, because of the potential rounding of
the intermediate results, it is not associative so that the result sum
depends on the order in which the Sj are assembled.
A straightforward approach to achieving bit compatibility is to
enforce a defined order in such operations.
This may adversely limit the scope for parallelism.
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Basic Terminology: complexity

Computational complexity

The computational complexity of a numerical algorithm typically
based on estimating asymptotically operation counts / memory
usage.

Definition
A real function f(k) of a nonnegative real k satisfies f = O(g) if there
exist positive constants cu and k0 such that

f(k) ≤ cug(k) for all k ≥ k0. (3)

We say that f = Θ(g) if, additionally, there exists a constant cl > 0
such that

0 ≤ cl g(k) ≤ f(k) ≤ cu g(k) for all k ≥ k0.
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Basic Terminology: complexity

Computational complexity

While O(g) bounds f asymptotically from above, Θ(g) represents
an asymptotically tight bound.
As a simple illustration, consider the quadratic function

f(k) = α ∗ k2 + β ∗ k − γ.

Provided α ̸= 0, f(k) = Θ(k2) and the coefficient of the highest
asymptotic term is α.
Distinguishing worst-case complexity and average behaviour
average-case complexity.
Sparse matrix algorithms of complexity Θ(n3) are considered to
be computationally very expensive.
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Basic Terminology: complexity

Computational complexity

MFLOPs (and unit operation costs) may be misleading at
contemporary computer architectures.
Still terminology O(.) (bounding from above) or Θ(.) (bounding
from both sides) sometimes relevant
It consists in replacing the bound (bounds) by
constant× simpler function (etalon).
Simpler functions are, e.g., n2, n3, log n, . . .

In CS: polynomial complexity versus superpolynomial complexity.
Our case: even polynomial complexity n3 may be excessive.
In CS: decision problems, polynomial reduction, class NP; not
discussed here
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Basic Terminology: complexity

Inverse Ackermann function

Very slowly increasing function we mention in some complexity
considerations.

A(0, j) = j + 1 for j ≥ 0;A(i, 0) = A(i− 1, 1) for i > 0

A(i, j) = A(i− 1, A(i, j − 1)) for i, j > 0

α(m,n) = min i ≥ 1 such that A(i, ceil(m/n)) > log2 n

See its implementation in the codes.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Factorizations

Introduction to factorizations

Traditional way of describing factorizations: derived from
Gaussian elimination that represents systematic annihilation of
the entries in the lower triangular part of A by columns.
For A factorizable, formally a sequential multiplications by column
elimination matrices getting the elimination sequence:

A = A(1), A(2), . . . , A(n)

of partially eliminated matrices as follows:

A(1) → A(2) = C1A
(1) → A(3) = C2C1A

(1) → . . .→ A(n) = Cn−1 . . . C1A
(1).

The unit lower triangular matrices Ci (1 ≤ i ≤ n− 1) are the
column elimination matrices.
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Factorizations

Elementwise, assuming a11 = a
(1)
11 ̸= 0, the first step C1A

(1) = A(2) is

1

−a
(1)
21 /a

(1)
11 1

−a
(1)
31 /a

(1)
11 1

... 1

−a
(1)
n1 /a

(1)
11 1





a
(1)
11 a

(1)
12 . . . a

(1)
1n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

a
(1)
31 a

(1)
32 . . . a

(1)
3n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn


=



a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

0 a
(2)
32 . . . a

(2)
3n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn


,

Provided a
(2)
22 ̸= 0, the second step C2A

(2) = A(3) is



1

1

−a
(2)
32 /a

(2)
22 1

... 1

−a
(2)
n2 /a

(2)
22 1





a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

0 a
(2)
32 . . . a

(2)
3n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn


=



a
(1)
11 a

(1)
12 . . . . . . a

(1)
1n

0 a
(2)
22 . . . . . . a

(2)
2n

0 0 a
(3)
33 . . . a

(3)
3n

...
...

...
. . .

...

0 0 a
(3)
n3 . . . a

(3)
nn


.
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Factorizations

Introduction to factorizations
The k-th partially eliminated matrix is A(k).

The active entries in A(k): a(k)ij , 1 ≤ k ≤ i, j ≤ n. The submatrix of
A(k) with the active entries: active submatrix.

The inverse of each Ck is the unit lower triangular matrix
obtained by changing the sign of all off-diagonal entries.
The product of unit lower triangular matrices (beware the
order) is a unit lower triangular matrix: provided a

(k)
kk ̸= 0

(1 ≤ k < n)

A = A(1) = C−1
1 C−1

2 . . . C−1
n−1A

(n) = LU,

Subdiagonal entries of L are the negative of the subdiagonal
entries of the matrix C1 + C2 + . . .+ Cn−1.
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Factorizations

For example: diagonal and first two columns of L



1

a
(1)
21 /a

(1)
11 1

a
(1)
31 /a

(1)
11 a

(2)
32 /a

(2)
22 1

...
... 1

a
(1)
n1 /a

(1)
11 a

(2)
n2 /a

(2)
22 1


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Factorizations

Rewriting LU in matrix/vector form: submatrix LU

The first step (k = 1):

C1A =

(
1

−v/a11 I

)(
a11 uT

v A2:n,2:n

)
=

(
a11 uT

A2:n,2:n − vuT /a11

)
,

where

v =
(
a21, . . . , an1

)T
,
(
l21, . . . , ln1

)T
= v/a11, uT =

(
a12, . . . , a1n

)
.

The (n− 1)× (n− 1) active submatrix

S = A2:n,2:n − vuT /a11

is the Schur complement of A with respect to a11.
A is factorizable⇒ S is factorizable, and the process can be
repeated.
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Factorizations

Submatrix LU

The operations performed at each step k correspond to a
sequence of rank-one updates.
After k − 1 steps (1 < k ≤ n), the (n− k + 1)× (n− k + 1) Schur
complement of A with respect to its (k − 1)× (k − 1) principal
leading submatrix is given by

S(k) =

akk . . . akn

...
. . .

...
ank . . . ann

−
k−1∑
j=1

lkj
...
lnj

(ujk . . . ujn

)

=


a
(k)
kk . . . a

(k)
kn

...
. . .

...
a
(k)
nk . . . a

(k)
nn

 = A
(k)
k:n,k:n. (4)

If A is SPD then the Cholesky and LDLT factorizations are termed
right-looking (fan-out) factorizations.
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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7


↓

4 −1 −5 −11 6
−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.25 2.75 −3.75 6.5
1.5 8.5 15.5 26.5 −7
2 1 9 26 −5

→


4 −1 −5 −11 6
−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 22.87 35 −17.2
2 0.27 9.87 27 −6.2


↓

4 −1 −5 −11 6
−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 42.6 −32.7

→


4 −1 −5 −11 6
−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 0.6 14.4


57 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 58 — #58 i
i

i
i

i
i

Factorizations

Submatrix LU: depiction

First possibility: form the Schur complement by rows
Second possibility: form the Schur complement by columns
But, there are other ways to compute the LU factorization
The are the same even in finite precision arithmetic!

58 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 59 — #59 i
i

i
i

i
i

Factorizations

Submatrix LU: algorithmically

Algorithm (kij LU decomposition (row oriented submatrix dense))

1: Initialise L = (lij) = I, U = (uij) = 0

2: for k = 1 : n− 1 do
3: for i = k + 1 : n do
4: lik = aik/akk

5: for j = k + 1 : n do
6: aij = aij − lik ∗ akj

7: end for
8: end for
9: Uk,k:n = Ak,k:n

10: end for
11: unn = ann
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Factorizations

Submatrix LU: different order to form the Schur complement

Algorithm (kji LU decomposition (column oriented submatrix))

1: Initialise L = (lij) = I, U = (uij) = 0

2: for k = 1 : n− 1 do
3: for s = k + 1 : n do
4: lsk = as,k/ak,k

5: end for
6: for j = k + 1 : n do
7: lik = aik/akk

8: for i = k + 1 : n do
9: aij = aij − lik ∗ akj

10: end for
11: end for
12: Uk,k:n = Ak,k:n

13: end for
14: unn = ann
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Factorizations

Column LU

As mentioned, the factorization can be computed differently!

Consider first j columns of A: we must have(
A1:j−1,1:j−1 A1:j−1,j

Aj:n,1:j−1 Aj:n,j

)
→
(
L1:j−1,1:j−1

Lj:n,1:j−1 Lj:n,j

)(
U1:j−1,1:j−1 U1:j−1,j

ujj

)

This implies the relations for new column of U and L:

U1:j−1,j = L−1
1:j−1,1:j−1A1:j−1,j , ujj = ajj − Lj,1:j−1U1:j−1,j ,

ljj = 1, Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1U1:j−1,j)/ujj .

The factors can be computed column by column: j → j + 1→ . . .
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Factorizations

Column LU: visualise and emphasize its two phases

Two different phases of computing the columns of L and U .
▶ The strictly upper triangular part of U:j is determined from the

solve step
L1:j−1,1:j−1U1:j−1,j = A1:j−1,j ,

▶ The strictly lower triangular part of column j of L computed
as a (scaled) linear combination of column Aj+1:n,j of A and
previously computed columns of L.

Different sparsity/parallelization aspects of the two phases
And we can do row interchanges ©
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Factorizations

Column LU: algorithmically

Algorithm (Column LU factorization with row interchanges (partial
pivoting))

1: Interchange rows of A so that |a11| = max{|ai1| | 1 ≤ i ≤ n}
2: l11 = 1, u11 = a11, L2:n,1 = A2:n,1/a11

3: for j = 2 : n do
4: Solve L1:j−1,1:j−1U1:j−1,j = A1:j−1,j ▷ 1st phase
5: z1:n−j+1 = Aj:n,j − Lj:n,1:j−1U1:j−1,j

6: Apply row interchanges to z, A and L so that
|z1| = max{|zi| | 1 ≤ i ≤ n− j + 1}.

7: ljj = 1, ujj = z1 and Lj+1:n,j = z2:n−j+1/z1 ▷ 2nd phase
8: end for
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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7


↓

4 −1 −5 −11 6
−0.25 4 −2 −1 3
−0.25 0 4 −1 5
1.5 7 8 10 2
2 −1 −1 4 7

→


4 −1 −5 −11 6
−0.25 3.75 −2 −1 3
−0.25 −0.07 4 −1 5
1.5 2.27 8 10 2
2 0.27 −1 4 7


and so on . . .

Other possibilities? Yes, by rows . . ., but this is equivalent to
applying to AT by columns ©
Is there anything else?
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Factorizations

Introduction to factorizations: generic scheme of three nested loops

Algorithm (Generic LU factorization)

1: for ————– do
2: for ————– do
3: for ————– do
4: lik = a

(k)
ik a−1

kk

5: a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

6: end for
7: end for
8: end for

Both submatrix and column (row) factorizations are covered by
this scheme!
The crucial pointwise operation:

aij = aij − aika
−1
kk akj ≡ aij = aij − likakj
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Factorizations

Introduction to factorizations: generic scheme

Three nested loops: performance differs based on sparsity,
computer architecture.

Some vectorize more, some less, etc.

Even in finite precision arithmetic: the same L and U since the
quantities at each position are modified in the same order

To identify a variant: order in which the indices are assigned to the
loops.

▶ kij and kji: submatrix LU factorizations,

▶ jik and jki: column factorizations.

▶ The remaining ones: row factorizations (column LU factorization
applied to AT .)
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Factorizations

Outside the generic scheme

An alternative is factorization by bordering.

Set all diagonal entries of L to 1 and assume the first k− 1 rows of
L and first k − 1 columns of U (1 < k ≤ n) have been computed
(that is, L1:k−1,1:k−1 and U1:k−1,1:k−1). At step k, A1:k,1:k satisfies

(
A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
.

Quantities to be computed: in red
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Factorizations

Bordering approach: the computation

That is, the lower triangular part of row k of L and the upper
triangular part of column k of U are obtained by solving

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

The diagonal entry ukk is then given by

ukk = akk − Lk,1:k−1U1:k−1,k (with u11 = a11).
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Factorizations

Switching to A SPD: S is SPD

Lemma
Consider one step of the submatrix factorization of an SPD A. Schur complement of
A with respect to (positive) a1,1 is positive definite.

Proof.

For
(
α zT

)T we have xTAx =

(
α zT

)( a1,1 a1,2:n
a2:n,1 A2:n,2:n

)(
α
z

)
=

α2a1,1 + αa1,2:nz + αzTa2:n,1 + zTA2:n,2:nz =

(α+ a−1
1,1a1,2:nz)

Ta1,1(α+ a−1
1,1a1,2:nz) + zT (A2:n,2:n − a2:n,1a

−1
1,1a1,2:n)z

Choosing z ̸= 0 and setting α = −a−1
1,1a1,2:nz we get

xTAx = zTSz where S = A2:n,2:n − a2:n,1a
−1
1,1a1,2:n.
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Factorizations

Introduction to factorizations: SPD matrices

A is SPD→ setting U = DLT , the LU factorization can be written
as

A = LDLT ,

This is the square root-free Cholesky factorization.
Alternatively, expressed as the standard square-root Cholesky
factorization

A = (LD1/2)(LD1/2)T ,

lower triangular matrix LD1/2 has positive diagonal entries.
Since there is no square-root here, more general case of some
indefinite or some SPSD matrices (diagonal entries can be
negative, at the end we can have zeros) is covered.
Often talking about symmetric (LDLT) factorizations only,
assuming just factorizability (!)
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Factorizations

Introduction to factorizations: SPD matrices

Two completely different phases of the column construction:
implications for Cholesky factorization:

▶ If A is symmetric, j-the column of U is the j-th row of L (see
the column approach)

▶ Consequently, there is no solve phase in the symmetric
factorization

▶ Similarly, in the submatrix algorithm we do not update strict
upper triangle of the Schur complement

▶ But if A is symmetric and its factorization is symmetric, L can
be computed by the solve step only
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Factorizations

Column LU: A symmetric, showing LDLT

Observation

djj (1 ≤ j ≤ n) of the LDLT factorization of the symmetric A is

djj = ujj = ajj −
j−1∑
k=1

dkkl
2
jk.

The L factor is the same as is computed by the column LU factorization
and

djjLj+1:n,j = Aj+1:n,j −
j−1∑
k=1

Lj+1:n,k dkk ljk.

The U factor is equal to DLT .
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Factorizations

Cholesky factorization: summary: three basic ways

Left-looking schemes (second phase of the column LU)

Right-looking schemes (submatrix scheme that computes only
quantities in L)

Row scheme based on the first phase (solve) of the column LU
(shown algorithmically below)

LDLT above is the computed by a left-looking scheme
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Submatrix (right-looking) Cholesky

A =

 a1,1 a1,2 a1,3:n

a2,1 a2,2 a2,3:n

a3:n,1 a3:n,2 A3:n,3:n



=


√
a1,1 0

a2,1√
a1,1

√
a
(1)
2,2

a3:n,1√
a1,1

a
(1)
3:n,2√
a
(1)
2,2

In−2



1 0 0
0 1 0

0 0 A
(2)
3:n,3:n − a3:n,1a1,3:n

a1,1
− a

(1)
3:n,2a

(1)
2,3:n

a
(1)
2,2



√
a1,1

a2,1√
a1,1

a1,3:n√
a1,1

0
√

a
(1)
2,2

a
(1)
2,3:n√
a
(1)
2,2

In−2


=

 l1,1 0 0
l2,1 l2,2 0
l3:n,1 l3:n,2 In−2

l1,1 l2,1 l1,3:n
0 l2,2 l2,3:n
0 0 In−2


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Column (left-looking) Cholesky

Algorithm

Column Cholesky factorization: A→ square-root factor L = (lij)
1. for j = 1 : n do
2. Compute an auxiliary vector tj:ntj

...
tn

 =

ajj

...
anj

−
∑

{k|ljk ̸=0}

ljk

ljk
...

lnk

 (5)

3. Get a column of L by scaling tj:nljj
...
lnj

 =
1√
tj

tj
...
tn

 (6)

4. end j
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Cholesky factorization: row scheme

But there is also the row scheme.

The row scheme is based on the first phase (solve) of the column
LU
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Factorizations

Row (up-looking) Cholesky

Algorithm

Row Cholesky factorization: : A→ square-root factor L = (lij).
1. for i = 1 : n do
2. Solve the triangular system

L1:i−1,1:i−1

 li1
...

li,i−1

 =

 ai1
...

ai,i−1

 (7)

3. Compute the diagonal entry lii =

√(
aii −

∑i−1
k=1 l

2
ik

)
4. end i
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A not factorizable

What if A is not factorizable? But regular!!!
Then there exists a row permutation matrix P such that PA is
factorizable (row interchanges).
Consider the simple 2× 2 matrix A and its LU factorization

A =

(
δ 1
1 1

)
=

(
1

δ−1 1

)(
δ 1

1− δ−1

)
.

If δ = 0 this factorization does not exist and if δ is very small then
the entries in the factors involving δ−1 are very large.
Interchanging the rows of A we have

PA =

(
1 1
δ 1

)
=

(
1
δ 1

)(
1 1

1− δ

)
,

which is valid for all δ ̸= 1. But this is a nonsymmetric permutation.
To keep symmetry: specific ways shown below
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Factorizations

Elimination versus factorization: partial summary

Householder (end of 1950’s, beginning of 1960’s): expressing
Gaussian elimination as a decomposition

Various reformulations of the same decomposition: different
properties in

▶ sparse implementations
▶ vector processing
▶ other parallel implementations, GPUs

Generic scheme for Cholesky as for LU gives a useful framework.
There are also other schemes (bordering, Dongarra-Eisenstat
using also submatrices etc.)

Remind that we can have always a underlying block structure
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Factorizations and sparsity

Factorizations of sparse matrices create new nonzero entries
outside S{A} called fill/fill-in/filled entries as in the following
arrowhead example

∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

 →


∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗


Fill-in means more operations, more memory

This is, of course, very pessimistic example. More typical cases
shown before.
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Factorizations and sparsity

Can we expect that some nonzeros become zeros due to
cancellation?
Very rarely. Numerical cancellations in LU factorizations rarely
happen. Also difficult to predict.
We assume non-cancellation: the result of adding, subtracting or
multiplying two nonzeros is nonzero again.

Observation
The sparsity structures of the LU factors of A satisfy

S{A} ⊆ S{L+ U}.

A subtle reason to stick with the non-cancellation assumption: we
intend to check only existence of nonzero and not its value in
order to use graphs
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Graphs and sparse matrices

Sparse matrices and graphs

To describe the sparse matrix pattern S(A), graphs can be used
If A is symmetric, undirected graph model is the right one (not
distinguishing between positions (i, j) and (j, i)).



1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗



1 2

3

4

5

67
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Graphs and sparse matrices

Sparse matrices and graphs

If A is nonsymmetric, a directed graph model that distinguishes
between position (i, j) and (j, i)) can be used.



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗



1 2

3

4

5

6 7
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Graphs and sparse matrices

Sparse matrices and graphs

A more general possibility is to use a bipartite graph that
distinguishes between column and row nodes. It can also show
sparsity pattern of rectangular matrices.
This model also nontrivially captures diagonal entries - can be
exploited in algorithms
A simple bipartite graph is an ordered pair of sets (R,C,E) such
that E = {{i, j}|i ∈ R, j ∈ C}. R is called the row vertex set, C is
called the column vertex set and E is called the edge set.



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′
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Graphs and sparse matrices

Sparse matrices and graphs: more formally

A graph G = (V, E) is a finite set V of vertices (or nodes), and a
set E of edges defined as pairs of distinct vertices.

Undirected case: E ⊆
(
V
2

)
, directed case: E ∈ V × V .

No distinction between (i, j) and (j, i): edges can be represented
by unordered pairs→ G is undirected, otherwise directed
(digraph).
Our bipartite graph was undirected, but it can be also directed.
Note that we do not indicate diagonal entries by edges (called
loops). Formally, our graphs are just simple graphs, without
multiple edges. Models can be more complex: bipartite graph can
be directed.
To capture not only S(A) but also the values, G can be
transformed into a weighted graph using a mapping E(A)→ R
and/or V(A)→ R.
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Graph terminology: more formally

Graph induced by a matrix A (representing S(A)): denoted G(A)
Labelling (or ordering) of a graph G = (V, E) with n vertices: it is a
bijection of {1, 2, . . . , n} onto V. The integer i (1 ≤ i ≤ n) assigned
to a vertex in V is called the label (or simply the number).
Standard choice of vertex labelling V = {1, . . . , n}: vertices are
directly identified by their labels.
Relabelling of vertices of G(A) corresponds to a symmetric
permutation of the underlying matrix A.
Another example of a labelled undirected graph:

1

2

4

3

6 5

Simple undirected graph G = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {2, 3},
{1, 4}, {3, 4}, {3, 6}, {3, 5}, {5, 6}}) 87 / 705
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Graph terminology

Gs = (Vs, Es) is a subgraph of G = (V, E) if and only if Vs ⊆ V and
Es ⊆ E and (us, vs) ∈ Es implies us, vs ∈ Vs.
The subgraph is an induced subgraph if Es contains all the edges
in E that have both u and v in Vs.
Two graphs G = (V, E) and Gs = (Vs, Es) are isomorphic if there is
a bijection g : V → Vs that preserves adjacency, that is (u, v) ∈ E
if and only if (g(u), g(v)) ∈ Es.
Undirected graph: two vertices u and v in V are said to be
adjacent (or neighbours) if e = (u, v) ∈ E ; the edge e is incident to
the vertex u and to the vertex v. u and v are the endpoints of e.

We also use the notation (u←→ v) for an edge (or (u G←−−→ v) to
emphasise that the edge belongs to the graph G).
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Graphs and their matrices

Graph terminology: degree, adjacency

The degree degG(u) of u ∈ V is the number of vertices in V that
are adjacent to u, and the adjacency set adjG{u} is the set of
these adjacent vertices (thus |adjG{u}| = degG(u)).
If Vs is a subset of the vertices, then the adjacency set adjG{Vs} is
the set of vertices in V \ Vs that are adjacent to at least one vertex
in Vs.

1 2

3

4

5

67

Degree of vertex 2 is four: degG(2) = 4, its adjacency set are
vertices 1, 3, 4, 6: adjG{2} = {1, 3, 4, 6}, adjG{2, 4, 6} = {1, 3, 5}.
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Graphs and their matrices

Graph terminology: clique

A subgraph is a clique when every pair of vertices is adjacent.
Clique we use just for undirected graphs, apart from similarity of
using some other terminology for both directed and undirected
graphs.

1 2

3

4

5

67

Vertices 2, 4, 6 form a clique: the induced subgraph with vertices
Vs = {2, 4, 6} is a clique.
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Transfer between the classes of undirected and directed graphs

Many pieces of terminology have small variations for both directed
and undirected graphs
Symmetrization: directed→ undirected

▶ Just considering edges from V × V as from
(
V
2

)
Orientation: undirected→ directed

▶ Not unique. Instead from an edge from
(
V
2

)
we can have one or

two edges from V × V .

Let us remind, part of terminology is shared between the classes
of undirected and directed graphs
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Graph terminology: edges, walk, path

Notation (u→ v) for a directed edge.

Emphasising the graph to which the edge belongs: (u G−−→ v).
In a digraph there can be an edge (u→ v) but no edge (v → u).
The adjacency set of u can be split into two parts

adj+G {u} = {v | (u→ v) ∈ E} and adj−G {u} = {v | (v → u) ∈ E}.

A sequence of k edges in an undirected graph G: a walk. (edges
distinct: trail, vertices distinct: path.

u0 ←→ u1 ←→ . . .←→ uk−1 ←→ uk

k is the length of the walk. A walk of zero length: k = 0.
The walk is closed if u0 = uk; a closed walk is called a cycle.
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Graph terminology: denoting paths

If the vertices V are labelled 1, 2, . . . , n then in the undirected
graph G = (V, E) a path between a pair of its vertices with labels i
and j is denoted by

i
G⇐==⇒ j

or, if it is clear which graph the path is in, by

i⇐⇒ j.

If all intermediate vertices on the path are less than min{i, j} then
the path is called a fill-path and is denoted by

i
G⇐==⇒

min
j or i⇐==⇒

min
j.
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Graph terminology: denoting paths

If all intermediate vertices on the path belong to a subset Vs then
the path is denoted by

i
G⇐==⇒
Vs

j or i⇐===⇒
Vs

j.

If G is a digraph then the sequence: a directed walk.

u0 −→ u1 −→ . . . −→ uk−1 −→ uk

A (directed) trail is a (directed) walk in which all the edges are
distinct and a (directed) path is a (directed) trail in which all the
vertices (and therefore also all the edges) are distinct.
If G is a digraph, the double-sided arrow symbols are replaced by
one-sided ones =⇒ in the direction of the edges. For example,

i
G

===⇒ j, i =⇒ j, i ===⇒
min

j and i ====⇒
Vs

j.
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Graph terminology: distances

Paths can be used to determine distances between pairs of
vertices.
The distance between two vertices is the number of edges in the
shortest path connecting them (this is also called the length of the
path).

1 2

3

4

5

6

Distance between 1 and 6 is three.
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Graph terminology: connectedness, trees

An undirected graph is connected if every pair of vertices is
connected by a path.
A (undirected) connected acyclic graph is called a tree, that is, a
tree is an undirected graph in which any two vertices are
connected by exactly one path.
Every tree has at least two vertices of degree 1. Such vertices are
called leaf vertices.
A graph is a forest if it consists of a disjoint union of trees.
Connectivity is an equivalence relation and consequently, it
provides a partition of V into disjoint equivalence classes.
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Graph terminology: connectedness, trees

6
5

4
3

21

7

9

8

10 11

12

Figure: A disconnected undirected graph with 12 vertices that is a forest
(consisting of two disjoint trees). Vertices 1, 2, 3, 6, 7, 8 and 11 are leaf
vertices.

In directed trees leaves may be only some vertices of degree 1.
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Graph terminology: connectedness, trees

6
5

4
3

21

7

9

8

10 11

12

Figure: An example of a directed graph with 12 vertices that is a directed
forest (it consists of two disjoint trees). Vertices 1, 2, 3, 6, 7, 8, 11 considered as
leaf vertices.

In directed trees leaves may be only some vertices of degree 1
(e.g., those with the outgoing edge).
Terminology must serve to our goals!
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Graph terminology: connected, strongly connected

If G is connected then a spanning tree of G is a subgraph of G that
is a tree containing every vertex of G.
Graph (left) and its spanning tree (right)

1

23

4567

1

23

4567
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Graph terminology: directed graphs: strong connectedness

A directed graph G = (V, E) is strongly connected if for every pair
of vertices u, v ∈ V there is a path from u to v and a path from v to
u.
Strongly connected subgraphs: strong components (SCC)
An example: five SCCs: {p, q, r}, {s, t, u}, {v}, {w}, and {x}.

u w

t

s

v

q

r

p

x

s5

s4

s3

s1

s2

s5

s4

s3

s1

s2

The graphs with shrinked SCC are called condensations
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Graph terminology: directed graphs: strong connectedness

Strong connectivity is an equivalence relation on V. It induces a
partitioning

V = V1 ∪ . . . ∪ Vs
such that each Vi (1 ≤ i ≤ s) is strongly connected and is maximal
with this property: no additional vertices from G can be included in
Vi without breaking its strong connectivity.
Shrinking the strong components Vi: we get a direct graph without
cycles.
Graphs that do not contain cycles are also called acyclic.
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Graph terminology

Digraphs with no cycles (directed acyclic graphs, DAGs) are
extremely useful to model some applications.

In a DAG, if there is a path u =⇒ v then u is called an ancestor of
v and v is said to be a descendant of u.

Topological ordering of vertices of a DAG: edges from u to v only
for u < v.

A topological ordering of a graph is possible if and only if it is a
DAG. Generally non-unique. Any DAG has at least one topological
ordering.
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Graph terminology
DAG with two different topological orderings. Left: vertices 2, 3, 5
and 6 are descendants of 1. Only vertices 5 and 6 are
descendants of vertex 4.

1 2

3

4

5

6

2 3

5

1

4

6

Figure: An example of a DAG with two different topological orderings.

v is the parent of u if the directed edge (u→ v) ∈ E ′; u is a child of
v (two or more child vertices are referred to as children). Leaf
vertices have no children.
If directions of all edges in a DAG are reversed: also a DAG.
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Graph terminology: reachability

The vertices u0 and uk are connected by the walk and for k > 0,
uk is said to be reachable from u0.
The set of vertices that are reachable from u0 is denoted by
Reach(u0).

1 2

3

4

5

6

Reach(2) = {3, 5, 6}.
Reachability may or may not take direction of edges into account:
it is a concept for both undirected and directed graphs.
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Graphs and their matrices

Graph terminology: reachability through a set

Given G a subset Vs of its vertices: if u and v are two distinct
vertices that do not belong to Vs, then v is reachable from u
through Vs if u and v are connected by a path that is either of
length 1 or is composed entirely of vertices that belong to Vs
(except for the endpoints u and v).

Given Vs and u /∈ Vs, the reachable set Reach(u,Vs) of u through
Vs is the set of all vertices that are reachable from u through Vs.
Note that if Vs is empty or u does not belong to adjG(Vs) then
Reach(u,Vs) = adjG(u).

Reachability can be considered for both undirected or directed or
even mixed (directed-undirected) graphs.

A simple example is given in the following Figure.
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Graphs and their matrices

Graph terminology: reachability through a set

1

23

4567

Vs = {4, 5}

Reach(2,Vs) = {1, 3, 6}
Reach(6,Vs) = {2, 3, 7}.
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Graphs and their matrices

Graph terminology: reachability through a set

1

23

4567

Vs = {4, 5}
Reach(2,Vs) = {1, 3, 6}

Reach(6,Vs) = {2, 3, 7}.
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Graphs and their matrices

Graph terminology: reachability through a set

1

23

4567

Vs = {4, 5}
Reach(2,Vs) = {1, 3, 6}
Reach(6,Vs) = {2, 3, 7}.
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Graphs and their matrices

Graph terminology: rooted trees

Rooted trees are DAGs defined from an undirected tree by a
chosen vertex: root (remind: tree is connected)
Any undirected tree T = (V, E) is converted to a directed rooted
tree T ′ = (V, E ′) by specifying a root vertex r.
r can be chosen arbitrarily: any choice gives a directed rooted
tree. An edge with endpoints u and v in E becomes a directed
edge (u→ v) in E ′ if there is a path from u to r such that the first
edge of this path is from u to v.
v is called the parent of u if the directed edge (u→ v) ∈ E ′; u is
said to be a child of v (two or more child vertices are referred to as
children). Two vertices in a rooted tree are siblings if they have the
same parent. Leaf vertices have no children.
Given r, this directed path is unique.
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Graphs and their matrices

Graph terminology: rooted trees

1

4

2

6 5

7

3

1 2

4

6

7

5

3

Example left: if 7 is a root: get a rooted tree: orientation can be
chosen
. . . but later we will see that we like the orientation upwards ©
Example right: 4 is a root, orientation chosen

108 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 111 — #111 i
i

i
i

i
i

Graphs and their matrices

Another example of a rooted tree

1

8 2 9

7 6

3 4 5

10

11

12

The root of this tree is 12, 10 is an ancestor of vertices 2, 8 a 9.
These vertices are descendants of 10. Set of ancestors of 10 is
anc(10) = {10, 11, 12}. parents for vertices 1 . . . 11:
8, 10, 7, 7, 6, 9, 9, 10, 10, 11, 12, null.
12 is not considered a leaf

109 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 112 — #112 i
i

i
i

i
i

Graphs and their matrices

Graphs can imply matrices by setting numerical values

Remind: matrices→ graphs:

E(A) = {(i, j) | aij ̸= 0, i ̸= j} .

or for a digraph:

E(A) = {(i→ j) | aij ̸= 0, i ̸= j}.

Remind that diagonal entries are typically not included in the
model.
But also the opposite direction graphs→ matrices is sometimes
useful: adjacency and incidence matrices
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Graphs and their matrices

Adjacency and incidence matrices of an undirected graph

For a simple undirected graph G = (V,E) with V = {1, . . . , n} the
adjacency matrix (vertex by vertex ) is the (0, 1) matrix AG = (aij)
(i, j ∈ V ), where aij is 1 iff i↔ j and 0 otherwise.
Similarly for such graph G = (V,E), V = {1, . . . , n},
E = {1, . . . ,m} the incidence matrix (edge by vertex ) is the (0, 1)
matrix BG = (bij) (i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}), where aij = 1, if
(i, j) ∈ E and aij = 0 otherwise.

1

2

4

3

6 5
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Graphs and their matrices

Adjacency and incidence matrices of an undirected graph

1

2

4

3

6 5



1 2 3 4 5 6

1 1 1
2 1 1
3 1 1 1 1
4 1 1
5 1 1
6 1 1





1 2 3 4 5

(1, 2) 1 1
(1, 4) 1 1
(2, 3) 1 1
(3, 4) 1 1
(3, 5) 1 1
(3, 6) 1 1
(5, 6) 1 1


More ways to define matrix values (e.g., setting diagonal values,
using −1)
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Graphs of triangular matrices

A special case is the directed graph associated with a triangular
matrix. If L is a lower triangular matrix and U is an upper triangular
matrix then the directed graphs G(L) and G(U) have edge sets

E(L) = {(i→ j) | lij ̸= 0, i > j}

E(U) = {(i→ j) |uij ̸= 0, i < j}

It is sometimes convenient to use G(LT ) in which the direction of
the edges is reversed

E(LT ) = {(j → i) | lij ̸= 0, i > j}. (8)

It is straightforward to see that G(L), G(LT ) and G(U) are DAGs.
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Graphs and their matrices

LU dags



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗



1

3

2

4 5

6

1

3

2

4
5

6

G(LT ) G(U)
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Graphs and their matrices

Permutation matrices

A permutation matrix: a square matrix with exactly one entry
equal to 1 in each row and column, and all remaining entries are
zeros. That is, it is a permutation of the identity matrix.
Premultiplying a matrix by P reorders the rows and postmultiplying
by P reorders the columns. P can be represented by an
integer-valued permutation vector p, where pi is the column index
of the 1 within the i-th row of P . For example,

P =

0 1 0
0 0 1
1 0 0

 and p =

2
3
1

 .
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Graphs and their matrices

Permutation matrices: labelling

The graph of a matrix A is unchanged if a symmetric permutation
A′ = PAP T is performed, only the labelling of the vertices
changes and thus relabelling G(A) can be used to permute A.
The digraph of a general matrix A is not invariant under
nonsymmetric permutations PAQ, with Q ̸= P T . Remind that a
topological ordering of a directed graph is a labelling of its vertices
such that for every edge (i→ j), vertex i precedes vertex j (i.e.,
i < j).
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Factorizations

Simple fill-in results



k j

k ∗ ∗
∗

i ∗ ∗
∗
∗

 →



k j

k ∗ ∗
∗

i ∗ ∗ f
∗
∗


Fill-in lemma

Lemma
Let i, j, k ∈ {1, . . . , n}, k < min{i, j} ≤ n. Then

a
(k)
ij ̸= 0⇐⇒ a

(k−1)
ij ̸= 0 ∨ (a

(k−1)
ik ̸= 0 ∧ a

(k−1)
kj ̸= 0)
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Factorizations

Simple fill-in results

Lemma
Let i, j, k ∈ {1, . . . , n}, k < min{i, j} ≤ n. Then

a
(k)
ij ̸= 0⇐⇒ a

(k−1)
ij ̸= 0 ∨ (a

(k−1)
ik ̸= 0 ∧ a

(k−1)
kj ̸= 0)

Proof.

Trivial for diagonal entries. If a(k)ij ̸= 0 and also a
(k−1)
ij = 0, then the

value at (i, j) was changed in the k-th factorization step. That is, when
getting A(k−1) from A(k−1). This implies both a

(k−1)
ik ̸= 0 and a

(k−1)
kj ̸= 0,

since the factorization update is

a
(k)
ij = a

(k−1)
ij − lika

(k−1)
kj ≡ a

(k−1)
ij − a

(k−1)
ik a

(k−1)
kj /a

(k−1)
kk .

Conversely, the right-hand side of the lemma expression implies
a
(k)
ij .
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Factorizations

Describing fill-in during the factorization
Elimination (factorization) from the structural point of view:
The elimination sequence
A(1) → A(2) = C1A

(1) → A(3) = C2C1A
(1) → . . .→ A(n) = Cn−1 . . . C1A

(1).

Remind the Schur complement

S(k) =

akk . . . akn
...

. . .
...

ank . . . ann

− k−1∑
j=1

lkj
...
lnj

(ujk . . . ujn
)

=

a
(k)
kk . . . a

(k)
kn

...
. . .

...
a
(k)
nk . . . a

(k)
nn

 = A
(k)
k:n,k:n. (9)

Factorization changes can be modelled using sequence of Schur
complements where the changes are clearly visible

S(1) → S(2) → S(3) → . . .→ S(n) = a(n−1)
nn .

The quantities in the factors can be obtained in a different relative
order in different algorithms.
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Fill-in during the factorization: elimination graphs
Graphs of the Schur complements are called the elimination
graphs: G1 ≡ G(A),G2, . . . ,Gn.
Vertices Vk of Gk = (Vk, Ek) are the n− k + 1 uneliminated
vertices (correspond to the unused rows and columns k, . . . , n.
The edge set Ek contains the edges of G(A) and fill-in edges
among vertices of Vk.
The process to generate the elimination graphs is called the
Parter’s rule:

To obtain the elimination graph Gk+1 from Gk, delete vertex k and

add all edges (i
Gk+1

−−−→ j) such that (i Gk

−→ k) and (k
Gk

−→ j).
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Factorizations

An example



1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



2

6

3 4 5

1

2

6

3 4 5

Figure: The original digraph G = G1 (left) and the directed elimination graph G2 (right) The red
dashed lines denote fill edges.
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Factorizations

Graphs of arrowhead matrices
Used here to demonstrate a catastrophic fill-in.


1 2 3 4 5

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗



1

2

3

4

5

5

1

2

3

4

The second one is obtained from the first one by relabelling that
corresponds to a symmetric permutation. 122 / 705
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Factorizations

Parter’s rule more formally
Denoting Gk = (Vk, Ek), Gk+1 = (Vk+1, Ek+1), the Parter’s rule is

Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk{k}} \ {(i, k) | i ∈ adjGk{k}}.

In the symmetric case: no need to consider orientation:
To obtain the elimination graph Gk+1 from Gk, delete vertex k and
add all possible edges between vertices that are adjacent to
vertex k in Gk.
If S{A} is symmetric then Parter’s rule says that the adjacency set
of vertex k becomes a clique when k is eliminated: Gaussian
elimination systematically generates cliques.

123 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 126 — #126 i
i

i
i

i
i
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An example where A is assumed to be symmetric, factorized by
Cholesky or its extension.



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ f ∗ f ∗
4 ∗ ∗ f ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



2

6

3 4 5

1

2

6

3 4 5

Figure: The original undirected graph G = G1 (left) and the obtained graph G2 (right). The red
dashed lines denote fill edges. The vertices {2, 3, 4} become a clique. 124 / 705
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Parter’s rule for the final factors
Remind the non-cancellation assumption: once created fill-in
remains ©
Note that

aij ̸= 0⇔ (i→ j) ∈ E .

Lemma
Let i, j, k ∈ {1, . . . , n}, k < min{i, j} ≤ n. Denote F = L+ U . Then

(i, j) ∈ E(F )⇐⇒ (i, j) ∈ E(A) ∨ ((i, k) ∈ E(F ) ∧ (k, j) ∈ E(F )),

where G(F ) = (V, E(F ))

Note: this was just formulated for a static graph G(F ).
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Parter’s rule for factors (both symmetric and nonsymmetric cases)

Nonsymmetric matrix A and its LU factorization:
(i→ j) is an edge of the digraph G(L+ U) if and only if (i→ j) is
an edge of the digraph G(A) or (i→ k) and (k → j) are edges of
G(L+ U) for some k < i, j.
Symmetric: the repeated application of Parter’s rule specifies all
the edges in G(L+ LT ) as:
(i, j) is an edge of G(L+ LT ) if and only if (i, j) is an edge of G(A)
or (i, k) and (k, j) are edges of G(L+ LT ) for some k < i, j.
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From the Parter’s rule for factors to fill-paths

Parter’s rule is only a local rule that uses the dependency on
nonzeros obtained in previous steps of the factorization. The
following result fully characterizes the nonzero entries in the
factors using only paths in G(A).

Theorem
(a) Let S{A} be symmetric and A = LLT . Then

(L+LT )ij ̸= 0 if and only if there is a fill-path i
G(A)⇐====⇒
min

j.

(b) Let S{A} be nonsymmetric and A = LU . Then

(L+ U)ij ̸= 0 if and only if there is a fill-path i
G(A)

=====⇒
min

j.

The fill-paths may not be unique.
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Factorizations

From the Parter’s rule for factors to fill-paths

Not a proof

i

p1

p2 p3

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill-paths

Not a proof

i

p1

p3

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill-paths

Not a proof

i

p1 p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill-paths

Not a proof

i

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill-paths

Not a proof

i j

p2 < p3 < p1 < p4 < min(i, j)
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From the Parter’s rule for factors to fill-paths

Symmetric S{A}: a filled entry in position (8, 6) of L because of a

fill-path 8
G(A)⇐====⇒
min

6: 8←→ 2←→ 5←→ 1←→ 6.



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗



6

1

345
2

78 6

1

345
2

78
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Factorizations

So far, only implicit results to see the fill-in

Neither the local characterization of filled entries using Parter’s
rule (fill-in lemma) nor Theorem on paths provide a direct answer
as to whether a certain edge belongs to G(L+ LT ) (or G(L+ U))
without performing the elimination
Results presented so far do not tell us immediately whether a
given entry of a factor of A is nonzero.
And there are also practical problems connected to storing the
elimination graphs and G(L+ LT ) (or G(L+ U)).
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Practical problems: storing and using the fill-in
A clique with m vertices has m(m− 1)/2 edges. This may be too
many! It can be must be represented by storing a list of its
vertices, without any reference to edges.
This leads to implicit storing of the elimination graphs with
significant consequences.
As the elimination process progresses, cliques grow or more than
one clique joins to form larger cliques: clique amalgamation.
Note that in the nonsymmetric case we need to store edges
orientation in addition to be happy from cliques.

We need something more. Such questions should be addressed
by a deeper theoretical and algorithmic understanding presented
later: we will mention this later defining also another graph model
for the elimination.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Sparse vectors and matrices in a computer

Sparse vector in a computer

Example

Consider the sparse row vector v ∈ R8

v =
(
1. −2. 0. −3. 0. 5. 3. 0.

)
. (10)

The real array valV that stores the nonzero values and corresponding
integer array of their indices indV are of length |S{v}| = 5 and are as
follows:

Subscripts 1 2 3 4 5

valV 1. −2. −3. 5. 3.
indV 1 2 4 6 7
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Sparse vectors and matrices in a computer

Sparse vector in a computer: linked lists

Alternatively, a linked list can be used.
Linked list - based format: stores matrix rows/columns as items
connected by pointers
Linked lists can be cyclic, one-way, two-way, etc.

1 1. 2 -2. 4 -3. 6 5. 7 3.

rows/columns embedded into a larger array: emulated dynamic
behavior
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Sparse vectors and matrices in a computer

Sparse vector in a computer: linked lists

Alternatively, a linked list can be used.
Linked list - based format: stores matrix rows/columns as items
connected by pointers
Linked lists can be cyclic, one-way, two-way, etc.

1 1. 2 -2. 4 -3. 6 5. 7 3.

rows/columns embedded into a larger array: emulated dynamic
behavior
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Sparse vectors and matrices in a computer

Sparse vector in a computer: linked lists

Alternatively, a linked list can be used.
Linked list - based format: stores matrix rows/columns as items
connected by pointers
Linked lists can be cyclic, one-way, two-way, etc.

1 1. 2 -2. 4 -3. 6 5. 7 3.

rows/columns embedded into a larger array: emulated dynamic
behavior
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Sparse vector

Sparse vector in a computer

Linked list can be embedded into a large array.

Example

Possible ways of storing the sparse vector using linked lists.

Subscripts 1 2 3 4 5

Values 1. −2. −3. 5. 3.
Indices 1 2 4 6 7
Links 2 3 4 5 0
Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. −2. −3.
Indices 6 7 1 2 4
Links 2 0 4 5 1
Header 3

141 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 144 — #144 i
i

i
i

i
i

Sparse vector in a computer: embedded linked list

Reasons for linked lists: easy (dynamic) adds and removes.

Example

On the top, an entry −4 has been added in position 5. On the bottom,
an entry −2 in position 2 has been removed. ∗ indicates the entry is
not accessed. The links that have changed are in bold.

Subscripts 1 2 3 4 5 6

Values 1. −2. −3. 5. 3. −4.
Indices 1 2 4 6 7 5
Links 2 3 4 5 6 0
Header 1

Subscripts 1 2 3 4 5

Values 1. ∗ −3. 5. 3.
Indices 1 ∗ 4 6 7
Links 3 ∗ 4 5 0
Header 1
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Sparse vectors and matrices in a computer

Sparse matrix storage

A set of linked lists. (Rather dynamic storage format)

Example matrix A ∈ R5×5



1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

.

1 3. 4 -2.
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Sparse matrix: linked lists: embedded in an array

Easy dynamic matrix modifications if linked lists are used:
example: A held as a collection of columns, each in a linked list.
colA_head holds pointers to start a column list.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.
link 0 10 0 0 4 3 9 0 8 0
colA_head 6 2 1 5 7

If we consider column 4, then colA_head(4) = 5, rowindA(5) = 1 and
valA(5) = −2., so the first entry in column 4 is a1,4 = −2.. Next,
link(5) = 4, rowindA(4) = 4 and valA(4) = 1., so the next entry in
column 4 is a4,4 = 1.
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Sparse matrix storage

Coordinate (or triplet format: the individual entries of A are held as
triplets (i, j, aij), where i is the row index and j is the column
index of the entry aij ̸= 0.

This is also a dynamic storage format, often used also in other
contexts (for files).
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Sparse matrix in the coordinate format

Example matrix A ∈ R5×5



1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

. (11)

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
colindA 3 2 1 4 4 1 5 5 5 2
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.
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Sparse vectors and matrices in a computer

Sparse matrix storage: static formats

CSR (Compressed Sparse Row) format. The column indices of
the entries of A held by rows in an integer array (which we will call
colindA) of length nz(A), with those in row 1 followed by those in
row 2, and so on (with no space between rows). Sorted or
unsorted. (static storage format)
CSC (Compressed Sparse Columns): analogously by columns
instead of rows. (static storage format)
If A is symmetric, only the lower (or upper) triangular part stored.
Possible to store only S{A} and not numerical values.
Very useful schemes: static, but theory helps to use them in
applications
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Sparse matrix in the CSR format

CSR format represents A as follows. Here the entries within each
row are in order of increasing column index.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11
colindA 1 4 2 5 1 3 5 4 2 5
valA 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.

Technical comment: In our codes often used: ia→ rowptrA, ja→
colindA, aa→ valindA
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Sparse vectors and matrices in a computer

Sparse matrix storage: static versus dynamic formats

dynamic data structures:
▶ – more flexible but this flexibility might not be needed

▶ – difficult to vectorize

▶ – difficult to keep spatial locality

▶ – used preferably for storing vectors
static data structures:

▶ – ad-hoc insertions/deletions should be avoided (better algorithms)

▶ – much simpler to vectorize / utilize cache

▶ – efficient access to rows/columns

level of dynamism interpreted for individual operations
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Sparse vectors and matrices in a computer

Simulating dynamic storage formats by static ones

A disadvantage of linked list storage: prohibits the fast access to
rows (or columns) of the matrix. And this is needed!
Simulated dynamism of storage schemes: storage format with
some additional elbow space for new non zero entries of A is
needed.
Often the case in approximate factorizations where new non zero
entries can be added and/or removed and it is hard to predict the
necessary space in advance.
In this case, the elbow space can embed new non zeros.
The format is called the DS format.
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Sparse matrix: DS formats

Consider again the sparse matrix A ∈ R5×5 (11). The DS format
represents A as follows.

Example
Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rowptrA 1 5 8 12 14
colindA 1 4 2 5 1 3 5 4 2 5
valAR 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.
rowlength 2 2 3 1 2
colptrA 1 4 6 9 12
rowindA 1 3 2 5 3 1 4 2 3 5
valAC 3. -1. 1. 7. 3. -2. 1. 4. 1. 6.
collength 2 2 1 2 3
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Sparse matrix: DS formats

It can happen that the free space between row and/or column
segments disappears throughout a computational algorithm. Then
the DS format must be reorganized.
In particular, a row segment can be moved to the end of the arrays
valAR and colindA implying also a corresponding update in
rowptrA. The space where the row i originally resided is then
denoted as free.
If there is no free space at the end of the arrays valAR and
colindA, a compression of the row segments or full reallocation
should be done.
While the DS format seems to be complicated, it can be extremely
useful in some cases. Surprisingly efficient if the amount of
changes is limited as it often is in approximate factorizations.
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Block formats
Blocked formats may be used to accelerate multiplication between
a sparse matrix and a dense vector.
The Variable Block Row (VBR) format groups together similar
adjacent rows and columns.
The data structure of the VBR format uses six arrays. Integer
arrays rptr and cptr hold the index of the first row in each block
row and the index of the first column in each block column,
respectively. In many cases, the block row and column
partitionings are conformal and only one of these arrays is
needed. The real array valA contains the entries of the matrix
block-by-block in column-major order. The integer array indx
holds pointers to the beginning of each block entry within valA.
The index array bindx holds the block column indices of the block
entries of the matrix and, finally, the integer array bptr holds
pointers to the start of each row block in bindx.
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Sparse matrices and data structures

Sparse matrix: DS formats

Example

Consider the sparse matrix A ∈ R8×8



1 2 3 4 5 6 7 8

1 1. 2. 3.
2 4. 5. 6.
3 7. 8. 9. 10.
4 11. 12. 15. 16.
5 13. 17.
6 14. 18.
7 19. 20.
8 21. 22.


.

Here the row blocks comprise rows 1:2, 3, 4:6 and 7:8. The column
blocks comprise columns 1:2, 3:5, 6, 7:8. The VBR format stores A as
follows.
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Sparse matrices and data structures

Sparse matrix: DS formats

Example
Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

rptr 1 3 4 7 9
cptr 1 3 6 7 9
valA 1.4.2. 5. 3. 6. 7.8.9.10.11.14.12.13.15.17.16.18.19.21.22.20.
indx 1 5 7 10111519
bindx 1 3 2 3 1 4 2
bptr 1 3 5 7
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSC

(A by rows, B by columns)

A =

A1,:
...

Am,:

 ∈ Rm×k, B =
(
B:,1, . . . , B:,n

)
∈ Rk×n, C = AB = (cij)ij

Each entry cij : product of a compressed row Ai,: and compressed
column B:,j .
Not known in advance whether cij == 0 or not.
m = k = n⇒ O(n3) operations, not useful for sparse matmats.
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by rows, B by rows)

A =

A1,:
...

Am,:

 ∈ Rm×k, B =

B1,:
...

Bn,:

 ∈ Rk×n, C = AB = (cij)ij (12)



1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗


A B
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by rows, B by rows)

A =

A1,:
...

Am,:

 ∈ Rm×k, B =

B1,:
...

Bn,:

 ∈ Rk×n, C = AB = (cij)ij (13)



1 2 3 4 5

1 ⋆ ⋆
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗


A B
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by rows, B by rows)

A =

A1,:
...

Am,:

 ∈ Rm×k, B =

B1,:
...

Bn,:

 ∈ Rk×n, C = AB = (cij)ij (14)



1 2 3 4 5

1 ⋆ ⋆
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5 6 7 8 9

1 ⋆ ∗ ⋆ ⋆
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ⋆ ⋆ ⋆ ⋆
5 ∗ ∗ ∗


A B
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by rows, B by rows)

A =

A1,:
...

Am,:

 ∈ Rm×k, B =

B1,:
...

Bn,:

 ∈ Rk×n, C = AB = (cij)ij (15)



1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5 6 7 8 9

1 ⋆ ∗ ⋆ ⋆
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ⋆ ⋆ ⋆ ⋆
5 ∗ ∗ ∗


A B

S(C1,:) = S(B1,:) ∪ S(B4,:): optimal operation count
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij)

(16)
Simulation rows even when A is stored by columns.
Assume that rows are in the order 1→ n

161 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 164 — #164 i
i

i
i

i
i

Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij)

(17)
Simulation rows even when A is stored by columns.
Assume that rows are in the order 1→ n
More arrays needed.

▶ Head pointers to first entries in columns are used
▶ Entries of the same row (so far found): kept in a linked list

Complexity of the multiplication is then linear: O(nz(A)) +O(n)
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (18)

A before the multiplication. Nonzeros are depicted in red.
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (19)

A pointers initialization. Pointers point to first entries in a column

164 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 167 — #167 i
i

i
i

i
i
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (20)

Pointers pointing to the same row are connected by a linked list
Potentially n linked lists, but all embedded into one array!!!
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (21)

After processing the first row (linked list for the first row contains
only one entry):

Process the second row as in the row - row scheme.
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Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (22)

After processing the first row (linked list for the first row contains
only one entry):

Update linked lists to be involved in further computations.
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Sparse matrices and data structures

Matrix-matrix multiplications (matmats) in CSR/CSR

(A by columns, B by rows)

A =
(
A:,1, . . . , A:,k

)
∈ Rm×k, B =

B1,:
...

Bk,:

 ∈ Rk×n, C = AB = (cij) (23)

A pointers initialization. Pointers (heads) point to first entries in a
column

And then: simply updates of the pointers and linked lists.
Each relinking is cheap.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Symbolic factorizations

Back to factorizations and sparsity

First look: The matrix A is factorized and then, given the
right-hand side b, the factors are used to compute the solution x.

But, using graphs, even the factorization may be (in some cases)
split:

▶ 1) If care about numerical properties of A not needed (like in
Cholesky): → factorization can be split into a structural part
(symbolic phase) and the rest (numeric/factorization phase).

▶ 2) If numerical issues have to be considered (like row
interchanges in LU factorization);→ some combination of
symbolic and numerical factorizations in the factorization
phase needed.
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Symbolic factorizations

More on factorizability and factorization phases

Pure symbolic phase typically uses only the sparsity pattern S{A}
to compute the nonzero structure of the factors of A without
computing numerical values of the nonzeros.

Historically, the symbolic phase was much faster than the
factorization phase. But parallelising the factorization→ timings
are much more closer. But, of course, if the phases are partially or
fully combined, the whole factorization can be slow.

Series of problems (like sequences of linear systems obtained
from a nonlinear one) in which the numerical values of the entries
of A change but S{A} does not (may not): symbolic phase
performed just once.
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Symbolic factorizations

More on factorizability and factorization phases

The above comments on the factorization phases imply that we
will concentrate to the Cholesky factorization and its symbolic
phase, first

Note that some of the construction may be used also in the cases
of more general factorizations of symmetric matrices
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Symbolic Cholesky

Symbolic Cholesky

Implicitly assumed that all diagonal entries of A are included in
S{A} (even if they are zero – but if A is SPD, diagonal entries of A
must be nonzero).

A fundamental difference between dense and sparse Cholesky
factorizations:
If A is sparse, each column of L may depend numerically only on
a subset of the previous columns.
Symbolic dependence expressed by graphs may be even more
straightforward: cheaper to obtain
Furthermore, operations to update a computed column should be
also sparse.
We will see that the symbolic Cholesky can be clearly described
using just a tree (forest) structure.
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Symbolic Cholesky

Column replication

Let us start from the patterns of subsequent Schur complements.

S(k) = Ak:n,k:n −
k−1∑
j=1

lkj
...
lnj

(lkj . . . lnj
)
. (24)

Example



2 3 4 5 6

2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

 =



2 3 4 5 6

2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗
6 ∗ ∗

−


2

2
3 ∗
4
5 ∗
6 ∗

 ( 2 3 4 5 6

2 ∗ ∗ ∗
)
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Symbolic Cholesky

Column replication: as a sequence



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part

Symmetric nonzeros values of LT
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Symbolic Cholesky

Column replication: as a sequence



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part

Symmetric nonzeros values of LT
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Symbolic Cholesky

Column replication: as a sequence

f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ f ∗
6 ∗ f ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part

Symmetric nonzeros values of LT

177 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 181 — #181 i
i

i
i

i
i

Symbolic Cholesky

Column replication: as a sequence

f
f

f
f
f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗ f f f f
4 ∗
5 ∗ f f ∗
6 ∗ f f ∗
7 ∗ ∗ f ∗
8 ∗ ∗ f ∗



Nonzero entries of the lower triangular part

Symmetric nonzeros values of LT
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Symbolic Cholesky

Column replication: as a sequence

Example: Consider j = 1. Because the first subdiagonal entry in
column 1 is in row 3, first column updated by the column 1 is
column 3.



1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f f
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f f
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ f ∗
7 ∗ f f ∗ ∗



Figure: Three steps: On the left are the entries in L before step 1 of a Cholesky
factorization (that is, the entries in the lower triangular part of A); in the centre: the
replication of the nonzeros from column 1 in the pattern of column 3. (red entries f); on
the right: the subsequent replication in column 5.
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Symbolic Cholesky

Column replication formally

Consider replications of nonzeros one by one
Consider column j of L (1 ≤ j ≤ k − 1) and let lij ̸= 0 for some
i > j. We have this observation.

Observation

For any i > j ≥ 1 such that lij ̸= 0

S{Li:n,j} ⊆ S{Li:n,i}. (25)

This is called the column replication principle because the pattern of
column j of L (rows i to n) is replicated in the pattern of column i of L.
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Symbolic Cholesky

Existence of nonzeros in columns
The following result shows that, provided A is irreducible, we always
have a subdiagonal nonzero in column j, j < n.

Theorem
If A is SPD and irreducible then in each column j (1 ≤ j < n) of its
Cholesky factor L there exists an entry lij ̸= 0 with i > j.

Proof.
From Parter’s rule, each step of the Cholesky factorization corresponds to adding new
edges into the graph of the corresponding Schur complement. If A is irreducible then
the graphs corresponding to the Schur complements are connected. Consequently,
for any vertex j (1 ≤ j < n) in any of these graphs there is at least one vertex i with
i > j to which j is connected. This corresponds to the nonzero entry in column j of L.
□
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Symbolic Cholesky

Column replication: final simplification

The first subdiagonal entry plays a special role
Denote the row index of the first subdiagonal nonzero entry in
column j of L by parent(j), that is,

parent(j) = min{i | i > j and lij ̸= 0}. (26)

If there is no such entry, set parent(j) = 0 (For A reducible or
j = n).
The row index parent(parent(j)) is denoted by parent2(j), and so
on.
Applying the column replication recursively we get that the
sparsity pattern of column j of L is replicated in that of column
parent(j), which in turn is replicated in the pattern of column
parent2(j), and so on.
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Symbolic Cholesky

Fill-in as replication of column structures

j

i

parent(j)

parent(j)

(a)

j

i

parent(j)

parent(j)

(b)

parent(j)

parent (j)2

parent (j)2

j

i

parent(j)

(c)

parent (j)2

parent (j)2

j

i

parent(j)

parent(j)

(d)
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Symbolic Cholesky

Row replication: example

parent   (j)parent   (j)

2

parent (j)

parent (j)

j

i

parent(j)

parent(j)

parent (j)

2

l−1l−1

l =

Replication of column structures→ replication of nonzeros in a
row.
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Symbolic Cholesky

Row replication: formally
With the convention parent1(j) = parent(j), the next theorem shows
that if entry lij of L is nonzero then parentt(j) = i for some t ≥ 1 and
there is row replication in the sequence
j, parent1(j), parent2(j), . . . , parentt(j).

Theorem
Let A be SPD and let L be its Cholesky factor. If lij ̸= 0 for some
j < i ≤ n then there exists t ≥ 1 such that parentt(j) = i and lik ̸= 0
for k = j, parent1(j), parent2(j), . . . , parentt(j).

Proof.
If i = parent1(j), the result is immediate. Otherwise, there exists an index k,
j < k < i of a subdiagonal entry in column j of L such that k = parent1(j). Column
replication implies lik ̸= 0. Applying an inductive argument to lik, the result follows
after a finite number of steps. □
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Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry
If there is sequence of nonzeros in a row of L, it is natural to ask
where the sequence begins:
If there is no k ≥ 1 such that aik ̸= 0, no replication of nonzeros
can start in row i.
Consequently, there should be always a starting nonzero in a row.

i

k

j
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Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry: formally

Theorem
Let A be SPD and let L be its Cholesky factor. If aij = 0 for some
1 ≤ j < i ≤ n then there is a filled entry lij ̸= 0 if and only if there
exists k < j and t ≥ 1 such that aik ̸= 0 and parentt(k) = j.
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Symbolic Cholesky

Elimination tree

The discussion of column replication is significantly simplified
using elimination trees.
The elimination tree (or etree) T (A) (or simply T ) of a SPD matrix
has vertices 1, 2, . . . , n and an edge between each pair
(j, parent(j)), where parent(j) has been defined above;
j is a root vertex of the tree if parent(j) = 0.
The edges of T are considered to be directed from a child to its
parent, that is,

E(T ) = {(j −→ i) | i = parent(j)}.

If T has a single component then the root vertex is n.
Despite the terminology, the elimination tree (in our definition)
need not be connected and in general is a forest. For simplicity, in
our discussions, we (tacitly) assume T has a single component
and we say that T is described by the vector parent.
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Symbolic Cholesky

Elimination tree



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

Figure: An illustration of a sparse matrix A with a symmetric sparsity pattern and its
elimination tree T (A). The root vertex is 8. The filled entries in S{L+ LT } are
denoted by f .

189 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 193 — #193 i
i

i
i

i
i

Symbolic Cholesky

Elimination tree: terminology

Concepts such as child, leaf, ancestor and descendant vertices
for directed rooted trees can be applied to T .
Additionally, ancT {j} and descT {j} are defined to be the sets of
ancestors and descendants of vertex j in T .
T (j): the subtree of T induced by j and descT {j); j is the root
vertex of T (j).
The size |T (j)| is the number of vertices in the subtree.
A pruned subtree of T (j) is the connected subgraph induced by j
and a subset of descT {j). That is, for any vertex i in a pruned
subtree of T (j), all the ancestors of i belong to T (j).
A pruned subtree of T shares the mapping parent with T .
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Symbolic Cholesky

Elimination tree: terminology



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

T (5) includes vertices 1, 2, 3, 4, 5; |T (5)| = 5; ancT {1} = {5, 6, 8}
etc.
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Symbolic Cholesky

Elimination tree: simple properties
The following observation is straightforward (Follows from our
definition).

Observation
If i ∈ ancT {j} for some j ̸= i then i > j.

The connection between the mapping parent and the sets of
ancestors and descendants can be emphasized as follows.

Observation
If i and j are vertices of the elimination tree T with j < i ≤ n then
i ∈ ancT {j} if and only if j ∈ descT {i} if and only if parentt(j) = i for
some t ≥ 1 (finding i going uptree from j)
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Symbolic Cholesky

Elimination tree: simple properties

Replications can be described using rooted forests (using
elimination tree).
For example, instead of stating that there exists t ≥ 1 such that
parentt(j) = i, we can write that i ∈ ancT {j} \ {j}.
Rewriting the necessary and sufficient condition in Theorem
above as the following corollary we get a clear characterization of
the sparsity patterns of the rows of L.

Corollary
Consider the elimination tree T and the Cholesky factor L of A. If i and
j are vertices of T with j < i ≤ n and aij = 0 then lij ̸= 0 if and only if
there exists k < j such that j ∈ ancT (k) and aik ̸= 0.

193 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 197 — #197 i
i

i
i

i
i

Symbolic Cholesky

Elimination tree: row subtrees

The subtree of T with vertices that correspond to the nonzeros of
row i of L is called the i-th row subtree and is denoted by Tr(i).
Formally, row subtree is a pruned subtree of T induced by the
union of the vertex set

{i} ∪ {k | aik ̸= 0 and k < i}

with all vertices on the directed paths in T from k to i, that is, with
all their ancestors from Tr(i).
That is, the root vertex is i and the leaf vertices are a subset of the
column indices in the i-th row of the lower triangular part of A.
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Symbolic Cholesky

Elimination tree: row subtrees

1

5

4

2

5

4

2 3

6 7

8

Figure: The row subtree Tr(5) of the elimination tree T from above (left). Vertex 3 has
been pruned because a35 = 0. The row subtree Tr(8) (right) differs from T = T (A)
because vertex 1 has been pruned (a18 = 0).
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Symbolic Cholesky

Elimination tree: row subtrees: another example

i

k k’ k’’

k’’’
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Symbolic Cholesky

Row subtrees: elimination tree



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


3 4 5

1 7 6

8 2 9

10
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Symbolic Cholesky

Row subtrees: Tr(1)



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


3 4 5

1 7 6

8 2 9

10
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Symbolic Cholesky

Row subtrees: Tr(2)



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


3 4 5

1 7 6

8 2 9

10
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Symbolic Cholesky

Row subtrees: Tr(6)



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


3 4 5

1 7 6

8 2 9

10
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Symbolic Cholesky

Row subtrees: Tr(9)



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


3 4 5

1 7 6

8 2 9

10
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Symbolic Cholesky

Elimination tree: row subtrees
The row subtrees are connected subgraphs of T , even if T is not
connected.
This is easy to see: for the i-th row subtree: from all vertices k that
correspond to nonzeros in Ai,1:i−1 we put into Tr all vertices on
the path to i and nothing more
Formal proof: induction on the size of the subtrees.

a

b c

k1 k2

green lines show connections in G(A) that must exist
If T can be found without getting S(L) first⇒ Tr(i) can be used to
get |S(Li,1:i−1)| without the need to have L or S(L) explicitly
available. 202 / 705
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Symbolic Cholesky

Elimination tree construction

T = T (A) can be constructed by stepwise extensions of the
elimination trees of the principal leading submatrices of A.
Assume we have T (A1:i−1,1:i−1) (does not need to be connected)
and we want T (A1:i,1:i).
No subdiagonal entries in row i of A⇒ nothing to do, only an
isolated vertex i is added.
Otherwise, i is the root of the nontrivial row subtree Tr(i) and an
ancestor of some vertex k, k ≤ i− 1 in T with aik ̸= 0.

*
*

* *
* *

*
* * f f * *




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Symbolic Cholesky

Elimination tree construction

For each such vertex j of the i-th row, its ancestors k with k < i
are vertices of T (A1:i−1,1:i−1).
Recall the row replication: there should be t ≥ 1 and a directed
path in T (A1:i,1:i) such that parentt(j) = i.
In the other words, i ∈ ancT {j} \ {j}.
If parentt(j) ̸= i then the new root of the subtree of T (A1:i,1:i) that
contains j is either added by setting i = parentt+1(j). Or, i has
already been added.
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Constructing elimination tree

Algorithm (Construction of the elimination tree)

1: for i = 1 : n do
2: parent(i) = 0

3: for j ∈ adjG{i} and j < i do ▷ For row i of the lower triangular part
4: jroot = j

5: while parent(jroot) ̸= 0 and parent(jroot) ̸= i do
6: jroot = parent(jroot)

7: end while
8: if parent(jroot) = 0 then
9: parent(jroot) = i ▷ Make i the parent of jroot

10: end if
11: end for
12: end for
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Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗


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Symbolic Cholesky

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗


1
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Symbolic Cholesky

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗


1 1 2
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Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗


1 1 2

1

2

3
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Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

1

2

3

1

3

4

2
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Symbolic Cholesky

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

1

2

3

1

3

4
2

1

3

4

5

2
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Symbolic Cholesky

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

1

2

3

1

3

4
2

1

3

4

5

2

1

3

4

5

6

2
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Constructing elimination tree: an example demonstrating a problem


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f f f f
∗ f ∗ f f f
∗ f f ∗ f f
∗ f f f ∗ f
∗ f f f f ∗


1

For this example, T is determined by the mapping parent(6) = 0;
parent(i) = i+ 1 for i = 1, . . . , 5.
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Constructing elimination tree: an example demonstrating a problem


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f f f f
∗ f ∗ f f f
∗ f f ∗ f f
∗ f f f ∗ f
∗ f f f f ∗


For this example, T is determined by the mapping parent(6) = 0;
parent(i) = i+ 1 for i = 1, . . . , 5.

1

2
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Constructing elimination tree: an example demonstrating a problem


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f f f f
∗ f ∗ f f f
∗ f f ∗ f f
∗ f f f ∗ f
∗ f f f f ∗


For this example, T is determined by the mapping parent(6) = 0;
parent(i) = i+ 1 for i = 1, . . . , 5.

1

2

...

6
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Constructing elimination tree: improvement

The most expensive part of Algorithm to find the elimination tree is
the while loop that searches for subtree roots.
This search is based on stepwise tracing the directed path from j
to its root parentt(j).
Because this path is unique for a given j, shortcuts can be
incorporated; this is called path compression.
Shortcuts: having a directed path from j to k, subsequent
searches can be made more efficient by introducing a vector of
shortcuts ancestor and setting ancestor(j) = k.
The modified algorithm is outlined below. It maintains both vectors
parent and ancestor. The tree described by ancestor is termed
the virtual tree.
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Algorithm (Construction of an elimination tree using path
compression)

1: for i = 1 : n do
2: parent(i) = 0, ancestor(i) = 0

3: for j ∈ adjG{i} and j < i do
4: jroot = j

5: while ancestor(jroot) = 0 and ancestor(jroot) = i do
6: l = ancestor(jroot)

7: ancestor(jroot) = i ▷ Shortcuts to accelerate future searches
8: jroot = l

9: end while
10: if ancestor(jroot) = 0 then
11: ancestor(jroot) = i and parent(jroot) = i

12: end if
13: end for
14: end for
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Constructing elimination tree with compression

The complexity of the first Algorithm is O(n2). This is clear from
the example
The complexity of the Algorithm with compression is O(n) for A
from the example..
Formally, the complexity of the algorithm with compression is
O(nz(A) log2(n)), where nz(A) is the number of nonzeros of A but
the logarithmic factor is rarely reached.
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Elimination tree construction: different way

Can be constructed by exploiting the locality properties in another
way.

By subsequent search of paths in a subset of graph vertices.
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Locality: Interconnection of vertices in G(A)

Theorem
If i and j are vertices in the elimination tree T with j < i then
i ∈ ancT {j} if and only if there exists a path

j
G(A)⇐====⇒

{1,...,i}
i. (27)

Proof.
Sketch for ⇒: If such a path is, it is composed from edges of T that are composed
from fill-paths. They correspond to the path in G(A).
Sketch for ⇐: If i and j are connected in G(A) by an edge: i is an ancestor of j. For
longer paths, let m be the largest vertex on this path. If m < j (note that j < i) is a
fill-path connecting i and j and, therefore, i ∈ ancT {j}. Otherwise, for m ≥ j,
connection shorter paths: the assumption implies i ∈ ancT {m} and m ∈ ancT {j},
that is, i ∈ ancT {j}.
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Locality in characterization of ancestors: example


1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

ancT {4} comprises vertices 5, 6 and 8. 7 is not in ancT {4} since there is no
path from 7 to 4 in G(A1:7,1:7).

1

5

4

2 3

6

78
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Locality in characterization of ancestors

Given j ∈ T , the corollary shows how can be found parent(j) (if it
exists).
ancT {j} ≠ ∅ ⇒ the lowest numbered one is parent(j).

Corollary
Vertex i is the parent of vertex j in T if and only if i is the lowest
numbered vertex satisfying j < i ≤ n connected by a path in G(A1:i,1:i).

Existence of the path is equivalent to requiring i and j belong to
the same component of the graph G(A1:i,1:i) corresponding to the
i× i principal leading submatrix A1:i,1:i of A.
Among ancT {4} of previous slide vertex 5 is the smallest – it is the
parent of 4.
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Independence of subtrees: parallelism at hand

There is no edge in G(L+ LT ) between vertices belonging to
subtrees of T with different vertex sets.

Theorem
Consider the elimination tree T and the Cholesky factor L of A. Let
T (i) and T (j) be two vertex-disjoint subtrees of T . Then for all
s ∈ T (i) and t ∈ T (j) the entry lst of L is zero.

t

s

No proof: Of course, lst = 0. Otherwise t would have to be
ancestor or descendant of s.
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Sparsity pattern of L

Elimination tree describes replications. Now we have to
summarize nonzeros in L.
Sometimes we need only the size |L| to allocate memory,
sometimes more: the whole structre of a row/column.
Let rowL{i}: the sparsity pattern of the offdiagonals of row i of L,
that is,

rowL{i} = S{Li,1:i−1} = {j | j < i, lij ̸= 0}, 1 ≤ i ≤ n.

The number of entries in L is

nz(L) =

n∑
i=1

|rowL{i}|+ n.

Simple algorithm: rowL{i} is given by the vertices of the row
subtree Tr(i).
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Symbolic Cholesky

Algorithm (Get row sparsity patterns of the Cholesky factor L)

1: for i = 1 : n do ▷ Loop over the rows of A
2: rowL{i} = ∅ ▷ Initialisation
3: mark(i) = i

4: for k ∈ adjG{i} and k < i do
5: j = k

6: while mark(j) ̸= i do ▷ Column j not yet encountered in row i

7: mark(j) = i ▷ Flag j as encountered in row i

8: rowL{i} = rowL{i} ∪ {j} ▷ Add j to the sparsity pattern of row i

9: j = parent(j) ▷ Move up the elimination tree
10: end while
11: end for
12: end for
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Cholesky factorization skeleton: quantitative improvement

The complexity of our algorithm is O(nz(L)).

Efficiency can be improved by employing the skeleton graph
G(A−) that is obtained from G(A) by removing every edge (i, j) for
which j < i and j is not a leaf vertex of Tr(i).

G(A−) is the smallest subgraph of G(A) with the same filled graph
as G(A). The corresponding matrix is the skeleton matrix.
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Cholesky factorization skeleton

A =



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗


A

−
=



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗



1 2

3

4

5

6

7

1 2

3

4

5

6

7

Figure: Sparsity pattern of A and its graph G(A) (left) and the sparsity pattern of the skeleton
matrix A− and graph G(A−) (right). The entries in A and edges of G(A) that do not belong to
the skeleton matrix and graph are depicted in red.
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Symbolic Cholesky

Cholesky factorization skeleton: quantitative improvement

Because nz(A−) is often significantly smaller than nz(A), an
implementation that processes G(A−) rather than G(A) can be
substantially faster.

The complexity of our algorithm is then still O(nz(L)), although
with a quantitative improvement ©
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Symbolic Cholesky

Are we satisfied? Let us summarize

We are able to compute rowL{i} and |rowL{i}| for i = 1, . . . , n.

We know dependencies among columns since they are expressed
by the elimination tree.

But both submatrix and column algorithms expect, in principle,
that column sparsity patterns are known ...

Not yet satisfied
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Symbolic Cholesky

It would be nice to know column sparsity patterns of L as well

1

2

5

3

4

6

7

8

row structure column structure

row subtrees ?

230 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 234 — #234 i
i

i
i

i
i
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Column sparsity patterns

We should explicitly express the replication

Let colL{j} denote the sparsity pattern of the off-diagonal part of
column j of L, that is,

colL{j} = S(Lj+1:n,j) = {i | i > j, lij ̸= 0}, 1 ≤ j ≤ n.

The column replication principle can be written as

colL{j} ⊆ colL{parent(j)} ∪ parent(j).

And we can get column sparsity patterns using T (A) going up the
tree: from the leaves to the root (s)
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Column sparsity patterns

3 4 5

1 7 6

8 2 9

10

At the beginning, all nodes i correspond to some columns of A
and have their patterns colA{i}
colL{1} = colA{1}
Then, colL{8} = colL{1} ∪ colA{8}
And so on, going up the tree, from the leaves to the root.
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Column structures
Standard sequential computation:

colL{j} =

adjG(A){j}
⋃

{k | k∈T (j)}

colL{k}

 \ {1, . . . , j}.
Using the column replication, this can be significantly simplified

colL{j} =

adjG(A){j}
⋃

{k | j=parent(k)}

colL{k}

 \ {1, . . . , j}. (28)

Since any parent node contains the sparsity patterns of its sons.
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Column structures

The following algorithm constructs the sparsity pattern of each
column j of L as the union of the sparsity pattern of column j of A
(adjG(A){j}) and the patterns of the children of j in T (A).

Here child{j} denotes the set of children j.

Because any child k of j satisfies k < j, the j-th outer step has
the information needed to compute the sparsity pattern. Observe
that T (A) does not need to be input.
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Algorithm (Determine sparsity patterns of columns of L)

1: for j = 1 : n do
2: child{j} = ∅ ▷ Initialisation
3: end for
4: for j = 1 : n do ▷ Loop over the columns of L
5: colL{j} = adjG(A){j} \ {1, . . . , j − 1}
6: for k ∈ child{j} do ▷ Unifying child structures
7: colL{j} = colL{j} ∪ colL{k} \ {j}
8: end for
9: if colL{j} ≠ ∅ then

10: l = min{i | i ∈ colL{j}}
11: child{l} = child{l} ∪ {j} ▷ Parent of j detected
12: end if
13: end for
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Column structures: can be also formalized

Theorem describes colL{j} using the vertices of the subtree T (j).
No proof: Of course, all their ancestors, nothing else can appear.

Theorem
The column sparsity pattern colL{j} of the Cholesky factor L of the
matrix A is equal to the adjacency set of vertices of the subtree T (j) in
G(A), that is,

colL{j} = adjG(A){T (j)}. (29)

Proof.
If i ∈ colL{j} then j ∈ rowL{i} and Theorem on necessary and sufficient condition for the fill-in

imply j ∈ ancT {k} for some k such that aik ̸= 0. That is, i ∈ adjG{T (j)}. Conversely,

i ∈ adjG{T (j)} implies that in row i the entry in column j of L is nonzero. Thus, j ∈ rowL{i}
and hence i ∈ colL{j}. □
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Column structures: is that all?

Of course, not: we can renumber the nodes.

That is, the outer loop in the algorithm to find column sparsity
patterns does not have to be performed strictly in the order
j = 1, . . . , n.

Why we should be interested? There are some principal reasons:
▶ Each union of patterns means some intermediate memory.

And this can be minimized. This minimization is more
important for computations with values, as we will see later.

▶ Useful for much faster symbolic computations (to compute
row structures, column structures etc.)

▶ Specific orderings imply some important invariants in the
computations.

237 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 241 — #241 i
i

i
i

i
i

Symbolic Cholesky

Topological orderings

An ordering of the vertices in a tree (and, more generally, in a
DAG) is a topological ordering if, for all i and j, j ∈ descT {i}
implies j < i (reminder)

Observation above confirms that the ordering of vertices in the
elimination tree T is a topological ordering.

Then it is necessary only: for each step j, the column sparsity
pattern for each child of j has already been computed. And
nothing more.

A new topological ordering of T defines a relabelling of its vertices
corresponding to a symmetric permutation of A.
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Topological orderings

1

2 3

45

6

7

3

4 1

25

6

7

Figure: Two topological orderings of an elimination tree.

Some of the column patterns need to wait longer before they are
merged (related to the amount of the intermediate memory).
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Topological orderings
Sparsity patterns of the Cholesky factors of A and PAP T can be
different but the following result shows that the amount of fill-in is the
same.

Theorem
Let S{A} be symmetric. If P is the permutation matrix corresponding
to a topological reordering of the elimination tree T of A then the filled
graphs of A and PAP T are isomorphic.

This implies the same fill-in.
In the other words, the amount of fill-in is invariant under the class
of topological reorderings of the elimination tree.
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Topological orderings and postorderings

Let us recall: there are many topological orderings of T .

Specific subclass of topological orderings are postorderings

A topological ordering of T is a postordering if the vertex set of
any subtree T (i) (i = 1, . . . , n) is a contiguous sublist of 1, . . . , n.

Unless additional rules on how vertices are selected are imposed,
a postordering is generally not unique.
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Postordering: example of two different postorderings

1

2 3

54

6

7

3

4 2

15

6

7

Figure: An example to illustrate the non uniqueness of postorderings of an elimination tree.
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Topological orderings and postorderings

Postorderings can be obtained by the depth-first search (DFS).
And DFS is apparently not unique. Various algorithms may prefer
specific postorderings.

DFS is applied to all components of T starting at their root
vertices.

Let us recall that in DFS, once vertex i has been visited, redT all
the vertices of the subtree T (i) are visited immediately after i and
i is labelled as the last vertex of T (i).
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Searching the adjacency graph G(A) = (V, E)
The sequence in which the vertices are visited can be used to
reorder the graph and hence permute the matrix.
Given a start vertex, a graph search (graph traversal) performs
exploration of the vertices and edges of G(A)

It generates sets of visited vertices and explored edges.
Vv: the set of visited vertices, Vn: the set of vertices not yet visited.
The search: selects an unexplored edge in E with vertices in Vv. If
the other vertex belongs to Vn then this vertex is moved into Vv
and the edge is flagged as explored.
The explored edge may be directed or undirected; in an
undirected graph, the edge (v, w) formally corresponds to the pair
of edges (w → v) and (v → w).

244 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 248 — #248 i
i

i
i

i
i

Symbolic Cholesky

Depth-first search (DFS)

A depth-first search (DFS) visits child vertices before visiting
sibling vertices
Starting from a chosen vertex s, the set of vertices that are visited
are those vertices u for which a directed path from s to u exists in
G.
Different results depending on s and how ties are broken.
All vertices in Reach(s) are visited.
Traversed edges form a DFS spanning tree. Visiting all the edges
of a graph results in a DFS forest that consists of exactly one DFS
spanning tree for each connected component.
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Depth-first search (DFS)

43

2

1

5

6

7

Figure: An illustration of a DFS of a connected directed graph. The labels
indicate the order in which the vertices are visited. The edges of the DFS
spanning tree are in bold.

246 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 250 — #250 i
i

i
i

i
i

Symbolic Cholesky

Depth-first search (DFS): Symbolic Cholesky connection



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗


43

2

1

5

6

7

Elimination tree of the permuted matrix can be obtained by the
DFS applied to the G(LT ) and reverting orientation of its edges.
The permutation is given by the postordering generated by the
DFS.
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Depth-first search (DFS): Symbolic Cholesky connection



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗


21

3

7

5

4

6

Elimination tree of the permuted matrix can be obtained by the
DFS applied to the G(LT ) and reverting orientation of its edges.
The permutation is given by the postordering generated by the
DFS.
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Depth-first search (DFS)

More ways to construct the output vertex order for a DFS.
Given a start vertex s, in a preorder list, the vertices are returned
in the order in which they are added into Vv (set of visited vertices)
In a postorder list, the vertices are in the order in which they are
last visited during the DFS algorithm. In Figure, the vertices are
added into Vv in the order 1, 2, 3, 4, 5, 6, 7 (preorder list).
The sequence in which the DFS visits the vertices is
1, 2, 3, 2, 4, 2, 1, 5, 6, 5, 1, 7, 1. Vertex 3 is the first vertex to appear
for the last time⇒ the postordering starts with 3. The next vertex
to appear for the last time is vertex 4, followed by 2, and so on,
resulting in the postorder list 3, 4, 2, 6, 5, 7, 1.
For DFS is needed stack
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Stack and queue: two special lists

Queue will be needed later.

Definition
List is called queue, if it enables efficient

access head of a list,
deletion of the list head (pop) and
adding an element behind the current tail.

List is called stack, if it enables efficient
access head of a list,
deletion of the list head (pop) and
adding and element before the current head (push).
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Lists

A stack is a list in which elements can only be added to or
removed from the head. A pointer locates the head of the stack.
Let S = (u0, u1, . . . , uk−1, uk) be a stack. push(S, v) denotes
adding v onto the stack by incrementing the pointer by one, giving
(v, u0, . . . uk). pop(S, u0) denotes the stack (u1, . . . uk) that results
from decreasing the pointer by one (removing u0 from the head).
A queue is a list in which elements can be added to the tail
(appended) or removed (popped) from the head. Two pointers
locate the head and the tail. Consider the queue
Q = (u0, u1, . . . , uk−1, uk). The append operation append(Q, uk+1)
results in the queue (u0, . . . uk, uk+1) and the pop operation
pop(Q, u0) results in the queue (u1, . . . uk).
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Stack and queue
Queue and stack are schematically depicted below. The arrows
represent efficient (easily implementable) operations.
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Algorithm (Find preorder and postorder lists using a DFS)
1: Vv = ∅, preorder = () and postorder = ()

2: for all v ∈ V do
3: if v ̸∈ Vv then
4: push(preorder, v) ▷ Add v onto the preorder stack
5: Vv = Vv ∪ {v} ▷ Add v to the set of visited vertices
6: dfs_step(v)
7: end if
8: end for
9: recursive function (dfs_step(v))

10: for all (v → w) ∈ E do
11: if w ̸∈ Vv then
12: push(preorder, w) ▷ Add w onto the preorder stack
13: Vv = Vv ∪ {w} ▷ Add w to the set of visited vertices
14: dfs_step(w) ▷ recursive search
15: end if
16: end for
17: push(postorder, v) ▷ Add v onto the postorder stack
18: end recursive function 253 / 705
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Leaf vertices of row subtrees

Leaf vertices of row subtrees play a key role in graph algorithms
related to sparse Cholesky factorizations.

They can be used to find the skeleton matrix described above.

But they can be used for more other tasks. See the next theorem
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Theorem
Let the elimination tree T of A be postordered. Let the column indices
of the nonzeros in the strictly lower triangular part of row i of A be
c1, . . . , cs with s ≥ 1 and 0 < c1 < . . . < cs < i. Then ct is a leaf vertex
of the row subtree Tr(i) if and only if

t = 1 or (1 < t ≤ s and ct−1 ̸∈ T (ct)).

Not a proof:

Case of t = 1 clear.
Otherwise ct−1 ∈ T (ct)⇐⇒ ct cannot be a leaf since

▶ a) From both of ct−1 and ct we should get to i uptree (they are
both vertices in the same row subtree Tr(i)

▶ b) All paths from ct−1 would have to go through ct, the root of
T (ct).
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Not a proof:

Case of t = 1 clear.
Otherwise consider ct−1 ∈ T (ct)⇐⇒

▶ a) All paths from ct−1 would have to go through ct, the root of
T (ct).

This is standard T (ct) subtree-related statement
▶ b) We know that from both of ct−1 and ct we can get to i

uptree (they are both vertices in the same row subtree Tr(i)),
we have ai,ct−1 ̸= 0, ai,ct ̸= 0

This is row subtree-related statement
▶ Consequently, this is equivalent with ct cannot not a leaf of

the row subtree Tr(i)
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Leaf vertices of row subtrees: the distance between leaves

Corollary
Under the assumptions of the previous Theorem, ct is a leaf vertex of
Tr(i) if and only if

t = 1 or (1 < t ≤ s and ct−1 < ct − |T (ct)|+ 1).

Note that this inequality directly follows for the postordering.
Namely, each vertex (ct−1) that is not a leaf of a subtree Tct must
have its label smaller than all vertices of this subtree.
And there are at least |Tct | such vertices.
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Leaf vertices of row subtrees

Subtree sizes can be easily computed bottom up.

Correctness of next Algorithm is guaranteed because parent
defines a topological ordering of T .

One warning: implementation may not be straightforward, since
matrix rows may not be sorted.

Theorem below relaxes the condition of row ordering: the leaf
vertices of row subtrees can be determined in column-oriented
algorithms.
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Leaf vertices of row subtrees by columns

Theorem
Consider the elimination tree T of A. Vertex j is a leaf vertex of some
row subtree of T if and only if there exists i ∈ adjG(A){j}, j < i ≤ n,
such that i ̸∈ adjG(A){k} for all k ∈ T (j) \ {j}.

Going down the column j, scanning all its row indices i.
We know that columns k from T (j) \ {j} have been processed
before (due to postordering)
Then, if there is such i in the column j, i ̸∈ adjG(A){k} (that is, by
the previous result, a sufficient gap between k and j), j should be
a leaf of Tr(i).

259 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 263 — #263 i
i

i
i

i
i

Symbolic Cholesky

Leaf vertices of row subtrees
Algorithm (Find leaf vertices of row subtrees of T )
Input: A with a symmetric sparsity pattern and a corresponding postordered elimination tree T .
Output: Logical vector isleaf with entries set to true for leaf vertices of row subtrees.

1: isleaf(1 : n) = false, prev_nonz(1 : n) = 0

2: Compute |T (1 : n)|
3: for j = 1 : n do ▷ Loop over the columns of A
4: for i such that i > j and aij ̸= 0 do ▷ Row index in strictly lower triangular part of A
5: k = prev_nonz(i) ▷ Column index of most recently seen entry in row i

6: if k < j − |T (j)|+ 1 then
7: isleaf(j) = true ▷ j is a leaf vertex
8: end if
9: prev_nonz(i) = j ▷ Flag j as the most recently seen entry in row i

10: end for
11: end for
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Leaf of row subtrees: technicality - needed subtree sizes

Algorithm (Find sizes of subtrees T (i) of T )
Input: Elimination tree T described by the vector parent.
Output: Subtree sizes |T (i)| (1 ≤ i ≤ n).

1: |T (1 : n)| = 1

2: for i = 1 : n− 1 do
3: k = parent(i)

4: |T (k)| = |T (k)|+ |T (i)|
5: end for
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Leaf vertices of row subtrees by columns

Theorem
Consider the elimination tree T of A. Vertex j is a leaf vertex of some row subtree of T if and
only if there exists i ∈ adjG(A){j}, j < i ≤ n, such that i ̸∈ adjG(A){k} for all k ∈ T (j) \ {j}.

Proof.
Assume that for some i ∈ ancT {j} vertex j is a leaf vertex of Tr(i). That is, i ∈ adjG(A){j},
i > j. Suppose there exists k in T (j) \ {j} such that i ∈ adjG(A){k}. Then all the ancestors of
k, k ≤ i, in particular j, belong to Tr(i) and j cannot be a leaf vertex of Tr(i). This is a
contradiction.
Conversely, assume that j is not a leaf vertex of any row subtree of T and that there exists
i ∈ adjG(A){j}, j < i ≤ n, such that i ̸∈ adjG(A){k} for all k ∈ T (j) \ {j}. Because j is not a
leaf vertex of any such Tr(i), Theorem on necessary and sufficient fill-in conditions implies that
there exists k ∈ T (j) \ {j} such that aik ̸= 0, which gives a contradiction and completes the
proof. □
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Leaf vertices of row subtrees: you have noticed that

To find leaf vertices of row subtrees of T (A), Algorithm uses a
marking scheme based on Theorem above (with the gap sizes ©)
and exploits the postordering of T (A).

The auxiliary vector prev_nonz stores the column indices of the
most recently encountered entries in the rows of the strictly lower
triangular part of A. They can used to evaluate the gaps.
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Leaf vertices of row subtrees: why do we need them?

Remind the skeleton that improves some algorithms quantitatively.

For better algorithms to compute the elimination tree. By using
▶ The skeleton matrix and its graph G(A−)
▶ Additional and better a priori shortcuts demonstareted in the

next slide

Theoretical complexity can be reduced to O(nz(A) g(nz(A), n)),
where g(nz(A), n) is a very slowly increasing function called the
functional inverse of Ackermann’s function (nearly linear in
m = nz(A).
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Demonstrating the more sophisticated approach to get T (A) : the idea

i

k k’ k’’

k’’’

Instead of following the paths: distances to junctions only used.
Uses a fast (existing) algorithm to determine junctions of
branches.
We have a fast algorithm to find leaves of the elimination tree and
use postordering.
Then the complexity of getting the elimination tree can be
O(nz(A−) g(nz(A−), n)), where nz(A−) is the number of entries in
the skeleton matrix: nearly linear in m. 265 / 705
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Blocks

Blocks are absolutely crucial to compute efficiently: enable to
process as much data as possible for a unit of data transfer
between CPU(s) and memory hierarchy.
In BLAS terminology:

z = x+ αy −→ Z = X + αY ( vector opes )

in general: saxpy −→ dgemm
But we have sparse matrices. It is not so straightforward to split
their nonzeros into blocks.
But, postordered elimination tree naturally reveals them.
Although some other matrix reorderings will be mentioned later.
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Supernodes: look like this: in L

* * * *
* * * *
* * * *
* * * *

*
*

*
*

*
*
*

*
* *s+t−1

s

A suspicion: replication will help us. ©
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Supernodes
Because of column replication, the columns of L generally
become denser as the Cholesky factorization proceeds.

To exploit this, we require the concept of supernodes. The idea:
group together columns with the same sparsity structure, so that
they can be treated as a dense matrix.
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Supernodes
Enhance the efficiency of sparse factorizations and sparse
triangular solves because they enable floating-point operations to
be performed on dense submatrices rather than on individual
nonzeros, thus improving memory hierarchy utilization and
allowing the use of highly efficient dense linear algebra kernels
(such as Level 3 BLAS kernels).
Columns within a supernode are numbered consecutively but they
can be numbered within the supernode in any order without
changing the number of nonzeros in L (assuming the
corresponding rows are permuted symmetrically). On some
architectures, particularly those using GPUs, this freedom can be
exploited to improve the factorization efficiency.
Supernode amalgamation to achieve better efficiency.
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Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes: another visualization



. . . . . . s . . . . . . s′ . . . . . . . . . . . .
...

. . . · · ·
...

...
. . .

s ∗
... ∗ . . .
... ∗ ∗ . . .
s′ ∗ ∗ ∗ ∗
... . . . . . . . .

. . .
... ∗ ∗ ∗ ∗ . . .
... ∗ ∗ ∗ ∗ . . .
... . . . . . . . .

. . .
... ∗ ∗ ∗ ∗ . . .


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Symbolic Cholesky

Supernodes: formally

Let 1 ≤ s, t ≤ n with s+ t− 1 ≤ n. A set of contiguously numbered
columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is a
supernode of L if

colL{s} ∪ {s} = colL{s+ t− 1} ∪ {s, . . . , s+ t− 1}, (30)

and S cannot be extended for s > 1 by adding s− 1 or for
s+ t− 1 < n by adding s+ t.

Because S cannot be extended it is a maximal subset of column
indices. In graph terminology, a supernode is a maximal clique of
contiguous vertices of G(L+ LT ).

A supernode may contain a single vertex (t = 1).
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Symbolic Cholesky

Supernodes: an example

L =



1 2 3 4 5 6 7 8

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗


Figure: An example to illustrate supernodes in the whole L. The first supernode comprises
columns 1 and 2, the second columns 3 and 4, and the third columns 5 to 8.
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Symbolic Cholesky

Supernodes and the assembly tree

The supernodal elimination tree or assembly tree is the
elimination tree based on the supernodal structure.

Each vertex of the elimination tree is associated with one
elimination and a single integer (the index of its parent) is needed.

Practicality: with each vertex of the assembly tree is associated an
index list of the row indices of the nonzeros in the columns of the
supernode. These lists (expressing the row structures of
supernodes) implicitly define the sparsity pattern of L.
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Symbolic Cholesky

Supernodes: difference of the introduced trees

Demonstrating the difference between the elimination and
assembly trees. The elimination tree is postordered, it has 5
supernodes: {1, 2}, 3, 4, 5, {6, 7, 8, 9}. For supernode 1 that
comprises columns 1 and 2, the row index list is {1, 2, 8, 9}.



1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗

 1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Figure: A sparse matrix, its postordered elimination tree (left) and postordered assembly tree
(right). Filled entries in S{L+ LT } are denoted by f . For the assembly tree, the vertices are in
red and the index lists associated with each vertex are given.
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Symbolic Cholesky

Convenient characterization of supernodes

Theorem
The set of columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is a
supernode of L if and only if it is a maximal set of contiguous columns
such that s+ i− 1 is a child of s+ i for i = 1, . . . , t− 1 and

| colL{s} | = | colL{s+ t− 1} |+ t− 1. (31)

Supernodes specified just by sizes and not by set inclusions.

Only one stream of replications. Since other streams would surely
introduce other nodes.

But, still the supernodes can go through junctions and up.
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Symbolic Cholesky

Convenient characterization of supernodes

Theorem
The set of columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is a supernode of L if and only
if it is a maximal set of contiguous columns such that s+ i− 1 is a child of s+ i for
i = 1, . . . , t− 1 and

| colL{s} | = | colL{s+ t− 1} |+ t− 1. (32)

Proof.
Let S be a supernode. For i, j ∈ S with i > j we have i ∈ colL{j}. This implies that in the
postordered elimination tree the vertex i = j + 1 is the parent of j for j = s, . . . , s+ t− 2.
Moreover, from Observation 25, for any i, j ∈ S with i > j,
i ∈ colL{j} implies colL{j} \ {1, . . . , i} ⊆ colL{i}. Therefore,
| colL{s+ i} | ≥ | colL{s+ i− 1} | − 1, i = 1, . . . , t− 1, with equality if and only if
colL{s+ i} = colL{s+ i− 1} \ {s+ i}, that is, if S is a supernode.

Conversely, assume S is a maximal set of contiguous columns such that, for i = 1, . . . , t− 1,
s+ i− 1 is a child of s+ i and S satisfies (32). Because of column replication, such a sequence
of parent and child vertices must satisfy inequality above with equality if and only if S is a
supernode. □
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Symbolic Cholesky

Fundamental supernodes: useful restriction

In practice, fundamental supernodes are easier to work with in the
numerical factorization: do not continue through junctions.
Let 1 ≤ s, t ≤ n with s+ t− 1 ≤ n. A maximal set of contiguously
numbered columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is
a fundamental supernode if for any successive pair i− 1 and i in
the list, i− 1 is the only child of i in T and
colL{i} ∪ {i} = colL{i− 1}. s is termed the starting vertex.
The difference between the sets of supernodes and fundamental
supernodes is normally not large, with the latter having (slightly)
more blocks in the resulting partitioning of L.
Note that fundamental supernodes are independent of the choice
of the postordering of T .
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Symbolic Cholesky



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f f
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f f
5 ∗ f ∗ f ∗ ∗
6 ∗ f ∗ f ∗ ∗


1

2

3

4

5

6

Figure: A matrix A and its postordered elimination tree T for which the set of
supernodes {1, 2} and {3, 4, 5, 6} and the set of fundamental supernodes
{1, 2}, {3, 4} and {5, 6} are different. The filled entries in S{L+ LT } are
denoted by f .
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Symbolic Cholesky

Fundamental supernodes and leaves of row subtrees: that’s it

Theorem
Assume T is postordered. Vertex s is the starting vertex of a fundamental supernode if and only
if it has at least two child vertices in T or it is a leaf vertex of a row subtree of T .

Proof.
If s has at least two child vertices then, from the definition of a fundamental supernode, it must be
the starting vertex of a fundamental supernode. Assume that, for some i > s, s is a leaf vertex of
Tr(i). If s is also a leaf vertex of T then s is a starting vertex of a supernode. The remaining
case is s having only one child. Because T is postordered, this child must be s− 1. Theorem of
necessary and sufficient condititions for the fill-in implies ais ̸= 0 and ai,s−1 = 0, that is,
i ∈ colL{s} and i /∈ colL{s− 1}. It follows that

S{Ls−1:n,s−1} & S{Ls:n,s} ∪ {s− 1},

and vertices s and s− 1 cannot belong to the same supernode. Hence, s is the starting vertex of
a new fundamental supernode.
Conversely, assume that s is the starting vertex of a fundamental supernode S. If s has no child
vertices or at least two child vertices, the result follows. If s has exactly one child vertex,
postordering implies this child is s− 1. Because S is maximal there exists i such that
i ̸∈ colL{s− 1} and i ∈ colL{s}, (otherwise S could be extended by adding s− 1). Hence s is
a leaf vertex of Tr(i). □ 280 / 705
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Symbolic Cholesky

Overall complexity of symbolic operations

Because fundamental supernodes are characterized by their
starting vertices, they can be found by modifying Algorithm to
incorporate marking leaf vertices of the row subtrees and vertices
with at least two child vertices.
Once the elimination tree has been computed the complexity is
O(n+ nz(A)).
The computation can be made even more efficient by using the
skeleton graph G(A−).
Overall we have the complexity close to linear.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Cholesky Factorization

Sparse Cholesky factorization: conceptual comments

Theoretical background based on the elimination tree T →
Efficient symbolic phase: done, explained.
Namely, T (A) allows:

▶ row/column counts of L known→ storage can be allocated
▶ Postordering enables a lot of other efficient algorithms
▶ leaves of row subtrees: (fundamental) supernodes
▶ column structures→ supernodal communication

(dependency) DAG
Further tricks: as splitting large supernodes into smaller panels to
embed them into computer caches, Sparse data access tricks.
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Cholesky Factorization

Sparse Cholesky factorizations: our three forms

Several classes of sparse Cholesky algorithms (right-looking,
left-looking, upward-looking).

Major difference among them: in what relative order they schedule
the computations (tasks). But, all of them are equivalent also in
finite precision arithmetic.

Large and sparse computations that exploit parallel
potential/panel/block can be modified even more specifically.
Compiler optimization: other source of non-equivalence.
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Cholesky Factorization
Sparse Cholesky factorizations: our three forms graphically

a) b) c)

a) submatrix Cholesky, immediate update, data-driven, right-looking
b) column Cholesky, delayed update, demand-driven, left-looking
a) row Cholesky, substitution-based, up-looking

Entries computed

Entries being processed

Entries partially computed
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Cholesky Factorization

Sparse Cholesky factorizations

The entries of L satisfy in all our schemes the relationship

Lj+1:n,j =

(
A j+1:n,j −

j−1∑
k=1

Lj+1:n,kljk

)
/ljj with ljj =

(
ajj −

j−1∑
k=1

l2jk

)1/2

,

Symbolic dependencies described by replications represent
typically only a fraction of numerical dependencies.

Theorem
The numerical values of the entries in column j > k of L depend on
the numerical values in column k of L if and only if ljk ̸= 0.
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Cholesky Factorization

Sparse Cholesky factorization: left-looking
Algorithm (Simplified sparse left-looking Cholesky)
Input: SPD matrix A and sparsity pattern S{L}.

1: lij = aij for all (i, j) ∈ S{L} ▷ Filled entries in L are initialised to zero
2: for j = 1 : n do
3: for k ∈ {k < j | ljk ̸= 0} do
4: for i ∈ {i ≥ j | lik ̸= 0} do
5: lij = lij − likljk
6: end for
7: end for
8: ljj = (ljj)

1/2

9: for i ∈ {i > j | lij ̸= 0} do
10: lij = lij/ ljj
11: end for
12: end for

Remind: S{L} was efficiently determined⇒ and static storage for
L can be used. This simplifies the schemes a lot. But
implementation is still crucial.
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Cholesky Factorization

Sparse Cholesky factorizations: right-looking

Algorithm (Simplified sparse right-looking Cholesky)

Input: SPD matrix A and sparsity pattern S{L}.

1: For all (i, j) ∈ S{L} set lij = aij ▷ Filled entries in L are initialised to zero
2: for j = 1 : n do
3: ljj = (ljj)

1/2

4: for i ∈ {i > j | lij ̸= 0} do
5: lij = lij/ ljj

6: end for
7: for k ∈ {k > j | lkj ̸= 0} do
8: for i ∈ {i ≥ k | lij ̸= 0} do
9: lik = lik − lij lkj

10: end for
11: end for
12: end for
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Cholesky Factorization
Numerical Cholesky factorization: from operations to tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

Algorithm
Sparse column (left-looking) Cholesky
1: for j = 1 : n do
2: for k ∈ Struct(Lj∗) do
3: cmod(j, k)
4: end for
5: cdiv(j)
6: end for
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Cholesky Factorization
Numerical Cholesky factorization: from operations to tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

Algorithm
Sparse submatrix (right-looking) Cholesky
1: for k = 1 : n do
2: cdiv(k)
3: for j ∈ Struct(L∗k) do
4: cmod(j, k)
5: end for
6: end for
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Cholesky Factorization
Splitting Cholesky factorization into tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

cmod(k,1) cmod(k,2)) . . . cmod(k,k-1)

cdiv(k)

cmod(k+1,k) cmod(k+2,k) . . . cmod(n,k)
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Cholesky Factorization
Large-grain column communication model

1

2 3

4

5

6 

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ f
5 ∗ ∗ ∗ ∗
6 ∗ f ∗ ∗



cdiv(2) cdiv(3)

cmod(4,2) cmod(4,3)

cdiv(1) cdiv(4)

cmod(5,1) cmod(5,4)

cdiv(5)

cmod(6,5) cmod(6,4) cmod(6,3)

cdiv(6)

Tcol(1)

Tcol(2) Tcol(3)

Tcol(5)

Tcol(4)

Tcol(6)
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Cholesky Factorization
Large-grain submatrix communication model

1

2 3

4

5

6 

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ f
5 ∗ ∗ ∗ ∗
6 ∗ f ∗ ∗



cdiv(2) cdiv(3)

cmod(4,2) cmod(4,3) cmod(6,3)Tsub(1)

Tsub(2) Tsub(3)

Tsub(4)

Tsub(5) Tsub(6)

cdiv(1) cdiv(4)

cmod(5,1) cmod(5,4) cmod(6,4)

cdiv(5)

cmod(6,5)

cdiv(6)
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Cholesky Factorization
Medium-grain

1

2 3

4

5

6 

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ f
5 ∗ ∗ ∗ ∗
6 ∗ f ∗ ∗



cdiv(2) cdiv(3)

cmod(4,2) cmod(4,3)

cdiv(1) cdiv(4)

cmod(5,1) cmod(5,4)

cdiv(5)

cmod(6,5) cmod(6,4)

cmod(6,3)

cdiv(6)
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Cholesky Factorization

Numerical factorization: blocks and panels needed

In order to be efficient, dense blocks and dense rectangular
panels should be heavily exploited.

Remind: SPD matrices are factorizable (strongly regular), the
Cholesky factorization A = LLT exists (in exact arithmetic)→
permutations can foster block structure of (symmetrically)
permuted A

To show block factorization, we start with straightforward dense
schemes. That can be extended to the saprse case since we
know the structure of L.

In-place algorithms: L overwrites the lower triangular part of A
(reducing memory requirements, if A is no longer required).
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Cholesky Factorization

In-place pointwise dense factorization

Algorithm (In-place dense left-looking Cholesky factorization)

Input: Dense SPD matrix A.
Output: Factor L such that A = LLT .

1: for j = 1 : n do
2: Lj:n,j = Aj:n,j ▷ Only the lower triangular part of A is required
3: for k = 1 : j − 1 do
4: Lj:n,j = Lj:n,j − Lj:n,k ljk ▷ Update column j using previous columns
5: end for
6: ljj = (ljj)

1/2 ▷ Overwrite the diagonal entry with its square root
7: Lj+1:n,j = Lj+1:n,j/ ljj ▷ Scale off-diagonal entries in column j

8: end for
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Cholesky Factorization

Using panels (left-looking)

Algorithm (In-place dense left-looking panel Cholesky factorization)

Input: Dense SPD matrix A with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: for kb = 1 : jb− 1 do
4: Ljb:nb,jb = Ljb:nb,jb − Ljb:nb,kb L

T
jb,kb ▷ Update block column jb

5: end for
6: Compute in-place factorization of Ljb,jb ▷ Overwrite Ljb,jb with its Cholesky

factor
7: Ljb+1:nb,jb = Ljb+1:nb,j L

−T
jb,jb ▷ Dense triangular solve

8: end for
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Cholesky Factorization

Using panels (right-looking)

Algorithm (In-place dense right-looking panel Cholesky factorization)

Input: Dense SPD matrix A with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: end for
4: for jb = 1 : nb do
5: Compute in-place factorization of Ljb,jb ▷ Overwrite Ljb,jb with its Cholesky

factor
6: Ljb+1:nb,jb = Ljb+1:nb,j L

−T
jb,jb ▷ Dense triangular solve

7: for kb = jb+ 1 : nb do
8: Lkb:nb,kb = Lkb:nb,kb − Lkb:nb,jb L

T
kb,jb

9: end for
10: end for
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Cholesky Factorization

Using blocks (right-looking)

Algorithm (In-place dense right-looking block Cholesky factorization)

Input: Dense SPD matrix A with nb× nb blocks.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: end for
4: for jb = 1 : nb do
5: Compute in-place factorization of Ljb,jb ▷ Task factorize(jb)
6: for ib = jb+ 1 : nb do
7: Lib,jb = Lib,jb L

−T
jb,jb ▷ Task solve(ib, jb)

8: for kb = jb+ 1 : ib do
9: Lib,kb = Lib,kb − Lib,jb L

T
kb,jb ▷ Task update(ib, jb, kb)

10: end for
11: end for
12: end for
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Cholesky Factorization

Tasks for efficient parallelization (still dense case motivation)

The panel and block descriptions of the factorization enable
efficient parallelization extending pointwise description above.

The three main block operations (tasks) are factor(jb),
solve(ib, jb) and update(ib, jb, kb).

There are the following dependencies between the tasks.
factorize(jb) depends on update(jb, kb, jb) for all

kb = 1, . . . , jb− 1.
solve(ib, jb) depends on update(ib, kb, jb) for all

kb = 1, . . . , jb− 1, and factorize(jb).
update(ib, jb, kb) depends on solve(ib, kb), solve(jb, kb).

A communication/dependency graph (DAG) based on blocks used
to schedule the tasks.
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Cholesky Factorization

Using supernodes: enhancing parallel processing

Assume supernodal structure. Arithmetic of dense trapezoidal
matrices. Blocks (obtained by shrinking - need to remember its
mapping) termed nodal matrices.

Figure: Supernode (left), the corresponding nodal matrix (centre), and the
nodal matrix with two panels (right).

Ideas applicable in both left-looking and right-looking algorithms.
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Cholesky Factorization

Comments on (the right-looking) supernodal processing

Ad our scheme: once a supernode is ready to be factorized→ a
dense factorize task is performed

Then a triangular solve (solve task) is performed with the
computed factor and the rectangular part of the nodal matrix.

Iterating update tasks uptree the supernode in the assembly tree
(fan-in/fan-out).

Technically, for each parent, the rows of the current supernode for
each parent columns are identified. The outer product of those
rows and the subdiagonal part of the supernode (update
operations).

Can be done in the left-looking way as well (as mentioned) ©.
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Cholesky Factorization

DAG-based approach and task splittings

Nodal matrices may be subdivided into blocks.

Ldiag

Ldiag

Lrect

Ldiag

Ldest

Figure: An illustration of a blocked nodal matrix with two block columns. The
first block on the diagonal is triangular and the second one is trapezoidal. The
task factorize_block is illustrated on the left and in the centre; the task
solve_block is illustrated on the right.
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Cholesky Factorization

DAG-based approach and supernodes: task splitting more formally

Various ways to split factorization into tasks.
Tentative classification distinguishes update_internal (the same
nodal matrix), update_between (different nodal matrices).

▶ factorize_block(Ldiag) Computes the dense Cholesky factor Ldiag.
If the block is trapezoidal, it is followed by a triangular solve of its
rectangular part Lrect = LrectL

−T
diag (centre).

▶ solve_block(Ldest) A triangular solve of an off-diagonal block Ldest

of the form Ldest = LdestL
−T
diag (rightmost).

▶ update_internal (Ldest, Lr, Lc) The update Ldest = Ldest − LrL
T
c ,

where Ldest, Lr and Lc belong to the same nodal matrix.
▶ update_between (Ldest, Lr, Lc) Performs the update

Ldest = Ldest − LrL
T
c , where Lr and Lc belong to the same nodal

matrix and Ldest belongs to a different nodal matrix.
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Cholesky Factorization

DAG-based approach and the sparse case: notes

The tasks are partially ordered: a dependency DAG is used
determine the precedencies. Some tasks computed in parallel.

Using precendencies means that, for example, updating task that
uses Ldest, Lr, Lc has to wait until all the relevant rows of the block
column are available.

At each stage of the factorization, some tasks are being executed
(in parallel) while others are held (in a stack or pool of tasks)
ready for execution.
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Cholesky Factorization

Variations of the Cholesky factorization approaches: sparsity and supernodes

Left-looking approach:
▶ dependency DAG, sophisticated mappings for the update

tasks
▶ DAG paralelism, block arithmetic

Right-looking approach:
▶ a popular approach: delayed, using the supernodal

elimination tree for dependencies: the multifrontal method
▶ tree paralelism, block arithmetic
▶ high level of memory efficiency due to computational locality:

contributions to the Schur complement kept aside in a stack
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Cholesky Factorization

Multifrontal method: some initial comments

Theorem
Let A be SPD and let T be its elimination tree. The numerical values
of entries in column k of the Cholesky factor L of A only affect the
numerical values of entries in column i of L for i ∈ ancT {k}
(1 ≤ k ≤ n− 1).

This is what we know, since

colL{j} = adjG(A){T (j)}.

Updates to the ancestors can be simply stored separately and
passed up the tree.
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Cholesky Factorization

Multifrontal method: separate updates

The multifrontal method works with updates to the Schur
complements separately.
The updates called the frontal matrices are connected to subtrees
of T .
Vertices of T are topologically ordered⇒ the order to apply the
updates goes up the tree: from the leaves of T to the root vertex.
And the Schur complements are composed from these individual
updates.
This allows the computation of S(k) to be rewritten as

S(k) = Ak:n,k:n −
∑

j∈T (k)\{k}

Lk:n,jL
T
k:n,j ,

emphasizing the role of T .
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Cholesky Factorization

Multifrontal method: frontal matrix more formally

Assume k, k1, . . . , kr are the row indices of the nonzeros in column
k of L.
The frontal matrix Fk of the k-th subtree T (k) of T is the dense
(r + 1)× (r + 1) matrix defined by

Fk =


akk akk1 . . . akkr
ak1k 0 . . . 0

...
...

. . .
...

akrk 0 . . . 0

− ∑
j∈T (k)\{k}


lkj
lk1j

...
lkrj

(lkj lk1j . . . lkrj
)

(33)
It contains all the contributions from previous columns (it is fully
summed) ... and passes them subsequently up the tree.
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Cholesky Factorization

Multifrontal method: processing the frontal matrix

A step of the Cholesky factorization of Fk (factorize task and send
up the tree) can be written as

Fk =


lkk 0 . . . 0
lk1k

... I
lkrk



1

Vk



lkk lk1k . . . lkrk
0
... I
0



=


lkk
lk1k

...
lkrk

(lkk lk1k . . . lkrk
)
+


0

Vk


And Vk (termed a generated element or update matrix or a
contribution block) is passed up the tree.
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Cholesky Factorization

Multifrontal method: contribution block formally

Equating the last r rows and columns yields

Vk = −
∑

j∈T (k)

lk1j
...

lkrj

(lk1j . . . lkrj
)
.

Assume that cj (j = 1, . . . , s) are the children of k in T .

Fk =


akk akk1 . . . akkr
ak1k 0 . . . 0

...
...

. . .
...

akrk 0 . . . 0

←→↕ Vc1 ←→↕ . . .←→↕ Vcs .

The operation←→↕ (extend-add) denotes the addition of matrices
that have row and column indices belonging to subsets of the
same set of indices (in this case, k, k1, . . . , kr); entries that have
the same row and column indices are summed.
Of course, the symmetry allows only the lower triangular part of
these matrices to be held.
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Cholesky Factorization

Multifrontal method: details



1 2 3 4 5 6 7 8

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f f f ∗
8 ∗ ∗ ∗ ∗


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Cholesky Factorization

Multifrontal method: details

6, 7, 8

3, 4

1 2

5

c66 + v
(3)
66

v
(3)
76 c77 + v

(3)
77

c86 c87 c88 + v
(5)
88

l66
l76 l77
l86 l87 l88

c33 + v
(1)
33

c43 c44 + v
(2)
44

v
(1)
63 c64 + v

(2)
64 v

(1)
66 + v

(2)
66

v
(1)
73 v

(1)
76 v

(1)
77

l33

l43 l44

l63 l64 v
(3)
66

l73 l74 v
(3)
76 v

(3)
77

c11
c31 0
c61 0 0
c71 0 0 0

l11

l31 v
(1)
33

l61 v
(1)
63 v

(1)
66

l71 v
(1)
73 v

(1)
76 v

(1)
77

c22
c42 0
c62 0 0

l22

l42 v
(2)
44

l62 v
(2)
64 v

(2)
66

c55
c85 0

l55
l85 v

(5)
88

Figure: The multifrontal method applied to the matrix C = {cij} from previous slide. The
assembly tree is shown. Each vertex shows the transformation from its frontal matrix to the
computed entries of L and contribution block that is passed from child to parent. To illustrate
the method, global indices are used for the entries of the contribution blocks; superscripts are
used to indicate the supernode the contribution comes from.
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Cholesky Factorization

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

 10

108

8

10

108

8

1

8

10

1 8 10

stack

stack
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Cholesky Factorization

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8
10

102

2

10

10

10

10

stack

stack

315 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 323 — #323 i
i

i
i

i
i

Cholesky Factorization

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

10

7

7

10

10

stack

stack

10
10

3

3

7

7
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Direct methods: Multifrontal method

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

7
7

7
7

stack

stack

10

4

4

7

7
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Cholesky Factorization

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9
stack

stack

10

7
7

5

5 6

6

9

9
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Cholesky Factorization

Multifrontal method: just sketching



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9

10

109

9

10

109

9

stack

10

7
7

+

stack

6

6 10

10
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Cholesky Factorization

Multifrontal method: algorithm outline

Algorithm (Basic multifrontal Cholesky factorization)

Input: SPD matrix A and its elimination tree.
Output: Factor L such that A = LLT .

1: for k = 1 : n do
2: Assemble the frontal matrix Fk using extend-add
3: Perform a partial Cholesky factorization of Fk to obtain column k of L and the

generated element Vk

4: end for

The symmetric multifrontal method satisfies:

Observation

Each generated element Vk is used only once to contribute to a frontal
matrix Fparent(k). Furthermore, the index list for the frontal matrix Fk is
the set of row indices of the nonzeros in column k of the Cholesky
factor L.
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Cholesky Factorization

The multifrontal approach



∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ f ∗ f ∗
∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗


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Cholesky Factorization

The multifrontal approach: elimination tree

1

6

3 2

5 4

7

8

9
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Cholesky Factorization

The multifrontal approach

F1 =


1 6 8 9

1 ∗ ∗ ∗ ∗
6 ∗
8 ∗
9 ∗

, V1 =


6 8 9

6 ∗ ∗ ∗
8 ∗ ∗ f
9 ∗ f ∗

.
Here V1 is dense and f denotes fill-in entries. Similarly, we have

F2 =


2 4 7

2 ∗ ∗ ∗
4 ∗
7 ∗

, V2 =
( 4 7

4 ∗ f
7 f ∗

)
, F3 =


3 5 8

3 ∗ ∗ ∗
5 ∗
8 ∗

, V3 =
( 5 8

5 ∗ ∗
8 ∗ ∗

)
.

The sparsity pattern of the frontal matrix F4 is then

F4 =


4 8 9

4 ∗ ∗ ∗
8 ∗
9 ∗

←→↕ V2 =


4 7 8 9

4 ∗ f ∗ ∗
7 f ∗
8 ∗
9 ∗

, V4 =


7 8 9

7 ∗ f ∗
8 f ∗ f
9 ∗ f ∗

,
and so on. 323 / 705
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Cholesky Factorization

Multifrontal method: assembly tree

Efficiency is improved by using the assembly tree (larger blocks)
and via postordering

Algorithm (Multifrontal Cholesky factorization using the assembly tree)

Input: SPD matrix A and its assembly tree.
Output: Factor L such that A = LLT .

1: nelim = 0 ▷ nelim is the number of eliminations performed
2: for kb = 1 : nsup do ▷ nsup is the number of supernodes
3: Assemble the frontal matrix Fkb; l: the number of fully summed variables in

Fkb.
4: Perform a block partial Cholesky factorization of Fkb to obtain columns

nelim+ 1 to nelim+ l of L and the generated element Vkb

5: nelim = nelim+ l

6: end for
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The multifrontal method: + postordering

1

6

3 2

5 4

7

8

9

→ 1

2

3 5

4 6

7

8

9
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Cholesky Factorization

Multifrontal method: example with postordering and the assembly tree



1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗

 1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Figure: A sparse matrix, its postordered elimination tree (left) and postordered assembly tree
(right).
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Cholesky Factorization

Multifrontal method: example with postordering and the assembly tree

nsup = 5, supernodes are {1, 2}, 3, 4, 5, {6, 7, 8, 9}, supernode
eliminated first. The frontal matrix F1 and generated element V1

have the structure

F1 =


1 2 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
8 ∗ ∗
9 ∗ ∗

, V1 =
( 8 9

8 f f
9 f f

)
,

f denotes fill-in, lower triangular entries stored in practice.
Further:

F2 =


3 4 8

3 ∗ ∗ ∗
4 ∗ ∗ ∗
8 ∗ ∗ ∗

, V2 =
( 4 8

4 ∗ ∗
8 ∗ ∗

)
.

327 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 335 — #335 i
i

i
i

i
i

Cholesky Factorization

Multifrontal method: example with postordering and the assembly tree

The frontal matrix F3 and generated element V3 are given by

F3 =


4 7 8

4 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

←→↕ V2, V3 =
( 7 8

7 ∗ f
8 f ∗

)
.

Then

F4 =


5 7 8

5 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

, V4 =
( 7 8

7 ∗ f
8 f ∗

)
,

and, finally, with kb = 5 we have

F5 =


6 7 8 9

6 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗ ∗

←→↕ V4 ←→↕ V3 ←→↕ V1.
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Cholesky Factorization

The multifrontal method: memory considerations

If the vertices of the assembly tree are postordered, the generated
elements required at each stage are the most recently computed
ones amongst those that have not yet been assembled: see the
next slide
This makes convenient to use a stack to store the generated
elements.
The memory demands of the multifrontal method can be very
large. Auxiliary out-of-core storage can be used.
The ordering of the children of a vertex (choice of postordering) in
the assembly tree can significantly affect the required stack size:
next slide
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Cholesky Factorization

The multifrontal method: postordering choice demonstration

5

1

2
3

4

6

7

8

9 9

1 2

3 4

5
6

7 8

Left: Maximum stack size may be 1× 1+2× 2+3× 3+4× 4 (note
that we store only triangular matrices)

Right: Maximum stack size may be 4× 4

Conclusion: Postorderings may strongly influence intermediate
memory demands
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Cholesky Factorization

The multifrontal method: stack considerations

Theorem

Let T be postordered. Assume each computed generated element (Vx)
is pushed onto a stack. Then when constructing the (frontal matrix) Fj ,
the required generated elements are on the top of the stack. They can
be directly popped from the stack and assembled into Fj .

Proof sketch: 1) Vertices of each subtree of the postordered T form an
interval. 2) Denote cl, l = 1, . . . , s children of j in T . 3) Each cl is the
root of a subtree T (cl). 4) Once the frontal matrix Fcl for a leaf of T (cl)
is constructed, all its children have been processed and the generated
Vcl is pushed onto the stack. 5) That is, all subtrees Tcl , l = 1, . . . , s are
fully assembled into the generated elements before Fj can be
constructed. 6) If Fj is ready to be assembled (step j), the s generated
Vcl , l = 1, . . . , s are on the top of the stack.
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Cholesky Factorization

The multifrontal method: summary

Right-looking (submatrix) method

Does not form the Schur complement directly: the updates are
moved to a stack as dense matrices and used when needed.

The processing order is based on the elimination/assembly tree

To have the generated elements readily available, stack is used,
enabled by a postordering.

Specific postorderings may minimize intermediate memory size.

Tree and node parallelism combined in parallel implementation.

Modifications and enhancements of the basic concept can be
used.
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Cholesky Factorization

Sparse Cholesky factorizations: up-looking factorization

An alternative for sparse matrices is to compute L one row at a
time. This is sometimes called an up-looking factorization.
Asymptotically optimal, but difficult to incorporate high level BLAS.
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Cholesky Factorization

Sparse Cholesky factorizations: up-looking factorization

The following relation holds for the i-th row of L

LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i with l2ii = aii − Li,1:i−1L
T
i,1:i−1.

L−1
1:i−1,1:i−1 can be applied as solving the triangular system

L1:i−1,1:i−1y = A 1:i−1,i,

and setting LT
i,1:i−1 = y.

How can be sparse triangular systems solved?
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Triangular systems and sparsity pattern of L

Using graphs to find the solution pattern to solve Ly = b.
The key to see this is G(LT ) and the reachabilities of vertices in
S{b} = {2, 4} → S{y} = {2, 4, 5, 6}.

L =



1 2 3 4 5 6

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗

 b =



1

1
2 ∗
3
4 ∗
5
6



1

2

3
4

5

6

Figure: An example to illustrate L, b and G(LT ).
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Cholesky Factorization

Triangular systems and sparsity pattern of L

Theorem
Consider a sparse lower triangular matrix L and the DAG G(LT ) with
vertex set {1, 2, . . . , n} and edge set {(j −→ i) | lij ̸= 0}. The sparsity
pattern S{y} of the solution y of the system Ly = b is the set of all
vertices reachable in G(LT ) from S{b}.

Proof.
From factorization Algorithm and assuming the non-cancellation assumption, we see
that (a) if bi ̸= 0 then yi ̸= 0 and (b) if for some j < i, yj ̸= 0 and lij ̸= 0 then yi ̸= 0.
These two conditions can be expressed as a graph transversal problem in G(LT ). (a)
adds all vertices in S{b} to the set of visited vertices and (b) states that if vertex j has
been visited then all its neighbours in G(LT ) are added to the set of visited vertices.
Thus S{y} = Reach(S{b}) ∪ S{b}. □
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Cholesky Factorization

Triangular systems and sparsity pattern of L: example


∗
∗

∗ ∗
∗

∗ ∗



∗

∗

∗

 =


∗
 (34)

The only nonzero of the right-hand side implies the three
nonzeros in the solution (in red)
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Cholesky Factorization

Triangular systems and sparsity pattern of L: another example

1
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Cholesky Factorization

Up-looking Cholesky - further comments

Sparse row Cholesky factorization is based on the repeated
solution of triangular linear systems.

Theorem above can be used to determine the sparsity pattern of
row i at Step 3, that is, by finding all the vertices that are
reachable in G(LT

1:j−1,1:j−1) from the set {i | aij ̸= 0, i < j}.

A depth-first search of G(LT
1:j−1,1:j−1) determines the vertices in

row sparsity patterns in topological order, and performing the
numerical solves in that order correctly preserves the numerical
dependencies in the factorization.

An option is to use the row subtrees using T (A) to get row
sparsity patterns.
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Cholesky Factorization

Up-looking Cholesky: algorithm

Algorithm (Sparse up-looking Cholesky factorization)

Input: SPD matrix A.
Output: Factor L such that A = LLT .

1: l11 = (a11)
1/2

2: for i = 2 : n do
3: Find S{Li,1:i−1} ▷ Sparsity pattern of Li,1:i−1

4: LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i ▷ Sparse triangular solve

5: lii = aii − Li,1:i−1L
T
i,1:i−1

6: lii = (lii)
1/2

7: end for
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Sparse LU: models and methods

Graphs and LU factorization

From structural descrption of a sparse symmmetric (Cholesky)
factorization to the symbolic LU factorization.

Differences (roughly):
▶ Two factors: more general graph models (directed, bipartite)

needed to describe A and the factors

▶ Problems with factorizability: symbolic and numerical steps
cannot be always separated

▶ Sometimes stronger assumptions needed, sometimes
on-the-fly changes: pivoting

342 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 350 — #350 i
i

i
i

i
i

Sparse LU factorization of generally nonsymmetric
matrices

LU factorization: first symbolic model: DAGs



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗


Directed acyclic graphs for the factors capture their structure. We use
G(LT ) (L by columns, left) and G(U) (U by rows, right).

1

3

2

4 5

6

1

3

2

4
5

6
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Sparse LU: models and methods

LU factorization and DAGs: replication

The two DAGs express the structure of factors with the fill-in.
Symmetric replication can be generalized to the nonsymmetric
case. Note that we do not remind factorizability at this moment.

Observation
If i > j and uji ̸= 0 then the column replication principle states

S{Li:n,j} ⊆ S{Li:n,i},

that is, the pattern of column j of L (rows i to n) is replicated in the pattern of column
i of L.
Analogously, if i > j and lij ̸= 0 then the row replication principle states

S{Uj,i:n} ⊆ S{Ui,i:n},

that is, the pattern of row j of U (columns i to n) is replicated in the pattern of row i of
U .
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Sparse LU: models and methods

LU factorization and DAGs: replication example



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ ∗
4 ∗ f ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ f ∗ f
4 ∗ f f ∗ f
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f f f ∗



Column and row replication principles in the sparse LU
factorizations.
Left: the matrix A. Centre: showing one column replication. Right:
also a row replication.
Filled entries not involved so far and resulting from subsequent
steps of the factorization are denoted in black.
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Sparse LU: models and methods

Basic sparse LU (numerical) factorization: algorithm

Assumed A being factorizable so that pivoting is not needed.

Algorithm (Basic sparse LU factorization)
Input: Nonsymmetric and factorizable matrix A = LA +DA + UA.
Output: LU factorization A = LU .

1: L = I + LA ▷ Strictly lower triangular part of A
2: U = DA + UA ▷ Diagonal plus strictly upper triangular part of A
3: for k = 1 : n− 1 do
4: for i ∈ {i > k | lik ̸= 0} do
5: lik = lik/ukk

6: Ui,i:n = Ui,i:n − Uk,i:nlik ▷ Update row i of U
7: end for
8: for j ∈ {j > k |ukj ̸= 0} do
9: Lj+1:n,j = Lj+1:n,j − Lj+1:n,kukj ▷ Update column j of L
10: end for
11: end for
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Sparse LU: models and methods

Recursive application of replications

Symmetric factorization: the recursive replications driven by the
first nonzero entries in columns of L (parents).
In LU it is more interesting ©: for L we use directed paths in U
and for the rows of U we use directed paths in G(LT ).

Theorem

Assume that for some k < j there is a directed path k
G(U)
===⇒ j. Then

S{Lj:n,k} ⊆ S{Lj:n,j}.

Moreover, if lik ̸= 0 for some i > j then lis ̸= 0 for all vertices s on this
path.
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Column replication in LU

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Column replication in LU

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Column replication in LU

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Sparse LU: both replications (for columns and rows)

Theorem
If aij = 0 and i > j then there is a filled entry lij ̸= 0 if and only if there

exists k < j such that aik ̸= 0 and there is a directed path k
G(U)
===⇒ j.

Theorem
If aij = 0 and i < j then there is a filled entry uij ̸= 0 if and only if there

exists k < i such that akj ̸= 0 and there is a directed path k
G(LT )
====⇒ i.
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Sparse LU: replications: funny game to detect paths

The path 1→ 3→ 5→ 6 in G(U). It implies the fill-in in L, first in
column 3, then in columns 5 and 6.
2→ 4→ 5→ 6 in G(LT )⇒ fill-in at (4, 7), (5, 7) and (6, 7) in U .



1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f
5 ∗ ∗ f f ∗ ∗ f
6 ∗ f ∗ ∗ f
7 ∗ f f f ∗



1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7
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Transitive reduction

To employ G(LT ) and G(U) in efficient algorithms, they need to be
simplified. They must be sparser and preserve reachability.

Similarly as the elimination tree T is a simplification.

In LU, the analogy is the transitive reduction of a DAG.

A subgraph G0 = (V, E0) is a transitive reduction of G = (V, E) if
the following conditions hold:

(T1) there is a path from vertex i to vertex j in G if and only if there
is a path from i to j in G0 (reachability condition), and

(T2) there is no subgraph with vertex set V that satisfies (T1) and
has fewer edges (minimality condition).
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Sparse LU factorization of generally nonsymmetric
matrices

Transitive reduction



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗



1

3

2

4 5

6

1

3

2

4
5

6

1

3

2

4 5

6

1

3

2

4
5

6
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Theorem
Let G be a DAG. The transitive reduction G0 of G is unique, is the
subgraph that has an edge for every path in G and has no proper
subgraph with this property.

1

5

4

2 3

1

5

4

2 3

1

5

4

2 3

Figure: Example to show the transitive reduction of a DAG. G is on the left, its
transitive reduction G0 is in the centre, and one possible G′ that is
equireachable with G is on the right.
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Transitive reduction

In general, the Theorem above does not hold for general graphs.

In the following figure, its transitive reduction is the loop
interconnecting vertices 1, 2 and 3.

The transitive reduction has only three edges and is not unique!

1
2 3
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Transitive reduction for A symmetric

If S{A} is symmetric, the role of the transitive reduction is played
by the elimination tree (as we might guess ©).

Theorem
If A is symmetrically structured then the transitive reduction of the DAG
G(LT ) (= G(U)) is the elimination tree T (A).



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ⋆ ⋆ ∗ ∗ ∗ ∗
6 ⋆ ⋆ ⋆ ∗ ∗


Entries denoted ⋆ do not belong to the transitive reduction of L.
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Transitive reduction for A symmetric: example with fill-in



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f
4 ∗ ∗ f ∗
5 ∗ ∗ ∗ f ∗ f
6 ∗ f ∗ f ∗



1
23

45

6

1
23

45

6

Figure: The sparsity patterns of L+ U of a symmetrically structured A, the
DAG G(LT ) (left), T (A) (right). T (A) is the transitive reduction of G(LT ).
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Transitive reduction may be expensive to obtain

Namely, obtaining exact transitive reduction of a DAG can be
expensive.
Instead, approximate reductions without the minimality condition
may be computed.
A directed graph G′ with the same vertex set as G that satisfies
condition (T1) is said to be equireachable with G.
Thus we look for something useful between the DAG and
transitive reduction.

Theorem
Assume G′ is equireachable with G(U) and for some k < j there is a

directed path k
G′
=⇒ j. Then the replication theorem can use paths in

these reduced DAGs. Moreover, row replication: if lik ̸= 0 for some
i > j then lis ̸= 0 for all vertices s on the directed path.

357 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 367 — #367 i
i

i
i

i
i

Sparse LU: models and methods

Equireachability and efficiency

Equireachability enables sparse triangular linear systems to be
solved more efficiently since they are sparser.
The necessary and sufficient conditions for the fill-in from above:

Theorem
If aij = 0 and i > j then there is a filled entry lij ̸= 0 if and only if there

exists k < j such that aik ̸= 0 and a directed path k
G′(U)
===⇒ j, where

G′(U) is equireachable with G(U).

Theorem
If aij = 0 and i < j then there is a filled entry uij ̸= 0 if and only if there

exists k < i such that akj ̸= 0 and a directed path k
G′(LT )
====⇒ i, where

G′(LT ) is equireachable with G(LT ).
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Equireachability: example

Figure depicts G(U) and G′(U) for the matrix in Figure above.

1 5

3

6 1 5

3

6

2 7

4

2 7

4

Figure: The DAG G(U) (left) and G′(U) which is equireachable with G(U)
(right).
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Column sparsity patterns (for L)

Getting to the factor (column/row) sparsity patterns
Schur complement description

S{Lj:n,j} = S{Aj:n,j}
⋃

k<j,ukj ̸=0

S{Lj:n,k}, 1 ≤ j ≤ n.

But, similarly as in the symmetric case, not all the terms in this
union are needed to obtain S{Lj:n,j}.

360 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 370 — #370 i
i

i
i

i
i
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Column sparsity patterns (for L)

Theorem
If G′(U) is equireachable with G(U) then

S{Lj:n,j} = S{Aj:n,j}
⋃

(k→j)∈E(G′(U))

S{Lj:n,k}, 1 ≤ j ≤ n.

Proof.
Consider an edge (k → j) in G(U) but not in G′(U). Repeatedly applying replication results

along the directed path k
G′(U)
====⇒ j, we see that Lj:n,k is contained in the right-hand side of the

predicted structure and therefore S{Lj:n,j} is contained in the right-hand side of this structure

as well. Because the right-hand side of the formula is trivially contained in the left-hand side, the

result follows. □

361 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 371 — #371 i
i

i
i

i
i

Sparse LU: models and methods

Row sparsity patterns (for U )
An analogous result holds for the rows of U .

Theorem
If G′(L) is equireachable with G(L) then

S{Ui,i:n} = S{Ai,i:n}
⋃

(k→i)∈E(G′(LT ))

S{Uk,i:n}, 1 ≤ i ≤ n.

But, we do not have the DAGs, nor their equireachable reductions
to use this.
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Pruning of the elimination DAGs

Getting cheaper equireachable DAGs: pruning

Theorem
If for some j < s both lsj ̸= 0 and ujs ̸= 0, then there are no edges
(j → k) with k > s in the transitive reductions of G(U) and G(LT ).

−→

Pruning in G(LT ): green and blue nodes represent edges
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Pruning of the elimination DAGs

Theorem
If for some j < s both lsj ̸= 0 and ujs ̸= 0, then there are no edges
(j → k) with k > s in the transitive reductions of G(U) and G(LT ).

The theorem implies that if for some s > 1 there are edges

j
G(LT )−−−−→ s and j

G(U)−−−→ s,

then all edges (j → k) in G(U) and G(LT ) with k > s can be
pruned.
Resulting DAGs G′(U) and G′(LT ) are equireachable with G(U)
and G(LT ), respectively.
This is called symmetric pruning.
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More general pruning of the elimination DAGs

If for some s > 1 there are paths

j
G(LT )
====⇒ s and j

G(U)
===⇒ s,

then for all k > s symmetric path pruning removes the edges
(j → k) from G(U) and G(LT ).

The key is to find such paths. This may be expensive.
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Pruning of the elimination DAGs: example

The matrix (after symmetric pruning) in the centre: the entries
from positions (4, 6) and (6, 4) have been pruned.
Both matrices have the same sets of reachable vertices in G(LT )
and G(U). This suggests how to find G′(LT ) and G′(U) that are
equireachable with G(LT ) and G(U), respectively.



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗


Figure: S{L+ U} (left), reduced sparsity pattern from symmetric pruning
(centre), after additional symmetric path pruning (1⇒ 6).
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Factorization by bordering: useful approach to apply this theory

Pruning for this can be done one by one (one column, one row,
another column ...) on-the-fly as we factorize. And then more
factorization ways can be fine ©.
Factorization by bordering: S{L} by rows, S{U} by columns.
Assume the sparsity patterns of the first k − 1 rows of L and the
first k − 1 columns of U (1 < k ≤ n) have been computed.
At step k, the matrix A1:k,1:k is

(
A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
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Factorization by bordering

Factorization by bordering: S{L} by rows, S{U} by columns.
Assume the sparsity patterns of the first k − 1 rows of L and the
first k − 1 columns of U (1 < k ≤ n) have been computed.
At step k, the matrix A1:k,1:k is

(
A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
Equating terms for the (2, 1) block, row k of L satisfies

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

or, equivalently, if y denotes the off-diagonal part of the column k
of LT then it is the solution of the lower triangular system

UT
1:k−1,1:k−1y = AT

k,1:k−1.
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Factorization by bordering

The sparsity pattern of y (row vector in L) is the set of all vertices
reachable in the DAG G(U 1:k−1,1:k−1) (or in a graph that is
equireachable with it) from the nonzeros in Ak,1:k−1.

Similarly, for rows of U : their sparsity patterns can be determined
by searching the DAG G(LT

1:k−1,1:k−1).

The diagonal entry ukk is then computed as akk − Lk,1:k−1U1:k−1,k.

And the DAGs to determine the column/row sparsity patterns can
be pruned on-the-fly.
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Another graph model: column elimination tree

An attractive idea for constructing S{L+ U} is based on using the
column elimination tree T (ATA).

Theorem

Assume all the diagonal entries of A are nonzero and let L̂L̂T be the
Cholesky factorization of ATA. Then for any row permutation matrix P
such that PA = LU

S{L+ U} ⊆ S{L̂+ L̂T }.

This is very strong result (theoretically).
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Another graph model: column elimination tree: example

Standard elimination tree T (A).



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ f ∗
3 ∗ ∗
4 ∗ ∗ ∗ f ∗
5 ∗ ∗ f ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ f ∗


1 2

34

5 6

7
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The elimination tree T (ATA): much more dependencies, much
less parallelism.



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ f ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗ f ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

3

4

5

6

7
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The column elimination tree

A potential problem with the column elimination tree is then:

S{ATA} can have significantly more nonzero entries than
S{L+ U}.

An extreme example is when A has one or more dense rows
because ATA is then fully dense.

So, using it or not using it, it depends.
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Supernodes and LU

Supernodes group together columns of the factors with the same
nonzero structure, allowing them to be treated as dense for
storage and computation.
For nonsymmetric matrices, supernodes are harder to
characterize. Or, rather, we have more options to define them.
The need to incorporate pivoting means it may not be possible to
predict the sparsity structures of the factors before the numerical
factorization and they must be identified on the fly.
Cholesky solver: fundamental supernodes are made contiguous
by symmetrically permuting the matrix according to a postordering
of its elimination tree; this does not change the sparsity of the
Cholesky factor.
For nonsymmetric A, this may be different.
We may sometimes do a dirty trick: distinguish A with a nearly
symmetric pattern from other situations.
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Multifrontal LU method

Generalization to nonsymmetric A: modifying the definitions of the
frontal matrices and generated elements to conform to an LU
factorization.
Natural generalizations to rectangular frontal and generated
element matrices do not simultaneously satisfy the statement
above. The statement rewritten for the LU factorization is:
(a) Each generated element Vj is used only once to contribute to

a frontal matrix.
(b) The row and column index lists for the rectangular frontal

matrix Fj correspond to the nonzeros in column Lj:n,j and
nonzeros in row Uj,j:n, respectively.

An approach that satisfies (a) can be based on the sparsity
pattern of S{A+AT } (SS) and storing some explicit zeros if S{A}
is not structurally symmetric.
(a)-based approach performs well if S{A} is close to that (SS).
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Preprocessing for LU

Up to now we have dealt with graph models and methods to
factorize.

Some of the text indicates the algorithms as extensions from the
symmetric case

The deep problem behind is the need to solve the problem of
non-factorizability

But there exist preprocessing techniques that may alleviate this
problem.
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Transversal

The transversal of a matrix A is the set of its nonzero diagonal
entries.

Full or maximum transversal of A: all its diagonal entries are
nonzero.

If A is nonsingular (even structurally only) then it can be
nonsymmetrically permuted to have a full transversal.

The converse is clearly not true (for example, a matrix with all its
entries equal to one has a full transversal but it is singular).
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Preprocessing for LU: transversal

Consider the case when A does not have a full transversal (that is,
it has one or more zeros on the diagonal).
For numerical stability and to reduce the number of permutations
required during the factorization, it can be useful to permute A
such that its transversal is full. It exists, since A is assumed to be
nonsingular.
Such permutation can be found using matchings.
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Preprocessing for LU: transversal

Given a graph G = (V, E), an edge subsetM⊆ E is called a
matching (or assignment) if no two edges inM are incident to the
same vertex.
The cardinality of a matching is the number of edges in it. A
maximum cardinality matching (or maximum matching) is a
matching of maximum cardinality. A matching is perfect if all the
vertices are matched.

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′
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Preprocessing for LU: transversal

Consider A ∈ Rn×n = {aij′}.
Its bipartite graph model is denoted by Gb = (Vrow,Vcol, E), its row
vertex set Vrow = {i |aij′ ̸= 0} and the column vertex set
Vcol = {j′ |aij′ ̸= 0} correspond to the rows and columns of A.
There is an (undirected) edge (i, j′) ∈ E if and only if aij′ ̸= 0.
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Preprocessing for LU: transversal via matching



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗


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Figure: A sparse matrix (up), its bipartite graph Gb (left), Gb with perfect
matching (right).
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Preprocessing for LU: transversal via matching

A is structurally nonsingular⇒ a matchingM in Gb is perfect if it
has cardinality n.
A perfect matching defines an n× n permutation matrix Q with
entries qij given by

qij =

{
1, if (j, i′) ∈M,

0, otherwise.

Both QA and AQ have the matching entries on the diagonal.
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Preprocessing for LU: transversal via matching

Back from the bipartite graph to the nonsymmetrically permuted
matrix.
Q and the column permuted matrix AQ for the example in Figure
above.

Q =



1 2 3 4 5 6

1 1
2 1
3 1
4 1
5 1
6 1

 AQ =



3′ 1′ 4′ 2′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗


Figure: The permutation matrix Q, the column permuted matrix AQ
corresponding to the matrix above. The matched entries are on the diagonal
of AQ.
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Preprocessing for LU: transversal via matching

If a perfect matching exists, it can be found using augmenting
paths.
A path P in a graph is an ordered set of edges in which
successive edges are incident to the same vertex. P is called an
M-alternating path if the edges of P are alternately inM and not
inM.
AnM-alternating path is anM-augmenting path in Gb if it
connects an unmatched column vertex with an unmatched row
vertex. Note that the length of anM-augmenting path is an odd
integer.
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Preprocessing for LU: transversal via matching

LetM and P be subsets of E and define the symmetric difference

M⊕P := (M\P) ∪ (P \M),

This is set of edges that belongs to eitherM or P but not to both.
IfM is a matching and P is anM-augmenting path, thenM⊕P
is a matching with cardinality |M|+1.
Growing the matching in this way is called augmenting along P.

Theorem
A matchingM in an undirected graph is a maximum matching if and
only if there is noM-augmenting path

That is, maximum matching can be found in a straightforward way.
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Preprocessing for LU: matching algorithm for bipartite graphs

Algorithm (Maximum matching algorithm)
Input: An undirected graph.
Output: Output maximum matching.

1: Find an initial matching M ▷ For example, M = ∅
2: while there exists a M-augmenting path P do
3: M = M⊕P ▷ Augment the matching along P
4: end while
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Augmenting paths: demonstration

On the left is a bipartite graph with a matching with cardinality 5.
An augmenting path 2 =⇒ 3′ =⇒ 3 =⇒ 4′ =⇒ 4 =⇒ 2′ shown.
Augmenting the matching along this path, the cardinality of the
matching increases to 6 andM⊕P is a perfect matching.
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Figure: Search for a perfect matching using augmenting paths. 387 / 705
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Transversals: weighted matchings

More sophisticated variations that aim to ensure the absolute
values of the diagonal entries of the permuted matrix (or their
product) are in some sense large.
Formally: if Gb = (Vrow,Vcol, E) is the bipartite graph associated
with A then let Gb(C) = (Vrow,Vcol, E) be the corresponding
weighted bipartite graph in which each edge (i, j′) ∈ E has a
weight cij′ ≥ 0.
The weight (or cost) of a matchingM in Gb(C), denoted by
csum(M), is the sum of its edge weights; i.e.,

csum(M) =
∑

(i,j′)∈M

cij′ .

A perfect matchingM in Gb(C) is said to be a minimum weight
perfect matching if it has smallest possible weight i.e.,
csum(M) ≤ csum(M̂) for all possible perfect matchings M̂.
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Transversals: weighted matchings: useful approach

The problem: given A, find a matching of the rows to the columns
such that the product of the matched entries is maximized.
That is, find a permutation vector q that maximizes

n∏
i=1

|aiqi |. (35)

Define a matrix C corresponding to A with entries cij′ ≥ 0 as
follows:

cij′ =

{
log(maxi |aij′ |)− log |aij′ |, if aij′ ̸= 0

∞, otherwise.
(36)
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Transversals: weighted matchings

It is straightforward to see that finding a q that solves the problem
is equivalent to finding a q that minimizes

n∑
i=1

|ciqi |, (37)

This is equivalent to finding a minimum weight perfect matching in
an edge weighted bipartite graph.
This is a well-studied problem and is known as the bipartite
weighted matching or linear sum assignment problem.
The key concept for finding a minimum weight perfect matching is
that of a shortest augmenting path.
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Weighted matchings: primal-dual algorithm

A matchingMe is extreme if and only if there exist ui and vj′

(which are termed dual variables) satisfying{
cij′ = ui + vj′ , if (i, j′) ∈Me,

cij′ ≥ ui + vj′ , otherwise.
(38)

This is employed by the MC64 algorithm.
The dual variables can be used for scaling.
The algorithm starts with a feasible solution and corresponding
extreme matching and then proceeds to iteratively increase its
cardinality by one by constructing a sequence of shortest
augmenting paths until a perfect extreme matching is found.
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Weighted matchings: primal-dual algorithm

Can be more efficient if a large initial matching is used.
For example, Step 3 can be replaced by setting
ui = min{cij′ | j′ ∈ S{Ai,1:n}} for i ∈ Vrow and
vj′ = min{cij′ − ui| i ∈ S{A1:n,j′}} for j′ ∈ Vcol. In Step 4, an initial
extreme matching can be determined from the edges for which
cij′ − ui − vj′ = 0.

Algorithm (Outline of the MC64 algorithm)
Input: Matrix A.
Output: A matching M and dual variables ui, vj′ .

1: Define the weights cij′ using (36)
2: Construct the weighted bipartite graph Gb(C) = (Vrow,Vcol, E)
3: Set ui = 0 for i ∈ Vrow and vj′ = min{cij′ : (i, j′) ∈ E} for j′ ∈ Vcol ▷ Initial solution
4: Set M = {(i, j′)|ui + vj′} ▷ Initial extreme matching
5: while M is not perfect do
6: Find the shortest augmenting path P with respect to M
7: Augment the matching M = M⊕P
8: Update ui, vj′ so that (38) is satisfied for new M ▷ make M extreme
9: end while
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Weighted matchings: primal-dual algorithm

Number of potential problems with the MC64 algorithm.
▶ The runtime is hard to predict and depends on the initial ordering of

A.
▶ It is a serial algorithm and as such it can represent a significant

fraction of the total factorization time of a direct solver.

Because the complexity of Step 6 of Algorithm is
O((n+ nz(A)) log n) and the complexity of Step 7 is O(n) and of
Step 8 is O(n+ nz(A), MC64 has a worst-case complexity of
O(n(n+ nz(A)) log n).
In practice, this bound is not achieved and the algorithm is widely
used.
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Transversals: extension to non-square matrices

The Dulmage-Mendelsohn (DM) decomposition is based on
matchings and it generalizes the block triangular form.
It comprises row and column permutations P and Q such that

PAQ =


C1 C2 C3

R1 A1 A4 A6

R2 0 A2 A5

R3 0 0 A3

. (39)

Here A1 is an m1 × n1 underdetermined matrix (m1 < n1 or
m1 = n1 = 0), A2 is an m2 ×m2 square matrix and A3 is an
m3 × n3 overdetermined matrix (m3 > n3 or m3 = n3 = 0).
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Transversals: extension to non-square matrices

An example decomposition for a 10× 10 matrix. Here R = {1, 2, . . . , 9}
and C = {2, 3, . . . , 10}.



1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗
9 ∗ ∗
10 ∗ ∗ ∗


, PAQ =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗


.

Figure: An example of a (coarse) DM decomposition. The blue entries belong
to the maximum matching. m1 = 3, m2 = 4, m3 = 3, n1 = 4, n2 = 4, n3 = 2.
Column 1 and row 10 are unmatched.
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The solve

The solve phase uses the factors to solve for a single b or for a
block of multiple right-hand sides or for a sequence of right-hand
sides one-by-one.
Once an LU factorization has been computed, the solution x of the
linear system Ax = b is computed by solving the lower triangular
system

Ly = b, (40)

followed by the upper triangular system

Ux = y. (41)

Triangular solves with a dense right-hand side vector are
straightforward.
Typically much cheaper, but parallel computation may change the
perspective.
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From factorization to solution

The solve

First step is forward substitution: the component y1 is determined
from the first equation. Substitution into the second equation to
obtain y2, and so on.
Once y is available, the solution can be obtained by back
substitution in which the last equation is used to obtain xn, which
is then substituted into equation n− 1 to obtain xn−1, and so on.
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From factorization to solution

The solve

Algorithm (Forward substitution: simple Ly = b with b dense)

Input: Lower triangular matrix L with nonzero diagonal entries and
dense right-hand side b.
Output: The dense solution vector y.

1: Initialise y = b

2: for j = 1 : n do
3: yj = yj/ljj

4: for i = j + 1 : n do
5: if lij ̸= 0 then
6: yi = yi − lijyj

7: end if
8: end for
9: end for
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From factorization to solution

The sparse solve

When b is sparse, the solution y is (may be) also sparse.

In particular, if in Algorithm yk = 0, then the outer loop with j = k
can be skipped.

Furthermore, if b1 = b2 = . . . = bk = 0 and bk+1 ̸= 0, then
y1 = y2 = . . . = yk = 0. Scanning y to check for zeros adds O(n)
to the complexity.

But if the set of indices J = {j | yj ̸= 0} is known beforehand then
we can use the following Algorithm,

A way to determine J is discussed later.
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From factorization to solution

The sparse solve

Algorithm (Forward substitution: simple solve Ly = b with b sparse)

Input: Lower triangular matrix L with nonzero diagonal entries, sparse
vector b and the set J .
Output: The sparse solution vector y.

1: Initialise y = b

2: for j ∈ J do ▷ Take indices from J in increasing order
3: yj = yj/ljj

4: for i = j + 1 : n do
5: if lij ̸= 0 then
6: yi = yi − lijyj

7: end if
8: end for
9: end for
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Enhancements due to permuting into a block form
Permuting to block form is closely connected to matrix reducibility.
A is said to be reducible if there is a permutation matrix P such
that

PAP T =

(
Ap1,p1 Ap1,p2

0 Ap2,p2

)
,

where Ap1,p1 and Ap2,p2 are non trivial square matrices (that is,
they are of order at least 1).
If A is not reducible, it is irreducible. Matrices of order 1 are
irreducible.
If S{A} is symmetric then Ap1,p2 = 0 and PAP T is block diagonal.
Wy do we need this? To be more happy ©: factorize only blocks,
do solves only with blocks.

401 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 411 — #411 i
i

i
i

i
i

Sparse LU: preprocessing to get BTF shape

Using BTF

Algorithm (Solve a sparse linear system in upper BTF)

Input: Upper block triangular matrix and a conformally partitioned right-hand side
vector c.
Output: The conformally partitioned solution vector y.

1: for ib = 1 : nb do
2: Compute PibAib,ib = LibUib

3: end for
4: Solve LnbUnb ynb = Pnbcnb ▷ Perform forward and back substitutions
5: for ib = nb− 1 : 1 do
6: for jb = ib+ 1 : nb do
7: cib = cib −Aib,jbyjb ▷ Sparse matrix-vector operation
8: end for
9: Solve LibUib yib = Pibcib ▷ Perform substitutions

10: end for
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Theorem
Given a nonsingular nonsymmetric matrix A there exists a permutation
matrix P such that

PAP T =


A1,1 A1,2 · · · A1,nb

0 A2,2 · · · A2,nb
...

...
. . .

...
0 0 · · · Anb,nb

 , (42)

where the square matrices Aib,ib on the diagonal are irreducible. The
set {Aib,ib | 1 ≤ ib ≤ nb} is uniquely determined (but the blocks may
appear on the diagonal in a different order). The order of the rows and
columns within each Aib,ib may not be unique.

This upper block triangular form (BTF) is also known as the
Frobenius normal form. It is said to be non trivial if nb > 1.
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Permutation to BTF
An example of a matrix that can be symmetrically permuted to block
triangular form with nb = 2 is given below.



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





6 3 5 4 1 2

6 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
5 ∗ ∗
4 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗


Why symmetrically? Using just relabelling of vertices.

Figure: The sparsity patterns of A (left) and the upper block triangular form PAPT

with two blocks Aib,ib, i = 1, 2, of order 2 and 4 (right).

Why relabelling? Since we just find somehow a new vertex order
in a digraph.
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Permutation to BTF

Finding Ps is identical to finding the strongly connected
components (SCCs) of the digraph G(A) = (V, E). Mentioned
above.
To find the SCCs, V is partitioned into non-empty subsets Vi with
each vertex belonging to exactly one subset. Each vertex i in the
quotient graph corresponds to a subset Vi and there is an edge in
the quotient graph with endpoints i and j if E contains at least one
edge with one endpoint in Vi and the other in Vj .
The condensation (or component graph) of a digraph is a quotient
graph in which the SCCs form the subsets of the partition, that is,
each SCC is contracted to a single vertex. This reduction provides
a simplified view of the connectivity between components.
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Permutation to BTF
An example of SCCs. Five of them: {p, q, r}, {s, t, u}, {v}, {w}, {x}.

u w

t

s

v

q

r

p

x

s5

s4

s3

s1

s2

Figure: An illustration of the strong components of a digraph. On the left, the five
SCCs are denoted using different colours and on the right is the condensation DAG
GC formed by the SCCs.
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Relationship between SCCs and DAGs

Theorem
The condensation GC of a digraph is a DAG (directed acyclic graph).

Any DAG can be topologically ordered. (Directed edges connect
smaller to larger (labelled) vertices).
Consequently, GC = (VC , EC) can be topologically ordered and if
Vi and Vj are contracted to si and sj and (si −→ sj) ∈ EC then
si < sj .
It follows that to permute A to block triangular form it is sufficient
to find the SCCs of G(A).
That is, topologically ordering the vertices of the condensation GC
induced by the SCCs is the quotient graph that implies the block
triangular form.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Stability and ill-conditioning

Backward stability

Computational algorithm

z = g(d)

for computing z as a function g of given data d.
Backward stable algorithm: the computed solution ẑ is the exact
solution of ẑ = g(d+∆d), and the perturbation ∆d is “small” for all
possible inputs d.
What is meant by small depends on the context. For example, if d
is based on physical measurements (necessarily inaccurate), ∆d
is small if it is of the same absolute value as the inaccuracies in
determining d or smaller.
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Stability and ill-conditioning

Forward and backward errors

z = g(d)→ ẑ = g(d+∆d)

Minimum |∆d|: the absolute backward error

Minimum |∆d|/|d|: the relative backward error.

Absolute and relative errors of ẑ: called forward errors.
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Stability and ill-conditioning

Ill-conditioning

A related concept is ill-conditioning.
We say that the problem z = g(d) is ill-conditioned if small
perturbations in the data d can lead to large changes in ẑ.
The condition number measures how sensitive the output of a
function is to its input.

Observation
Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
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Stability and ill-conditioning

Ill-conditioning: relation between forward and backward errors

The following approximate inequality holds:

forward error ⪅ condition number× backward error.

The computed solution to an ill-conditioned problem can have a
large forward error even if the computed solution has a small
backward error since the backward error can be amplified by a
large condition number.
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Backward error result for LU

ϵ denotes the machine precision.

Theorem

Let the computed LU factorization of a matrix A be A+∆A = L̂ Û . The
perturbation ∆A that results from using finite precision arithmetic
satisfies

||∆A||∞ ≤ nO(ϵ) ||L̂||∞||Û ||∞ +O(ϵ2). (43)

Moreover, the computed solution x̂ of the linear system Ax = b
satisfies (A+∆′A)x̂ = b with

||∆′A||∞ ≤ nO(ϵ) ||L̂||∞||Û ||∞ +O(ϵ2). (44)
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Stability of Cholesky

Theorem
Let the computed Cholesky factorization of a SPD matrix A be
A+∆A = L̂L̂T . The perturbation ∆A that results from using finite
precision arithmetic satisfies

||∆A||∞ ≤ n2O(ϵ) ||A||∞.

Moreover, the computed solution x̂ of the linear system Ax = b
satisfies (A+∆′A)x̂ = b with

||∆′A||∞ ≤ n2O(ϵ) ||A||∞.
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Sidestep: using the inverse instead of factorization

No such stability results: The computed inverse is typically not the
exact inverse of a nearby matrix A+∆A for any small
perturbation ∆A.
Impractical to compute and store A−1, regardless of how sparse A
is: see below.
But there is another point: matrix sparsity. See the next slide.
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Sidestep: using the inverse instead of factorization

Theorem
A irreducible⇒ the sparsity pattern S{A−1} of its inverse is fully
dense.

Proof.
Assume A is factorizable. (If not, there is a permutation matrix P such that the LU factorization of
the row permuted matrix PA is factorizable). Then consider PA instead of A because for any
permutation matrix P : (PA)−1 is fully dense if and only if A is fully dense. Consider the matrix
K of order 2n

K =

(
A In
In 0

)
.

After applying n elimination steps to K = K(1), the order n active submatrix of K(n+1) is −A−1.

Consider entry (A−1)ij (1 ≤ i, j ≤ n). Because A is irreducible and the off-diagonal (1, 2) and

(2, 1) blocks of K are equal to the identity matrix, there is a fill path i =⇒ j in G(K) (the indices

of all the intermediate vertices on the path are less than or equal to n). Theorem on fill paths and

the non-cancellation assumption imply (A−1)ij ̸= 0 ⇒ A−1 is fully dense. □
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Ill-conditioning and backward stability for factorizations

Ill-conditioning can be improved by preprocessing, better solution
also by postprocessing.

Backward stability can be improved by better algorithms .
▶ One of the tools (making algorithms better) is pivoting.

▶ Needed for LU: Cholesky factorization of A is unconditionally
backward stable.
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Pivoting to improve stability of factorizations

At step k of GE, the computed (not distinguishing them by
notation) a(k)kk is termed the pivot (1 ≤ k < n).
It must be nonzero. To avoid this, use row interchanges: partial
pivoting.

If |a(k)kk | is very small (relatively to other entries in the active
submatrix), it can cause difficulties in finite precision arithmetic
since lik = a

(k)
ik /a

(k)
kk can be very large. Formally, this increases the

growth in the factor U .
Partial pivoting ensures

|lik| ≤ 1 =⇒ max
i>k
|a(k)ik | ≤ |a

(k)
kk |.
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Pivoting to improve stability of factorizations

If Pk is the row permutation at stage k and P = Pn−1Pn−2 . . . P1

then the computed factors of PA satisfy

||L̂||∞ ≤ n and ||Û ||∞ ≤ nρgrowth||A||∞,

where the growth factor ρgrowth is defined to be

ρgrowth = max
i,j,k

( |a(k)ij | / |aij | ). (45)

The bounds above can be rewritten as

||∆A||∞ ≤ n3 ρgrowthO(ϵ) ||A||∞, ||∆′A||∞ ≤ n3 ρgrowthO(ϵ) ||A||∞.

In practice, these bounds are pessimistic.
The growth factor is influenced both by the initial ordering of A and
the pivoting strategy⇒ LU factorization conditionally backward
stable.
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Partial pivoting

Recall: partial pivoting interchanges rows at each step of the
factorization to select the entry of largest absolute value in its
column as the next pivot.
If partial pivoting is used, it is straightforward to show that the
growth factor satisfies

ρgrowth ≤ 2n−1.
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Partial pivoting: an example of growth

An example that shows that the growth factor satisfies

ρgrowth ≤ 2n−1.



1 2 3 4 5

1 1 1
2 −1 1 1
3 −1 −1 1 1
4 −1 −1 −1 1 1
5 −1 −1 −1 −1 1

 =



1 2 3 4 5

1 1 0
2 −1 1 0
3 −1 −1 1 0
4 −1 −1 −1 1 0
5 −1 −1 −1 −1 1




1 2 3 4 5

1 1 1
2 1 2
3 1 4
4 1 8
5 16


The bound can be achieved also in nontrivial cases.
Although generally pessimistic, it is a useful approach.
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Complete pivoting

A much smaller bound obtained if complete (or full) pivoting is
used: chooses the pivot as an entry of the largest magnitude in
the active submatrix (Schur complement of the previous step),

That is, at stage k the pivot a(k)kk is chosen so that

max
i≥k,j≥k

|a(k)ij | ≤ |a
(k)
kk |.

Then
ρgrowth ≤ n1/2(2. 31/2. 41/3 . . . n1/(n−1))1/2. (46)

Can be expensive even outside parallel environment.
Relaxations (simplifications) not searching the whole matrix used
in practice.
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Rook pivoting

Rook pivoting: more restrictive than partial pivoting but cheaper
than complete pivoting
The pivot is chosen as the largest entry in its row and its column,
that is,

max
i>k

( |a(k)ik |, |a
(k)
ki | ) ≤ |a

(k)
kk |.

In practice, the cost is usually a small multiple of the cost of partial
pivoting and significantly less than that of complete pivoting.
The growth factor for rook pivoting satisfies

ρgrowth ≤ 1.5n(3/4) logn .
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Threshold partial pivoting

The pivot a(k)kk chosen to satisfy

max
i>k
|a(k)ik | ≤ γ−1|a(k)kk |,

where γ ∈ (0, 1] is a chosen threshold parameter.
Straightforward to see that

max
i
|a(k)ij | ≤ (1 + γ−1)max

i
|a(k−1)

ij |,

and
max

i
|a(k)ij | ≤ (1 + γ−1)nzj max

i
|aij |,

where nzj is the number of off-diagonal entries in the j-th column
of the U factor. Furthermore,

ρgrowth ≤ (1 + γ−1)nzcmax ,

where nzcmax = maxj nzj ≤ n− 1.
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2× 2 pivoting

A symmetric, but indefinite: it may not be possible to use diagonal
pivots (all of them can be zero).

A =

(
0 1
1 0

)
.

If only rows (columns) of A are permuted (so that off-diagonal
entries are selected as pivots): symmetry is destroyed⇒ LU
factorization is an option and this essentially doubles the cost of
the factorization in terms of both storage and operation counts.
Symmetry preserved by generalizing the LDLT factorization using
as pivots also 2× 2 blocks.
It can be shown that this is sufficient.
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Symmetric indefinite: example

Consider

A =

(
δ 1
1 0

)
.

δ = 0⇒ LDLT with D diagonal does not exist.
δ ≪ 1⇒ LDLT with D diagonal is not stable since ρgrowth = 1/δ.
LDLT factorization generalized to allow D block diagonal matrix
with 1× 1 and 2× 2⇒ factorization preserves symmetry and is
nearly as stable as an LU factorization.

A =

1 1 0
1 1 1
0 1 0

 =

1 0 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 0

1 1 0
0 1 1
0 0 1

 = LDLT .

Here D has one 1× 1 block and one 2× 2 block.
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Symmetric indefinite: balancing 1× 1 pivots and 2× 2 pivots

Asumming symmetric pivots (from the diagonal or block diagonal).
Small growth for 1× 1 pivot if |akk| (a diagonal entry) is large.
If such pivot not found, consider large off-diagonals
Consider the inverse of the 2× 2 block(

a b
b d

)−1

=
1

ad− b2

(
d −b
−b a

)
⇒ if |a|, |d| small with respect to |b|, 2× 2 pivot may be used.
The standard rule to choose between the cases: requiring the
same potential maximal growth in a 2× 2 pivot versus two
consecutive 1× 1 pivots.
An appropriate threshold (1 +

√
17)/8 to choose between the

pivots (see the next slide)

ρgrowth < 3n
√
2 31/241/3 . . . n1/(n−1),
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Indefinite factorization: classical schemes

Algorithm (One step of full indefinite pivoting )

1: Set α = (1 +
√
17)/8 ≈ 0.64

2: Find akk: diagonal entry of maximum size
3: Find aij : off-diagonal entry of maximum size (i < j)
4: if |akk| ≥ α|aij | then
5: use akk as 1× 1 pivot (ready for akk = 0)
6: else

7: use

(
aii aij

aji ajj

)
as 2× 2 the pivot

8: end if

Full pivoting: choosing pivots based on global search can be
expensive despite: the growth factor bound is only a slightly worse
than for LU
Needed to combine with sparsity considerations
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Indefinite factorization: classical scheme of symmetric partial pivoting

The following scheme shows entries sufficient to be checked

d . . λ . . .
. . . . . . .
. . . . . . .
λ . . c . σ .
. . . . . . .
. . . σ . . .
. . . . . . .


λ, σ: maximum absolute value in its row and column, respectively.
That is: only two rows and columns of A searched.
The main price for less searches: slightly larger growth factor
bound than in LU
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Indefinite factorization: classical schemes
Algorithm (One step of symmetric partial pivoting)

1: α = (1 +
√
17)/8 ≈ 0.64, i = 1 (or, e.g., i satisfies |aii| ≥ α|akk| for all k)

2: Find j ̸= i such that aji = max{|aki|, k ̸= i} =: λ

3: if |aii| ≥ αλ then
4: use aii as 1× 1 pivot
5: else
6: σ = max{|akj |, k ̸= j}
7: if |aii|σ ≥ αλ2 then
8: use aii as 1× 1 pivot
9: else if |ajj | ≥ ασ then

10: use ajj as a 1× 1 pivot
11: else

12: use

(
aii aij

aji ajj

)
as 2× 2 pivot

13: end if
14: end if 430 / 705
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Threshold extensions for 2× 2 (symmetric) pivots

In the sparse symmetric indefinite case, the stability test for a
1× 1 pivot a(k)tt in column t of the active submatrix at stage k is as
follows (γ is the threshold).

max
i ̸=t, i≥k

|a(k)it | ≤ γ−1|a(k)tt |

For a 2× 2 pivot in rows and columns s and t the test is∣∣∣∣∣∣
(
a
(k)
ss a

(k)
st

a
(k)
st a

(k)
tt

)−1
∣∣∣∣∣∣
maxi ̸=s,t;i≥k |a

(k)
is |

maxi ̸=s,t;i≥k |a
(k)
it |

 ≤ γ−1

(
1
1

)
,

where the absolute value of the matrix is interpreted element-wise.
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Indefinite factorization: other comments

Additional thresholds can be used also in classical pivoting
schemes (here symmetric)
For example, only |d| ≥ γ|λ| for some γ ∈ (0, 1⟩ (useful if only a
part of the active matrix is available).

Algorithm (One step of modified symmetric partial pivoting)

1: if |d| ≥ γ|λ| then use d as 1× 1 pivot
2: else if |dγ| ≥ α|λ|2 then use d as 1× 1 pivot
3: else if |e| ≥ α|γ| then use e as 1× 1 pivot
4: else

5: use

(
d f

f e

)
as 2× 2 pivot

6: end if
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Indefinite factorization: other comments
In addition to bounding magnitudes of the entries in L, the ability
to stably apply the inverse of D to a vector is required.
For 2× 2 pivots necessary to check that the determinant
|a(k)ss a

(k)
tt − a

(k)
st a

(k)
st | is sufficiently large.

Limiting the size of the entries of L: |lij | ≤ γ−1 for all i, j plus a
backward stable scheme for solving 2× 2 linear systems suffices
to show backward stability for the entire solution process.
But a pivot satisfying the stability criteria may not exist.
This may lead to loops to find a pivot from more starting
factorization points.

433 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 443 — #443 i
i

i
i

i
i

Stability and ill-conditioning

Stability and supernodes

Ldiag

Lrect

Pivots can only be chosen from the block Ldiag on the diagonal,
but entries in the off-diagonal block Lrect are involved in the
stability tests.
Possible delaying columns and backtrack to previous supernodes
or modifying A (regularization).
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Segregated approaches for saddle-point problems

Consider the following system of the form(
A BT

B 0

)(
x
y

)
=

(
b
c

)
(47)

where A ∈ Rn1×n1 , R ∈ Rn2×n1 with n1 ≥ n2.
Assuming regularity of the system and A, full rank B

Saddle-point problem.
Standard solution techniques: substituting from one block row to
another one

▶ Schur complement approach
▶ Null-space approach
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Schur complement approach to solve the saddle-point problem

Ax+BT y = b

Bx = c

Set x = A−1(b−BT y)

Substitute BA−1b−BA−1BT y = c

Get y from BA−1BT y = BA−1b− c

Get x from the first block equation.

436 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 446 — #446 i
i

i
i

i
i

Stability and ill-conditioning

Null-space approach to solve the saddle-point problem

Ax+BT y = b

Bx = c

Find the null-space of B (BZ = 0, R(Z) = N (B))
Find x̂ that solves Bx̂ = c (QR, LU; easy if n2 is small)
Full solution of the 2nd block equation: x = Zv + x̂, v ∈ Rn1−n2

Substitute this x into the first block equation:

A(Zv + x̂) = b−BT y

Getting ZTAZv = ZT (b−Ax̂) (multiplication by ZT from left)
Get x = Zv + x̂, get y from BBT y = B(b−Ax) (BBT ∈ Rn2×n2)
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Solving ill-conditioned problems

κ(A) = ∥A∥ ∥A−1∥ (48)

is the condition number of the matrix A.
The inequality from above:

forward error ⪅ condition number× backward error.

shows that the condition number is an error magnification factor.
A large condition number means that A is close to being singular
(κ(A) tends to infinity as A tends to singularity).
More sophisticated condition numbers can be considered.
Ways to mitigate ill-conditioning by preprocessing/postprocessing:
iterative refinement , scaling
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Iterative refinement (IR)

IR can be used to overcome matrix ill-conditioning and improve
the accuracy of the computed solution.

Algorithm (Iterative refinement of the computed solution of Ax = b)
Input: The vector b and matrix A.
Output: A sequence of approximate solutions x(0), x(1), . . ..

1: Solve Ax(0) = b ▷ x(0) is the initial computed solution
2: for k = 0, 1, . . . do
3: Compute r(k) = b−Ax(k) ▷ Residual on iteration k

4: Solve Aδx(k) = r(k) ▷ Solve correction equation
5: x(k+1) = x(k) + δx(k)

6: end for
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Iterative refinement

Fixed precision IR: all computations use the same precision.
Mixed precision IR: the most expensive parts in lower precision,
residual computation in double precision.
single: fp32: significant memory and data movement reduction.
half: fp16: even greater potential, problems due to the small range
of representable numbers

Theorem
One step of fp32 IR enough for obtaining componentwise relative
backward error to the order of O(ϵ) under weak assumptions.
Strong bound for the error norm using fp64 IR.

A possible variation: Krylov subspace solver as IR
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Scaling to reduce ill-conditioning

Consider two nonsingular n× n diagonal matrices Sr and Sc.
Diagonal scaling of the system Ax = b transforms it to

Sr ASc y = Sr b, y = S−1
c x. (49)

Theorem
Let the matrix A be SPD and let DA be the diagonal matrix with entries
aii (1 ≤ i ≤ n). Then for all diagonal matrices D with positive entries

κ(D
−1/2
A AD

−1/2
A ) ≤ nzrmax κ(D

−1/2AD−1/2),

where nzrmax is the maximum number of entries in a row of A.
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Equilibration scaling

Finding an appropriate scaling is an open question, but a number
of heuristics have been proposed.

An obvious choice is to seek to balance among entries of the
scaled matrix SrASc: to have approximately equal absolute
values. This is called (approximate) equilibration scaling.
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Equilibration scaling: an algorithm to find it

Algorithm (Equilibration scaling in the infinity norm)
Input: The matrix A and convergence tolerance δ > 0.
Output: Diagonal scaling matrices Sr and Sc.

1: B(1) = A, D(1) = I, E(1) = I

2: for k = 1, 2, . . . do
3: Compute ∥B(k)

i,1:n∥∞ and ∥B(k)
1:n,i∥∞, 1 ≤ i ≤ n ▷ i-th row and column of B(k)

4: if maxi

{
|1− ∥B(k)

i,1:n∥∞|
}
≤ δ and maxi

{
|1− ∥B(k)

1:n,i∥∞|
}
≤ δ exit for loop

5: R = diag

(√
∥B(k)

i,1:n∥∞
)

and C = diag

(√
∥B(k)

1:n,i∥∞
)

6: B(k+1) = R−1B(k) C−1, D(k+1) = D(k) R−1, E(k+1) = E(k) C−1

7: end for
8: Sr = D(k+1) and Sc = E(k+1)
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1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Blocks in the input matrix

Finding blocks: indistinguishability

Vertices u and v of G are indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}.

u v

a

b c

d

u v

a

b c

d

On the right we see what happens if u or v is eliminated (keeping
u and v in the figure)
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Blocks in the input matrix

Finding blocks: indistinguishability

Vertices u and v of G are indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}.

u v

a

b c

d

u v

a

b c

d

On the right we see what happens if u or v is eliminated (keeping
u and v in the figure)
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Blocks in the input matrix

Finding blocks: using indistinguishability

Indistinguishability is an equivalence relation on V

Maximal indistinguishable vertex sets represent its classes→ a
partitioning of V into nsup ≥ 1 non-empty disjoint subsets

V = V1 ∪ V2 ∪ . . . ∪ Vnsup.

Assume S{A} symmetric, G(A) = (V, E).

Let V be partitioned into indistinguishable vertex sets and reorder
the vertices such that those belonging to each subset
V1, . . . ,Vnsup are numbered consecutively, with those in Vi
preceding those in Vi+1 (1 ≤ i < nsup).

Then then PAP T has a block structure in which the blocks are
dense, where P corresponds to the reordering above.
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Blocks in the input matrix

A simple way to find indistinuishable sets: the approach by Ashcraft

1 The main idea: finding reasons why vertices cannot be in the
same set

2 Number graph nodes/vertices (use numbers as their labels)
3 Compute vertex checksums:

chksum(u) =
∑

{u,v}∈E

v

4 Sort vertices by their checksums: in O(|E|+|V|log(|V|)) time
5 Different checksum means different block
6 First tie-breaking rule: if chksum(u) = chksum(v): compare
|adj(u)| and |adj(v)|

7 Second tie-breaking rule: compare adjacency sets of u and v (the
most time consuming)
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Blocks in the input matrix

Approximate indistinguishability: Saad

Using symbolic dot products between the rows of the matrix.
Here we assume that S{A} is symmetric but modifications exist.
Rewrite A as row vectors

A =
(
aT1 , . . . , a

T
n

)T
,

and consider G(A) = (V, E).
A partition V = V1 ∪ . . . ∪ Vnb is constructed using row products
aTi ak between different rows of A that express the level of
orthogonality between the rows;
if aTi ak is large then i and k (very similar pattern) are assigned to
the same vertex set.
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Blocks in the input matrix

Approximate indistinguishability: notes on the subsequent algorithm

Algorithm treats all entries of A as unity (symbolically)
The symbolic row products: a generalization of the angles
between rows expressed by their cosines.
On output, if adjmap(i1) = adjmap(i2) then vertices i1 and i2
belong to the same vertex set.
Symmetry of S{A} simplifies the computation of the symbolic row
products because for row i only k > i is considered: only the
symbolic row products that correspond to a triangular part of ATA
are checked.
Approximativeness is controlled by a threshold parameter
τ ∈ (0, 1].
Remind: procedure is sequential and thus similar to approximate
sequential coloring schemes.
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Blocks in the input matrix

Algorithm
Find approximately indistinguishable vertex sets
1: nb = 0, adjmap(1 : n) = 0, cosine(1 : n) = 0

2: for i = 1 : n do
3: if adjmap(i) = 0 then
4: nb = nb+ 1 ▷ Start a new set
5: adjmap(i) = ib

6: for (i, j) ∈ E do ▷ Corresponds to an entry in Ai,1:n

7: for (k, j) ∈ E with k > i do ▷ Both rows i and k have an entry in column j

8: if adjmap(k) = 0 then ▷ k has not been yet added to some partitioning set
9: cosine(k) = cosine(k) + 1 ▷ Increase partial dot product
10: end if
11: end for
12: for k with cosine(k) ̸= 0 do
13: if cosine(k)2 ≥ τ2 ∗ nzi ∗ nzk then ▷ Test similarity of row patterns
14: adjmap(k) = nb

15: end if
16: cosine(k) = 0

17: end for
18: end for
19: end if
20: end for
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Blocks in the input matrix

Approximate indistinguishability: an example



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗





1 3 2 6 4 5

1 ∗ ∗ ∗
3 ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗





1 3 5 2 6 4

1 ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗


Figure: The original matrix is given (left) together with the permuted matrix with
indistinguishable vertex sets V = {1, 3} ∪ {2, 6} ∪ {4} ∪ {5} obtained using τ = 1
(centre) and the permuted matrix with approximately indistinguishable vertex sets
V = {1, 3, 5} ∪ {2, 6} ∪ {4} obtained using τ = 0.5 (right). The threshold τ = 0.5
results in putting row 5 into the same set as row 1, making the vertex sets only
approximately indistinguishable. The permuted matrix has an approximate block form.
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Blocks in the input matrix

Finding supervariables: another splitting idea


1 2 3 4 5

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗

.

Initially, 1, 2, 3, 4, 5 are put into a single vertex set V1.
Vertices i = 1, 2 and 5 belong to adjG{1} ∪ {1}; they are moved
from V1 into a new vertex set.
There is no further splitting of the vertex sets for j = 2.
adjG{3}∪{3} = {3, 4, 5}. i = 3 and 4 are moved from V1 into a new
vertex set. V1 is now empty and can be discarded. Vertex i = 5 is
moved from the vertex set that holds vertices 1 and 2 into a new
vertex set. For j = 4 and 5 no additional splitting is performed.
Three supervariables are found, namely {1, 2}, {3, 4} and {5}.
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Blocks in the input matrix

Splitting idea and supervariables: more formally

Initially place all the vertices in a single vertex set (that is, into a
single supervariable).
Split into two supervariables by taking the first vertex j = 1 and
moving those vertices that are in the adjacency set of j into a new
vertex set (a new supervariable).
Each vertex j is considered in turn and each vertex set Vsv that
contains a vertex in adjG{j} ∪ j is split into two by moving the
vertices in adjG{j} ∪ j that belong to Vsv into a new vertex set.
As a result of the splitting and moving of vertices a vertex set can
become empty, in which case it is discarded.
Once the supervariables have been determined, the permuted
matrix PAP T can be condensed to a matrix of order equal to
nsup.
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Blocks in the input matrix

Finding supervariables

Algorithm (Find the supervariables of an undirected graph)

Input: Graph G of a symmetrically structured matrix.
Output: Partitioning of V into indistinguishable vertex sets.

1: V1 = {1, 2, . . . , n}
2: for j = 1 : n do
3: for i ∈ adjG{j} ∪ j do
4: Find sv such that i ∈ Vsv

5: if this is the first occurrence of sv for the current index j then
6: Establish a new set Vnsv and move i from Vsv to Vnsv

7: else
8: Move i from Vsv to Vnsv

9: end if
10: Discard Vsv if it is empty
11: end for
12: end for
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Sparse Least Squares and QR factorization

Least squares: our setting

Given A ∈ Rm×n of rank k ≤ min(m,n) and b ∈ Rm

find x ∈ Rn that minimises ∥b−Ax∥2.

Assuming (mostly) overdetermined problems: m > n. But we still
like to put them into a more general context.
In this case we have

Theorem
x is a solution of such least squares (LS) problem⇔ x satisfies the
n× n normal equations

Cx = AT b, C = ATA,
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Sparse Least Squares and QR factorization

Least squares: special case and rank deficiency

Lemma
Let m > n. The normal matrix C = ATA is SPD⇔ rank(A) = n. In
this case, the unique least squares solution and corresponding
residual are

x = (ATA)−1AT b and r = b−A(ATA)−1AT b.

A+ = (ATA)−1AT is the pseudoinverse of A.

If rank(A) < n (rank deficient) then A has a null space of
dimension n− rank(A) > 0 (solution is not unique) In this case,
we can seek the least-norm solution, that is, we solve

min
x∈S
∥x∥2, S = {x ∈ Rn | ∥b−Ax∥2 = min}.

This solution is always unique.
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Sparse Least Squares and QR factorization

Least squares: an augmented indefinite system
Another equivalent formulation

The normal equations are equivalent to the linear equations AT r = 0, and
r = b−Ax. Together: the (m+ n)× (m+ n) augmented system

K

(
z
x

)
=

(
b
c

)
with K =

(
I A
AT 0

)
,

with z = r and c = 0.

The symmetric indefinite matrix K is non singular if and only if rank(A) = n.

And symmetric indefinite solvers can be used.
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Sparse Least Squares and QR factorization

Least squares: sensitivity
Sensitivity quantification: the condition number
For the normal matrix:

κ2(A) = κ2(R) = (κ2(A
TA))1/2.

But, sensitivity of LS also determined by the right-hand side vector
b and more complex condition numbers are then introduced. Like
κLS(A, b) that considers only model (and not data) perturbations.

κLS(A, b) = κ2(A)

(
1 + κ2(A)

∥r∥2
||A||2||x||2

)
,with r = ∥r∥2/∥b∥2;

where x minimizes ∥b−Ax∥2: that is, we have residual norm
dependence.
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Sparse Least Squares and QR factorization

Least squares: rank deficiency
Rank deficiency due to small singular values of A plus the noise
are serious practical problems.

Rank-deficiency difficult to detect.

There exist rank-revealing approaches but they may be expensive.

We do not want to deal with problematic problems.

Our assumption was to have A regular: but, rank deficiency often
encountered. And solvers must be ready to cope with such
situations.
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Sparse Least Squares and QR factorization

Least squares: regularization
To cope with the rank deficiency: LS problems have to be modified
(regularized)
Regularization: extract the linearly independent information from
A and noisy b

Solving such systems we get only approximate solutions: recall
the interplay between direct and iterative methods.
Consider the two solution approaches so far at hand, taking into
account also regularization.

We will see that: forming ATA squares the condition number. But
solving symmetric indefinite systems may be problematic as well.
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Sparse Least Squares and QR factorization

Least squares: two solution approaches so far

1. SPD (Cholesky) factorization of ATA

min
x∈Rn

(∥b−Ax∥22 + γ2 ∥x∥22),

If γ > σmin(A), we have

κ(ATA+ γ2I) ≈ (∥A∥2/γ)2

Not a big progress, since γ should be kept small.
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Sparse Least Squares and QR factorization

Least squares: two solution approaches so far

2. Symmetric indefinite factorizations of K

Equivalent to

min
x∈Rn

∥∥∥(b
0

)
−
(
A
γ I

)
x
∥∥∥
2
.

This leads to(
I A
AT −γ2I

)(
r
x

)
=

(
b
0

)
or Kγ

(
s
x

)
=

(
b
0

)
, Kγ =

(
γI A
AT −γI

)
, r = γs.

If γ > σmin(A), we have κ(Kγ) ≈ ∥A∥2/γ.

Seems to be better, but indefiniteness.
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Sparse Least Squares and QR factorization

Least squares: an additional solution approach

One additional solution strategy: QR factorization based
approach.

A = (Q1 Q2)

(
R
0

)
= Q1R,

Q = (Q1 Q2) is orthogonal, R ∈ Rm×n is upper triangular.
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Sparse Least Squares and QR factorization

Least squares: QR factorization

A = (Q1 Q2)

(
R
0

)
= Q1R,

Multiplication by orthogonal matrices does not change the
Euclidean norm⇒

∥b−Ax∥22 = ∥QT (b−Ax)∥22 = ∥QT
1 b−Rx∥22 + ∥QT

2 b∥22.

The solution of LS problem and the residual can be computed:

Rx = d1, r = Q

(
0
d2

)
where QT b =

(
d1
d2

)
.

QT b can formally be obtained by applying the QR factorization to(
A b

)
and storing Q can then be avoided.
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Sparse Least Squares and QR factorization

Least squares: problematic aspects

Structurally (sparsity point of view), an effect similar to forming
normal equations also in the QR factorization:

ATA = (Q1R)TQ1R = RT (QT
1 Q1)R = RTR,

That is, R factor is mathematically equivalent to the transpose of
the L factor of the Cholesky factorization of the normal matrix.

Consequently, no royal way, we need to develop more solution
approaches, any of them can be better in particular situations.

So, let us discuss also the sparse QR factorization.
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Sparse Least Squares and QR factorization

Least squares: orthogonalization approaches

1. Givens rotations

A counterclockwise rotation of a nonzero vector
w = (w1 w2)

T ∈ R2 through an angle θ such that y2 of the rotated
vector y = (y1 y2)

T is zero.

G

(
w1

w2

)
=

(
c −s
s c

)(
w1

w2

)
=

(
y1
y2

)
=

(
d
0

)
,

where s = w2/d, c = −w1/d, d = ∥w∥2.

Can be expressed as a plane rotation in the extended space.
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Sparse Least Squares and QR factorization

QR factorization: Givens rotations

If the two axes correspond to row indices i and j of A then the
m×m matrix G(i, j) given by

G(i, j) =



i j

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

i 0 . . . c . . . s . . . 0
...

...
. . .

...
...

j 0 . . . −s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


,

with 1’s on the diagonal except rows i and j.
This enables to apply it to A as a matrix transformation.
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Sparse Least Squares and QR factorization

QR factorization: Givens rotations

Can be used to systematically eliminate individual subdiagonal
entries of A by applying them one-by-one to pairs of rows.

For example
G(n,m) . . . G(2,m) . . . G(2, 3) . . . G(1,m) . . . G(1, 2)A = R,

Q is the transpose of the product of the Givens rotations.
A sparse⇒ sufficient to eliminate only the nonzero entries.
The order of applying the rotations must satisfy some rules to
avoid creating nonzeros (intermediate fill-in) as much as possible.
.
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Sparse Least Squares and QR factorization

Least squares: orthogonalization approaches

2. Householder reflectors (HR)
HR is a symmetric orthogonal matrix of the form

H = I − βwwT ,

β is a scalar, w ̸= 0 satisfies

y = Hx⇒ |y1| = ||x||2, y2:n = 0

w is called a Householder vector.
The application of an m×m Householder reflector H(1) to the
matrix A with a1 as its first column can be written as

H(1)A = H(1)
(
a1 A1:m,2:n

)
= (I − β1w

(1)(w(1))T )
(
a1 A1:m,2:n

)
=

(
R1,1 R1,2:n

0 A(1)

)
.
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Sparse Least Squares and QR factorization

QR factorization: getting Householder reflectors (HR)

Elimination in the first column of A
Applying an (m− 1)× (m− 1) HR H2 = I − β2w

(2)(w(2))T to A(1)

such that its (1, 1) entry becomes zero.
H2 extended to the full dimension (to an m×m matrix) by setting

H(2) =

(
1

H2

)
.

The sequence of HR and their applications

A(0) = A, . . . , A(j) = H(j)A(j−1), j = 1, . . . , n− 1.
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Sparse Least Squares and QR factorization

QR factorization: Householder reflectors

Repeating the process yields H(n) . . . H(2)H(1)A = A(n)

That is A = QR,Q = H(1)H(2) . . . H(n) and R = A(n).

Complexity: compared with Givens rotations, Householder
reflectors reduce the flops count by a third (still three-times more
than LU) for a dense square A.
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Sparse Least Squares and QR factorization

QR factorization: Householder reflectors

Sparse A: more considerations needed:
▶ Q can be held explicitly as the product of the HRs
H(1)H(2) . . . H(n)

▶ Or implicitly as the sequence of Householder vectors
w(1), w(2) . . ..

The latter is generally more memory efficient because w(i) are
typically sparse.

Storing blocks of Householder vectors allows the use of Level 3
BLAS.
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Sparse Least Squares and QR factorization

QR factorization: Gram-Schmidt orthogonalisation

The Gram-Schmidt process computes q1, q2, . . . , qn

Each column ak, k = 1, . . . , n of A can be expressed as a linear
combination

ak = r1kq1 + r2kq2 + . . . rnkqn, rkk ̸= 0, ⟨qi, qi⟩ = 1.

This provides the QR factorization

A = Q1R,Q1 = (q1, q2, . . . , qn) ∈ Rn×n

Q1 is orthonormal, obtained and held explicitly.
More ways to orthogonalise by algorithms equivalent in exact
arithmetic.
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Sparse Least Squares and QR factorization

Gram-Schmidt orthogonalisation: two principial ways

The classical Gram-Schmidt (CGS) process generates qk by
orthonormalising ak against Qk−1 = (q1, q2, . . . , qk−1), that is

a = ak −Qk−1(q
T
1 ak . . . q

T
k−1ak)ak = ak −Qk−1Q

T
k−1ak, rkk = ∥a∥2, qk = a/rkk.

The modified Gram-Schmidt (MGS) algorithm: qk is obtained by
first projecting ak onto the subspace orthogonal to q1, then the
result is projected onto span{q1, q2}⊥, and so on, up to the
projection onto the subspace span{q1, q2, . . . , qk−1}⊥.

a = (I − qk−1q
T
k−1) . . . (I − q1q

T
1 )ak), rkk = ∥a∥2, qk = a/rkk.
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Sparse Least Squares and QR factorization

Gram-Schmidt orthogonalisation: and finite precision arithmetic

Finite-precision arithmetic: MGS is not equivalent to CGS. The
loss of orthogonality:

proportional to κ(A) (MGS), proportional to κ(A)2 (CGS).

CGS more suited to parallel computations, but often produces a
non-orthogonal set of vectors.

CGS can be improved by reorthogonalisation(s). Then no
significant difference between this approach and MGS.

MGS limits amplification of the rounding errors at the expense of
less exploitable parallelism.
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Sparse Least Squares and QR factorization

Contemporary sparse QR

Consider a symbolic phase predicting R or Q, (GR, H vectors) first
A Givens rotation G(i, j) applied to Ai,i:n and Aj,i:n of A:(

c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
A′

i,i:n

A′
j,i:n

)
, A′

j,i = 0.

An example that emphasizes sparsity patterns:(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗
∗ ∗

)
.

Applying G(i, j) gives(
c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
A′

i,i:n

A′
j,i:n

)
.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

(
c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
A′

i,i:n

A′
j,i:n

)
.

The (1, 1) entry A′
i,i seems to remain nonzero (it is the Euclidean

norm of the vector (Aii Aji)
T ) and the sparsity patterns of

columns 2 to n satisfy

S(A′
i,i+1:n) = S(Ai,i+1:n) ∪ S(Aj,i+1:n), 1 ≤ i ≤ n− 1.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

This way of fill-in description in the process is called the local
merge rule.

The rule based on merging of patterns is understandable since if
(u v)T is transformed by an arbitrary Givens rotation(

c −s
s c

)(
u
v

)
=

(
cu− sv
su+ cv

)
=

(
u′

v′

)
,

Then both entries u′ and v′ are generally nonzero (unless θ is a
multiple of a right angle).
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Contemporary sparse QR: symbolic phase

However, the fill-in can be overestimated. Consider a, b ̸= 0∗ a b
∗ ∗ ∗
∗ ∗ ∗

→
∗ c′ca c′cb

sa sb ∗ ∗
s′ca s′cb ∗ ∗


→

∗ a b
c′′sa− s′′s′ca c′′sb− s′′s′cb ∗ ∗
s′′sa+ c′′s′ca s′′sb+ c′′s′cb ∗ ∗

 .

First step: apply G(2, 1) with c, s to eliminate the (2, 1) entry.
Second step: apply G(3, 1) with c′, s′ to eliminate the (3, 1) entry.
Then, eliminate the fill-in at (3, 2) by rotation with c′′, s′′.
We have s′′sa+ c′′s′ca = 0.
But this a nonzero multiple of the entry s′′sb+ c′′s′cb at (3, 3),
independently of general values of a and b.
The row merge rule is not able to predict that the (3, 3) entry also
always becomes zero.
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Contemporary sparse QR: HR

Similarly, as by Givens rotations, the sparsity pattern of any row of(
R1,2:n

A(1)

)
can be obtained as

S(row) = S(R1,2:n)
⋃
k

S(A(1)
k,1:n−1).

This extends the row merge rule for Householder reflectors.

That is, S(row) unifies sparsity patterns of all the rows involved in
the outer product update.

But, the extended row merge rule may also overestimate the
actual fill in.
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Contemporary sparse QR: another possibility for symbolic QR

Potentially possible to predict fill-in in R using S(ATA) = S(LLT ).
That is, uniqueness of the Cholesky factorization⇒ the Cholesky
factor of ATA can be used to predict S(R). However, this can
again lead to an overestimate. Consider

A =


∗ ∗ ∗
∗
∗
∗

 . (50)

ATA is dense and S(L) is thus predicted to be dense.
But the QR factorization of A requires only to eliminate the (4, 3)
entry. Givens rotation applied to the last two rows of A does not
add any fill-in and S(R) = S(A1:3,:).
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Contemporary sparse QR: another possibility for symbolic QR

The relationship between the different predictions is summarised
by the following crucial result which is independent of the
numerical values of the nonzero entries of A.

Lemma

S(R) ⊆ {prediction of S(R) based on row merge rule } ⊆ {prediction
of S(R) based on ATA}.
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Contemporary sparse QR: predictions and the Hall properties

A ∈ Rm×n is said to be a Hall matrix (or to have the Hall property)
if every set of k columns has nonzeros in at least k rows
(1 ≤ k ≤ n).
A full-rank matrix must have the Hall property.
A is a strong Hall matrix (or to have the strong Hall property) if
every set of k columns (1 ≤ k < n) has nonzeros in at least k + 1
rows.
The following matrix does not have the strong Hall property: its
first column has a single nonzero entry.

A =


∗ ∗ ∗
∗
∗
∗

 .
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Contemporary sparse QR: predictions and the Hall properties

Lemma
If A has the strong Hall property then S(R) is exactly predicted by the
local merge rule and the Cholesky factorization of ATA.

There is a bunch of nice results on predictions like:
Exact predictions for Q and for the matrix W whose columns are
the Householder vectors. Such predictions are possible even for A
without the strong Hall property.
But of limited use: in practical QR factorizations also have to
consider the rank-deficiency and close-to-rank-deficiency.
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Contemporary sparse QR: predictions and the Hall properties

Recall the Dulmage-Mendelsohn (DM) decomposition of A:
obtained using maximum matching algorithms, provides a precise
structural characterization of rectangular matrices.
For an overdetermined A, the DM decomposition is

P1AP2 =

(
A1 A2

0 A3

)
, P1 and P2 are permutation matrices.

A1 is square, A3 is overdetermined matrix with the strong Hall
property: possible to predict R. An example:

P1AP2 =



∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗


.
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Contemporary sparse QR: predictions and the Hall properties

A1 is square, A3 is overdetermined matrix with the strong Hall
property: possible to predict R. An example:

P1AP2 =



∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗


.

But: if A is ill conditioned or close to rank deficient: this may not
be sufficient to factorize only the strong Hall blocks.
In the other words, the structure is not enough also for QR.
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Contemporary sparse QR: row order of A

The row order does not influence S(R).
But, row ordering can significantly affect the intermediate fill (and
the work needed to compute the factorization).
An example

A =



∗ ∗ ∗
∗
∗
∗
∗
∗

 , PA =



∗
∗
∗
∗ ∗ ∗
∗
∗

 .

Eliminating the (2, 1) and (3, 1) entries using GR G(1, 2) and
G(1, 3), there is intermediate fill-in in all remaining columns.
If rows 1 and 4 of A are exchanged (PA): this fill does not occur.
Heuristic algorithms to find a suitable row ordering needed.
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Contemporary sparse QR: row order of A

Algorithm
Row ordering of A
Input: The column indices fi(A) and li(A) of the first and last nonzeros in row i of A.

1: Order the rows by increasing fi(A).
2: for k = 1 : maxi fi(A) do
3: Order all rows with fi(A) = k by increasing li(A) ▷ Needed to resolve ties
4: end for

This is a simple row ordering approach. Ties at Line 3: ordering
the rows in ascending order of the number of new fill-in entries.
There are alternative strategies, like order the rows in ascending
order of li(A).

489 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 500 — #500 i
i

i
i

i
i

Sparse Least Squares and QR factorization

Contemporary sparse QR: row merge tree

Row merge tree generalises GR to submatrix rotations that merge
triangular submatrices.
The elimination tree T (ATA) can be used to control the order in
which the triangular submatrices are merged.
Illustrating the basic principle

A =



1 2 3 4

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗


.
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Contemporary sparse QR: row merge tree

Illustrating the basic principle

A =



1 2 3 4

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗


.

Let A1 be the submatrix comprising rows 1, 2, 3 and columns 1, 3, 4
of A and A2 be the submatrix comprising rows 4, 5, 6 and columns
2, 3, 4.
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Contemporary sparse QR: row merge tree

Illustrating the basic principle

A =



1 2 3 4

1 ⋆ ⋆
2 ⋆ ⋆
3 ⋆ ⋆ ⋆
4 ⋆ ⋆
5 ⋆ ⋆
6 ⋆ ⋆ ⋆
7 ⋆ ⋆


.

Let A1 be the submatrix comprising rows 1, 2, 3 and columns 1, 3, 4
of A and A2 be the submatrix comprising rows 4, 5, 6 and columns
2, 3, 4.
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Contemporary sparse QR: row merge tree

Illustrating the basic principle

A =



1 2 3 4

1 ⋆ ⋆
2 ⋆ ⋆
3 ⋆ ⋆ ⋆
4 ⋆ ⋆
5 ⋆ ⋆
6 ⋆ ⋆ ⋆
7 ⋆ ⋆


.

Let A1 be the submatrix comprising rows 1, 2, 3 and columns 1, 3, 4
of A and A2 be the submatrix comprising rows 4, 5, 6 and columns
2, 3, 4.
Perform the QR factorizations A1 = Q′

1R
′
1, A2 = Q′

2R
′
2. Can be

computed independently (different orthogonalization can be used).
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Contemporary sparse QR: row merge tree

if Q1 and Q2 denote the orthogonal matrices extended to R7×7, we
get a partial orthogonal transformation of A

A = Q1Q2



⋆ ⋆ ⋆
⋆ ⋆

⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆

∗ ∗


.

At this point, the last row A7,1:4 has been unchanged yet (its first
nonzero in in column 3).
Next: start the merge step: permute the rows of the partial
transformation corresponding to the first row of R′

1 and the first
row of R′

2 to be rows 1 and 2 of the final factor R of A.
494 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 505 — #505 i
i

i
i

i
i

Sparse Least Squares and QR factorization

Contemporary sparse QR: row merge tree

The merge step: permute the rows of the partial transformation
corresponding to the first row of R′

1 and the first row of R′
2 to be

rows 1 and 2 of the final factor R of A.
This gives



1 2 3 4

1 ⋆ ⋆ ⋆
4 ⋆ ⋆ ⋆
2 ⋆ ⋆
3 ⋆
5 ⋆ ⋆
6 ⋆
7 ∗ ∗


.
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Contemporary sparse QR: row merge tree

The remaining rows are just order by the row order algorithm
above (or its variant) using their fi. to give



1 2 3 4

1 ⋆ ⋆ ⋆
4 ⋆ ⋆ ⋆
2 ⋆ ⋆
5 ⋆ ⋆
7 ∗ ∗
3 ⋆
6 ⋆


.

Next: orthogonalization applied to the remaining rows.
Can be generalised to more than two blocks.
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Contemporary sparse QR: row merge tree

The key observation: the precedence relations among the
computed triangular factors of such blocks of rows are determined
by S(R).

Namely, before factorizing a block of rows with the first nonzero in
column k, all block factorizations that result in upper triangular
factors with a nonzero in column k must already have been
performed.

That is, this order is determined by precedence from the
elimination tree T (ATA).
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Contemporary sparse QR: multifrontal QR factorization

The strategy above using ns supernodes and T (ATA) leads to
the multifrontal algorithm.

Algorithm
Multifrontal QR factorization
Input: Matrix A of full column rank and the postordered assembly tree of ATA.
Output: Upper triangular factor R of the QR factorization, orthogonal
transformations used to transform A stored implicitly or as their product Q.

1: for js = 1 : ns do ▷ Follow the postordering of the tree
2: Assemble frontal matrix F (js) using rows of A for which the index of the first

nonzero entry belongs to js and the QR contribution blocks from children of js
3: Compute QR factorization of F (js) ▷ Results in a block row of R and

contribution block R(js)

4: Push R(js) onto the stack. ▷ R(js) will be popped from the stack when
assembling F (parent(js))

5: end for
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Contemporary sparse QR: multifrontal QR factorization

Example of the multifrontal method

A =



1 2 3 4 5 6 7 8

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗
10 ∗ ∗


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Contemporary sparse QR: multifrontal QR factorization

6, 7, 8

3, 4

1 2

5

a86 a88
a97 a98

r
(3)
36 r

(3)
37

r
(3)
47

r66 r67 r68
r77 r78

r88

a10,3 a10,4

a54 a56

r
(1)
23 r

(1)
26 r

(1)
27

r
(1)
66 r

(1)
67

r
(2)
44 r

(2)
46

r33 r34 r36 r37

r44 r46 r47

r
(3)
36 r

(3)
37

r
(3)
47

a11 a13
a21 a27
a61 a66

r11 r13 r16 r17

r
(1)
23 r

(1)
26 r

(1)
27

r
(1)
66 r

(1)
67

a32 a34 a36
a42 a46

r22 r24 r26

r
(2)
44 r

(2)
46

a75 a78 r55 r58
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Contemporary sparse QR: rank deficiency

The QR factorization is backward stable but if A is (close to) rank
deficient then the computed R factor is ill conditioned.
If rank(A) = rk < n then theoretically there is a column
permutation matrix P (which is not necessarily unique) and an
orthogonal matrix Q such that

AP = Q

(
R11 R12

0 0

)
,
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Contemporary sparse QR: rank revealing QR

More interesting problem: A diagonal entry rrk+1,rk+1 of large
absolute value computed after rk steps of the QR factorization
may hide the fact that the rank of A is rk.
Handling rank deficiency and revealing rank is an important
component of QR factorizations.
Rank revealing QR (RRQR) formally: σi(A) of A ordered
decreasingly, σrk(R11) the smallest singular value of the first rk
columns of AP and σ1(R22) be the largest singular value of R22.
RRQR if

σrk(R11) ≥ σrk(A)/c and σ1(R22) ≤ c σrk+1(A),

where c = c(k, n) > 0 is bounded by a low-degree polynomial in rk
and n.
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1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
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Minimizing the fill-in: reorderings

Key problem: minimizing the fill-in
Our tools: permutations.
The problem of finding a permutation to minimize fill-in is NP
complete. Thus heuristics are used to determine orderings that
limit the amount of fill-in; we refer to these as fill-reducing
orderings.
Frequently, this is done using the sparsity pattern S{A} alone,
If the matrix is not SPD, additional permutations of A may be
needed to make the matrix factorizable.
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Minimizing the fill-in: reorderings
Two main classes of reorderings that work with S{A} are commonly
used.
Local orderings attempt to limit fill-in by repeated local decisions

based on G(A) (or a relevant quotient graph).
Global orderings consider the whole sparsity pattern of A and seek to

find a permutation using a divide-and-conquer approach.
Such methods are normally used in conjunction with a
local fill-reducing ordering, as the latter generally works
well for problems that are not really large.
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Minimizing the fill-in: reorderings

Assumed that A is irreducible. If not,
▶ If S{A} is symmetric, the algorithms are applied to each component

of G(A) independently and n is then the number of vertices in the
component.

▶ If S{A} is nonsymmetric, we assume that A is in block triangular
form and the algorithms are used on the graph of each block on the
diagonal.

We also assume that A has no rows or columns that are (almost)
dense. If so, such rows and/or columns should be treated
independently.
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Minimizing the fill-in: reorderings

Historically, ordering the matrix A before using a direct solver to
factorize it was generally cheap compared to the numerical
factorization cost.
It is not the case nowadays due to the development of the
computational tools.
In the symmetric case, the diagonal entries of A are required to be
present in S{A} (thus zeros on the diagonal are included in the
sparsity structure). The aim is to limit fill-in in the L factor of an
LLT (or LDLT ) factorization of A.
Two greedy heuristics are the minimum degree (MD) criterion and
the local minimum fill (MF) criterion.
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Minimum fill-in (MF) criterion

One way to reduce fill-in is to use a local minimum fill-in (MF)
criterion:

▶ Select as the next variable in the ordering one that will introduce the
least fill-in in the factor at that step.

This is sometimes called the minimum deficiency approach.
MF can produce good orderings, its cost is often considered to be
prohibitive.
An approximate variant (AMF).
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Basic minimum degree (MD) algorithm
The best-known and most widely-used greedy heuristic for limiting
fill-in.
It seeks to find a permutation such that at each step of the
factorization the number of entries in the corresponding column of
L is approximately minimized.
Less expensive to compute compared to that used by the
minimum fill-in criterion.
The MD algorithm can be implemented using G(A) and it can
predict the required factor storage without generating the structure
of L.
At step k, the number of off-diagonal nonzeros in a row or column
of the active submatrix is the current degree of the corresponding
vertex in the elimination graph Gk. The algorithm selects a vertex
of minimum current degree in Gk and labels it vk, i.e., next for
elimination.
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Minimum degree algorithm

Algorithm ( Basic minimum degree (MD) algorithm)
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: Set G1 = G and compute the degree degG1(u) of all u ∈ V(G1)

2: for k = 1 : n− 1 do
3: Compute mdeg = min{degGk (u) |u ∈ V(Gk)} ▷ mdeg is the current minimum

degree
4: Choose vk ∈ V(Gk) such that degGk (vk) = mdeg

5: p(k) = vk ▷ vk is the next vertex in the elimination order
6: Construct Gk+1 and update the current degrees of its vertices
7: end for
8: p(n) = vn where vn is the only vertex in Gn
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Practical problems: storing and using the fill-in
A clique with m vertices has m(m− 1)/2 edges. This may be too
many! It can be must be represented by storing a list of its
vertices, without any reference to edges.
This leads to implicit storing of the elimination graphs with
significant consequences.
As the elimination process progresses, cliques grow or more than
one clique joins to form larger cliques: clique amalgamation.
Note that in the nonsymmetric case we need to store edges
orientation in addition to be happy from cliques.

Edges of the elimination graphs can be then expressed through
the reachable sets.
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From Parter’s rule to reachable sets

Lemma
(Edges of Gk in terms of reachable sets) Assume S{A} is symmetric.
Let Vk be the set of k − 1 vertices of G(A) that have already been
eliminated and let v be a vertex in the elimination graph Gk. Then the
set of vertices adjacent to v in Gk is the set Reach(v,Vk) of vertices
reachable from v through Vk in G(A).

Can be modified for A nonsymmetric.
This just points out that the actual graph elimination model may be
more complicated ©

512 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 523 — #523 i
i

i
i

i
i

Reorderings

From Parter’s rule to reachable sets

Figure: graph G(A). The adjacency sets of the vertices in G4 that
result from eliminating vertices V4 = {1, 2, 3} are
adjG4{4} = Reach(4,V4) = {5},
adjG4{5} = Reach(5,V4) = {4, 6, 7},
adjG4{6} = Reach(6,V4) = {5, 7},
adjG4{7} = Reach(7,V4) = {5, 6, 8},
adjG4{8} = Reach(8,V4) = {7}.

4 1 5 2

6 7 3

8

Figure: The grey vertices 1, 2, and 3 are eliminated in the first three elimination steps
(V4 = {1, 2, 3}).
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From Parter’s rule to reachable sets

Lemma
(Edges of Gk in terms of reachable sets) Assume S{A} is symmetric.
Let Vk be the set of k − 1 vertices of G(A) that have already been
eliminated and let v be a vertex in the elimination graph Gk. Then the
set of vertices adjacent to v in Gk is the set Reach(v,Vk) of vertices
reachable from v through Vk in G(A).

Proof.
The proof is by induction on k. The result holds trivially for k = 1 because the
Reach(v,V1) = adjG(A){v}. Assume the result holds for G1, . . . ,Gk with k ≥ 1 and let
v be a vertex in the graph Gk+1 that is obtained after eliminating vk from Gk. If v is not
adjacent to vk in Gk then Reach(v,Vk+1) = Reach(v,Vk). Otherwise, if v is adjacent
to vk in Gk then adjGk+1{v} = Reach(v,Vk) ∪Reach(vk,Vk). In both cases Parter’s
rule implies that the new adjacency set is exactly equal to the vertices that are
reachable from v through Vk+1, that is, Reach(v,Vk+1). □
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Minimum degree algorithm

The set of vertices adjacent to vk in G(A) is Reach(vk,Vk), where
Vk is the set of k − 1 vertices that have already been eliminated.
If u ∈ Reach(vk,Vk), u ̸= vk, then its updated current degree is
|Reach(u,Vk+1)|, where Vk+1 = Vk ∪ vk.
A tie-breaking strategy is needed when there is more than one
vertex of current minimum degree.
It is possible to construct artificial matrices showing that some
systematic tie-breaking choices can lead to a large amount of
fill-in but such behaviour is not typical.
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Minimum degree algorithm

2

13

4 5
6

13

4 5
6

1

4 5
6

4 5
6

Figure: An illustration of three steps of the MD algorithm. The original graph G
and the elimination graphs G2, G3 and G4 that result from eliminating vertex 2,
then vertex 3 and then vertex 1. The red dashed lines denote fill edges.
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Minimum degree algorithm

The construction of each elimination graph Gk+1 is central to the
implementation.
Because eliminating a vertex potentially creates fill-in, an efficient
representation is needed.
Moreover, recalculating the current degrees is time consuming.
Using supervariables is a must.
Gv denotes the elimination graph obtained from G when vertex
v ∈ V(G) is eliminated.
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Indistinguishability (reminder)

Definition

Two different vertices u and v of G are called indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}. (51)

u v u v

G G_v
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Indistinguishability

Theorem
Let u and w be indistinguishable vertices in G. If v ∈ V(G) with
v ̸= u,w, then u and w are indistinguishable in Gv.

Proof.
Two cases must be considered. First, let u ̸∈ adjG{v}. Then w ̸∈ adjG{v} and if v is eliminated,

the adjacency sets of u and w are unchanged and they remain indistinguishable in the resulting

elimination graph Gv . Second, let u,w ∈ adjG{v}. When v is eliminated, because u and w are

indistinguishable in G, their adjacency sets in Gv will be modified in the same way, by adding the

entries of adjG{v} that are not already in adjG{u} and adjG{w}. Consequently, u and w are

indistinguishable in Gv . □
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Indistinguishability
Figure demonstrates the two cases in the proof of Theorem above.
Here, u and w are indistinguishable vertices in G. Setting v ≡ v′

illustrates u ̸∈ adjG{v}. If v′ is eliminated then the adjacency sets of u
and w are clearly unchanged. Setting v ≡ v′′ illustrates u,w ∈ adjG{v}.
In this case, if v′′ is eliminated then vertices s and t are added to both
adjG{u} and adjG{w}.

u

w

v′′ r

s

t

v′

Figure: An example to illustrate the Theorem. u and w are indistinguishable
vertices in G; adjG{u} = {r, w, v′′} and adjG{w} = {r, u, v′′}.
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Indistinguishability

Theorem
Let u and w be indistinguishable vertices in G. If w is of minimum
degree in G then u is of minimum degree in Gw.

Proof.
Let degG(w) = mdeg. Then degG(u) = mdeg. Indistinguishable vertices are always neighbours.

Eliminating w gives degGw (u) = mdeg − 1 because w is removed from the adjacency set of u

and there is no neighbour of u in Gw that was not its neighbour in G. If x ̸= w and x ∈ adjG{u}
then the number of neighbours of x in Gw is at least mdeg− 1. Otherwise, if x ̸∈ adjG{u} then its

adjacency set in Gw is the same as in G and is of the size at least mdeg. The result follows. □
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Indistinguishability
Theorem above is illustrated in Figure.

u w

s t

r v

Figure: An illustration of Theorem. Vertices u and w are of minimum degree
(with degree mdeg = 3) and are indistinguishable in G. After elimination of w,
the current degree of u is mdeg − 1 and the current degree of each of the
other vertices is at most mdeg − 1. Therefore, u is of current minimum degree
in Gw. Note that vertices r and v are also of minimum degree and
indistinguishable in G; they are not neighbours of w and their degrees do not
change when w is eliminated. 522 / 705
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Indistinguishability

The results can be extended to more than two indistinguishable
vertices, which allows indistinguishable vertices to be selected
one after another in the MD ordering.
This is referred to as mass elimination.
Treating indistinguishable vertices as a single supervariable cuts
the number of vertices and edges in the elimination graphs, which
reduces the work needed for degree updates.
The external degree of a vertex is the number of vertices adjacent
to it that are not indistinguishable from it. Using this leads to
algorithmic efficiency.
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Degree outmatching

A concept that is closely related to that of indistinguishable
vertices is degree outmatching.
This avoids computing the degrees of vertices that are known not
to be of current minimum degree.
Vertex w is said to be outmatched by vertex u if

adjG{u} ∪ {u} ⊆ adjG{w} ∪ {w}.

It follows that degG(u) ≤ degG(w).
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Degree outmatching

u

w

v′′ v′′′

v′

Figure: An example G in which vertex w is outmatched by vertex u. v′ is not a
neighbour of u or w; vertex v′′ is a neighbour of both u and w; v′′′ is a
neighbour of w but not of u.
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Degree outmatching

Importantly, degree outmatching is preserved when vertex v ∈ G
of minimum degree is eliminated, as stated in the following result.

Theorem
In the graph G let vertex w be outmatched by vertex u and vertex v
(v ̸= u,w) be of minimum degree. Then w is outmatched in Gv by u.

Proof.
Three cases must be considered. First, if u /∈ adjG{v} and w /∈ adjG{v} then the adjacency sets

of u and w in Gv are the same as in G. Second, if v is a neighbour of both u and w in G then any

neighbours of v that were not neighbours of u and w are added to their adjacency sets in Gv .

Third, if u /∈ adjG{v} and w ∈ adjG{v} then the adjacency set of u in Gv is the same as in G but

any neighbours of v that were not neighbours of w are added to the adjacency set of w in Gv . In

all three cases, w is still outmatched by u in Gv . □
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Degree outmatching

The three possible cases for v in the proof of Theorem are
illustrated in Figure above by setting v ≡ v′, v′′ and v′′′,
respectively.
If w is outmatched by u then it is not necessary to consider w as a
candidate for elimination and
all updates to the data structures related to w can be postponed
until u has been eliminated.
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Cliques and quotient graphs

From Parter’s rule, if vertex v is selected at step k then the
elimination matrix that corresponds to Gk+1 contains a dense
submatrix of size equal to the number of off-diagonal entries in
row and column v in the matrix that corresponds to Gk.
For large matrices, creating and explicitly storing the edges in the
sequence of elimination graphs is impractical and a more compact
and efficient representation is needed.
Each elimination graph can be interpreted as a collection of
cliques, including the original graph G, which can be regarded as
having |E| cliques, each consisting of two vertices (or, equivalently,
an edge).
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Cliques and quotient graphs
Let {V1,V2, . . . ,Vq} be the set of cliques for the current graph and
let v be a vertex of current minimum degree that is selected for
elimination. Let {Vs1 ,Vs2 , . . . ,Vst} be the subset of cliques to
which v belongs. Two steps are then required.

1 Remove the cliques {Vs1 ,Vs2 , . . . ,Vst} from {V1,V2, . . . ,Vq}.
2 Add the new clique Vv = {Vs1 ∪ . . . ∪ Vst} \ {v} into the set of

cliques.
Hence

degG(v) = |Vv| <
t∑

i=1

|Vsi |,

and because {Vs1 ,Vs2 , . . . ,Vst} can now be discarded, the storage
required for the representation of the sequence of elimination
graphs never exceeds that needed for G(A).
The storage to compute an MD ordering is therefore known
beforehand in spite of the rather dynamic nature of the elimination
process.
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Cliques and quotient graphs
The index of the eliminated vertex can be used as the index of the
new clique. This is called an element or enode (the terminology
comes from finite-element methods), to distinguish it from an
uneliminated vertex, which is termed an snode.
A sequence of special quotient graphs G[1] = G(A),G[2], . . . ,G[n]
with the two types of vertices is generated in place of the
elimination graphs.
Each G[k] has n vertices that satisfy

V(G) = Vsnodes ∪ Venodes, Vsnodes ∩ Venodes = ∅,
where Vsnodes and Venodes are the sets of snodes and enodes,
respectively.
When v is eliminated, any enodes adjacent to it are no longer
required to represent the sparsity pattern of the corresponding
active submatrix and so they can be removed. This is called
element absorption.
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Cliques and quotient graphs

Working with the special quotient graphs can be demonstrated by
considering the computation of the vertex degrees.
To compute the degree of an uneliminated vertex, the set of
neighbouring snodes is counted.
Then, if a neighbour of one of these snodes is an enode, its
neighbours are also counted (avoiding double counting).
More formally, if v ∈ Vsnodes then the adjacency set of v is the
union of its neighbours in Vsnodes and the vertices reachable from
v via its neighbours in Venodes.
In this way, vertex degrees are computed by considering fill-paths
Amalgamation improves this strategy: mass elimination.
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Cliques and quotient graphs: mass elimination model

Definition
Mass elimination graph Γ of the graph G = (V,E) is a ordered triple

(S, E , E), where S ∪ E = V,S ∩ E = ∅ and E ⊆
(
S
2

)
∪
(
E(Γ)
2

)
are its

edges.

Edge set E captures eliminated vertices.
Edge set S captures non-eliminated vertices.
Neighbors of non-eliminated vertices are found as reachability
sets.
Search through the reachability sets can be pruned: →
approximate minimum degree (AMD) algorithm.
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Cliques and quotient graphs
After elimination of 1, a new edge is added, getting a clique. The
elimination of 2 creates no additional fill and G3 represents the
sparsity structure of the corresponding active submatrix A(3).
Then, 1 is an enode, the fill edge is represented implicitly. After
the second step, the enodes 1 and 2 can be amalgamated as well
as snodes 3 and 4 being indistinguishable.

1

2

3

4
5

2

3

4
5

3

4
5

1

2

3

4
5 1, 2 3, 4 5

Figure: The top line shows G = G1, G2 and G3. The bottom line shows the
quotient graphs G[2] and G[3] after the first and second elimination steps. 533 / 705
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Multiple minimum degree (MMD) algorithm

The multiple minimum degree (MMD) algorithm aims to improve
efficiency by processing several independent vertices that are
each of minimum current degree together in the same step, before
the degree updates are performed.
At each outer loop, t ≥ 1 denotes the number of vertices of
minimum current degree that are mutually non-adjacent and so
can be put into the elimination order one after another.
An example follows.
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Figure: The red (corner) vertices of G are each of degree 2 and are ordered
consecutively during the first step of Algorithm 13.2.
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Multiple minimum degree (MMD) algorithm

Algorithm ( Basic multiple minimum degree (MMD) algorithm)
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: Set k = 1, G1 = G and compute the degree degG1 (u) of all u ∈ V(G1)

2: while k ≤ n do
3: Compute mdeg = min{degGk (u) |u ∈ V(Gk)}
4: Find all mutually non-adjacent vj ∈ V(Gk), j = 1, . . . , t with degGk (vj) = mdeg

5: for j = 1 : t do
6: p(k) = vj ▷ Vertex vj is the next vertex in the elimination order
7: k = k + 1

8: end for
9: if k < n then
10: Construct Gk+1 and update the current degrees of its vertices
11: end if
12: end while
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MD and MMD: complexity

The complexity of the MD and MMD algorithms is O(nz(A)n2) but
because for MMD the outer loop of the algorithm update is
performed fewer times, it can be significantly faster then MD.
MMD orderings can also lead to less fill-in, possibly a
consequence of introducing some kind of regularity into the
ordering sequence.
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Approximate minimum degree (AMD) algorithm

The idea behind the widely-used approximate minimum degree
(AMD) algorithm is to inexpensively compute an upper bound on a
vertex degree in place of the degree, and to use this bound as an
approximation to the external degree.
The quality of the orderings obtained using the AMD algorithm are
competitive with those computed using the MD algorithm and can
surpass them.
The complexity of AMD is O(nz(A)n) and, in practice, its runtime
is typically significantly less than that of the MD and MMD
approaches.
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Minimizing the bandwidth and profile

An alternative way of reducing the fill-in locally is to add another
criterion to the relabelling of the vertices, such as restricting the
nonzeros of the permuted matrix to specific positions.
The most popular approach is to force them to lie close to the
main diagonal.
All fill-in then takes place between the first entry of a row and the
diagonal or between the first entry of a column and the diagonal.
This allows straightforward implementations of Gaussian
elimination that employ static data structures.
Here we again consider symmetric S{A}; generalizations are
possible.
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The band and envelope of a matrix
Denote:

ηi(A) = min{j | 1 ≤ i ≤ j, with aij ̸= 0}, 1 ≤ i ≤ n, (52)

that is, ηi(A) is the column index of the first entry in the i-th row of A.
Define

βi(A) = i− ηi(A), 1 ≤ i ≤ n.

The semibandwidth of A is

max{βi(A)| 1 ≤ i ≤ n},

and the bandwidth is

β(A) = 2 ∗max{βi(A) | 1 ≤ i ≤ n}+ 1.

The band of A is the following set of index pairs in A

band(A) = {(i, j) | 0 < i− j ≤ β(A)}.
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The band and envelope of a matrix

The envelope is the set of index pairs that lie between the first
entry in each row and the diagonal:

env(A) = {(i, j) | 0 < i− j ≤ βi(A)}.

Note that the band and envelope of a sparse symmetrically
structured matrix A include only entries of the strict lower
triangular part of A.
The envelope is easily visualized: picture the lower triangular part
of A, and remove the diagonal and the leading zero entries in
each row. The remaining entries (whether nonzero or zero)
comprise the envelope of A.
The profile of A is defined to be the number of entries in the
envelope (the envelope size) plus n.
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The band and envelope of a matrix: shape pushers

* ** * * * * * * * *

* * * * * * *

* * * *
*

* *
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Moving
window -
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The band and envelope of a matrix
An illustrative example: Here η1(A) = 1, β1(A) = 0, η2(A) = 1,
β2(A) = 1, η3(A) = 2, β3(A) = 1, and so on.


∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

∗ ∗




∗ ∗ ∗
⊛ ∗ ∗ ∗
⊛ ⊛ ∗ ∗ ∗

⊛ ⊛ ∗ ∗ ∗
⊛ ⊛ ∗ ∗ ∗

⊛ ⊛ ∗ ∗
⊛ ⊛ ∗




∗ ∗
⊛ ∗ ∗ ∗

⊛ ∗ ∗
⊛ ⊛ ∗ ∗

∗ ∗
⊛ ⊛ ∗ ∗

⊛ ∗


Figure: Illustration of the band and envelope of a matrix A whose sparsity
pattern is on the left. In the centre, the positions of band(A) are circled and on
the right, the positions of env(A) are circled. The bandwidth is 5 and the
envelope size and the profile are 7 and 14, respectively.
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The band and envelope of a matrix
Static structures!

Theorem
If L is the Cholesky factor of A then

env(A) = env(L).

Proof.
The proof uses mathematical induction on the principal leading submatrices of A of order k. The
result is clearly true for k = 1 and k = 2. Assume it holds for 2 ≤ k < n and consider the block
factorization (

A1:k,1:k u1:k

uT
1:k α

)
=

(
L1:k,1:k 0
vT1:k β

)(
LT
1:k,1:k v1:k
0 β

)
,

where α and β are scalars. Equating the left and right sides, L1:k,1:kv1:k = u1:k. Because

uj = 0 for j < ηk+1(A) and uηk+1 ̸= 0, it follows that vj = 0 for j < ηk+1(A) and vηk+1 ̸= 0.

This proves the induction step. □

A straightforward corollary is that band(A) = band(L).
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The band and envelope of a matrix

Finding a permutation P to minimize the band or profile of PAP T

is again combinatorially hard and again heuristics are used to
efficiently find an acceptable P .
The popular Cuthill McKee (CM) approach chooses a suitable
starting vertex s and labels it 1.
Then, for i = 1, 2, . . . , n− 1, all vertices adjacent to vertex i that
are still unlabelled are labelled successively in order of increasing
degree, as described in Algorithm below.
A very important variation is the Reverse Cuthill McKee (RCM)
algorithm, which incorporates a final step in which the CM
ordering is reversed.
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Level-based orderings

Algorithm (CM and RCM algorithms for band and profile
reduction)
Input: Graph G of a symmetrically structured matrix and a starting vertex s.
Output: Permutation vectors pcm and prcm that define new labellings of the vertices of G(A).

1: label(1 : n) = false

2: Compute adjG{u} and degG(u) for all u ∈ V(G)
3: k = 1, v1 = s, pcm(1) = v1, label(v1) = true

4: for i = 1 : n− 1 do
5: for w ∈ adjG{vi} with label(w) = false in order of increasing degree do
6: k = k + 1, vk = w, pcm(k) = vk, label(vk) = true

7: end for
8: end for
9: For the RCM ordering, prcm(i) = pcm(n− i+ 1), i = 1, 2, . . . , n.
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The CM- and RCM-permuted matrices have the same bandwidth
but the latter can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,
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Level-based orderings
The importance of the CM and RCM orderings is also expressed by:

Theorem
Let A be symmetrically structured and irreducible. If P corresponds to
the CM labelling obtained from Algorithm and L is the Cholesky factor
of P TAP then env(L) is full, that is, all entries of the envelope are
nonzero.

The full envelope of the Cholesky factor of the permuted matrix
implies cache efficiency when performing the triangular solves
once the factorization is complete.
A crucial difference between profile reduction ordering algorithms
and minimum degree strategies is that the former is based solely
on G: the costly construction of quotient graphs is not needed.
However, unless the profile after reordering is very small, there
can be significantly more fill-in in the factor.
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Level-based orderings

Key to the success is the choice of the starting vertex s.
A good candidate is a vertex for which the maximum distance
between it and some other vertex in G is large.
Formally, the eccentricity ϵ(u) of the vertex u in the connected
undirected graph G is defined to be

ϵ(u) = max
v∈V

d(u, v),

where d(u, v) is the distance between the vertices u and v (the
length of the shortest path between these vertices).
The maximum eccentricity taken over all the vertices is the
diameter of G (that is, the maximum distance between any pair of
vertices). The endpoints of a diameter (also termed peripheral
vertices) provide good starting vertices.
The complexity of finding a diameter is O(n3): approximation
(pseudo-preferal vertices) are needed.
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Breadth-first search (BFS)

Starting from a chosen start vertex s, a breadth-first search (BFS)
explores all the vertices adjacent to s.
Then all the vertices whose shortest path from s is of length 2,
and then length 3, and so on
A queue is used in its implementation.
The search terminates when there are no unexplored edges (v, w)
with v ∈ Vv and w ∈ Vn that are reachable from s.
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Graphs and their matrices

Breadth-first search (BFS)

76

2

1

3

8

54

Figure: An illustration of a BFS of a connected undirected graph, with the
labels indicating the order in which the vertices are visited.
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Level-based orderings

A heuristic algorithm is used to find pseudo-peripheral vertices. A
commonly-used approach is based on level sets. A level structure
rooted at a vertex r is defined as the partitioning of V into disjoint
levels L1(r),L2(r), . . . ,Lh(r) such that

(i) L1(r) = {r} and
(ii) for 1 < i ≤ h, Li(r) is the set of all vertices that
are adjacent to vertices in Li−1(r) but are not in
L1(r),L2(r), . . . ,Li−1(r).

The level structure rooted at r may be expressed as the set
L(r) = {L1(r),L2(r), . . . ,Lh(r)}, where h is the total number of
levels and is termed the depth.
The level sets can be found using a breadth-first search that starts
at the root r.
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Level-based orderings: GPS

Algorithm ( GPS algorithm to find pseudo-peripheral vertices)

1: Construct L(r) and set flag = false

2: while flag = false do
3: flag = true

4: for i = 1 : |L(r)| do
5: wi ∈ L(r) ▷ Select vertex wi from last level set
6: if flag = true then
7: Construct L(wi)

8: if depth(L(wi)) > depth(L(r)) then
9: flag = false ▷ Flag that wi will be used as new initial vertex
10: end if
11: end if
12: end for
13: if flag = true then
14: s = r and t = wi ▷ s has been chosen; while loop will terminate algorithm
15: else
16: r = wi

17: end if
18: end while 553 / 705
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Level-based orderings

A simple example: starting with r = 2, after two passes through the
while loop, the GPS algorithm returns s = 8 and t = 1 as
pseudo-peripheral vertices.

1 2 3 4

5 6 7 8

Figure: An example to illustrate Algorithm 13.4 for finding pseudo-peripheral
vertices. With root vertex r = 2, the first level set structure is
L(2) = {{2}, {1, 3}, {4, 5, 7}, {6, 8}}. Setting r = 8 at Step 16, the second level
set structure is L(8) = {{8}, {4, 7}, {3, 6}, {2, 5}, {1}} and the algorithm
terminates with s = 8 and t = 1.
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Spectral orderings

The spectral algorithm associates a positive semidefinite
Laplacian matrix Lp with the symmetric matrix A as follows:

(Lp)ij =


−1 if i ̸= j and aij ̸= 0,

degG(i) if i = j,

0 otherwise.

An eigenvector corresponding to the smallest positive eigenvalue
of the Laplacian matrix is called a Fiedler vector. If G is connected,
Lp is irreducible and the second smallest eigenvalue is positive.
The vertices of G are ordered by sorting the entries of the Fiedler
vector into monotonic order. Applying the permutation
symmetrically to A yields the spectral ordering.
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Spectral orderings
The use of the Fiedler vector for reordering A comes from
considering the matrix envelope with the size

|env(A)| =
n∑

i=1

βi =

n∑
i=1

max
k<i

(k,i)∈G

(i− k).

The asymptotic upper bound on the operation count for the
factorization based on env(A) is

workenv =

n∑
i=1

β2
i =

n∑
i=1

max
k<i

(k,i)∈G

(i− k)2.

Ordering the vertices using the Fiedler vector is closely related to
minimizing weightenv over all possible vertex reorderings, where

weightenv =
n∑

i=1

∑
k<i

(k,i)∈G

(i− k)2.
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Spectral orderings

Thus, while minimizing the profile and envelope is related to the
infinity norm, minimizing weightenv is related to the Euclidean
norm of the distance between graph vertices.
Although computing the Fiedler vector can be computationally
expensive it does have the advantage of easy vectorization and
parallelization and the resulting ordering can give small profiles
and low operation counts.
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Local fill-reducing orderings for nonsymmetric S{A}

If S{A} is nonsymmetric then an often-used strategy is to apply
the minimum degree algorithm (or one of its variants) or a band or
profile-reducing ordering to the undirected graph G(A+AT ).
This can work well if the symmetry index s(A) is close to 1. But if
A is highly nonsymmetric, another approach is required.
Markowitz pivoting generalizes the MD algorithm by choosing the
pivot entry based on vertex degrees computed directly from the
nonsymmetric S{A}; the result is a nonsymmetric permutation.
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Markowitz pivoting

At step k of the LU factorization, consider the
(n− k + 1)× (n− k + 1) active submatrix, that is, the Schur
complement S(k). Let nz(rowi) and nz(colj) denote the number of
entries in row i and column j of S(k) (1 ≤ i, j ≤ n− k + 1).
Markowitz pivoting selects as the k-th pivot the entry of S(k) that
minimizes the Markowitz count given by the product

(nz(rowi)− 1)(nz(colj)− 1).

It can be described using a sequence of bipartite graphs of the
active submatrices but here we use a matrix-based description
that permutes A on the fly.
Markowitz pivoting is generally incorporated into the numerical
factorization phase of an LU solver, rather than being used to
derive an initial reordering of A.
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Markowitz pivoting
Implementation of the algorithm requires access to the rows and the
columns of the matrix.

Algorithm ( Markowitz pivoting)
Input: Matrix A with a nonsymmetric sparsity pattern.
Output: A′ = PAQ, where P and Q are permutation matrices chosen to limit fill in.

1: Set S(1) = A and A′ = A

2: for k = 1 : n− 1 do
3: Compute nz(rowi) and nz(colj) (1 ≤ i, j ≤ n− k + 1)
4: Find an entry s

(k)
ij of S(k) that minimizes (nz(rowi)− 1)(nz(colj)− 1)

5: Permute the rows and columns so that s(k)ij is the (1, 1) entry of the permuted S(k)

6: Compute Schur complement S(k+1) of the permuted S(k) with respect to its (1, 1) entry
7: end for
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Markowitz pivoting
Example: the first pivot is a24 with Markowitz count 1; it does not cause
fill-in. The second pivot has Markowitz count 2 in S(2); it results in one
filled entry.



1 2 3 4 5

1 ∗ ∗ ∗ ∗
2 ∗ ⊛
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗




4 1 2 3 5

2 ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ⊛ ∗
5 ∗ ∗ ∗




4 2 1 3 5

2 ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ f ∗


Figure: Illustration of Markowitz pivoting. The first and second pivots are
circled. The sparsity pattern of A = S(1) is on the left. In the centre is the
sparsity pattern after permuting the pivot in position (2, 4) to the (1, 1) position
of S(1). There is no fill-in after the first factorization step. On the right is the
sparsity pattern after selecting the second pivot that has the original position
(4, 2) and permuting it to the (1, 1) position of S(2). The resulting filled entry is
denoted by f . Note that the nonsymmetric permutations transform the
originally irreducible matrix into a reducible one. 561 / 705
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Local fill-reducing orderings for nonsymmetric S{A}

Markowitz pivoting as described here only considers the sparsity
of A and the subsequent Schur complements.
In practice, small pivots should be avoided.
Practical implementations: relaxations: restriction to a limited
number of rows and columns.
Dynamic sparse formats like DS needed.
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Global nested dissection orderings

Nested dissection (ND) is the most important and widely-used
global ordering strategy for direct methods when S{A} is
symmetric; it is particularly effective for ordering very large
matrices.
Identifying a small set of vertices VS (known as a vertex separator)
If removed separates the graph into two disjoint subgraphs
described by the vertex subsets B andW.
The rows and columns belonging to B are labelled first, then those
belonging toW and finally those in VS . The reordered matrix has
the form  AB,B 0 AB,VS

0 AW,W AW,VS

AT
B,VS

AT
W,VS

AVS ,VS

 . (53)
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Global nested dissection orderings

Definition

Vertex separator of an undirected G = (V,E) is subset S of its
vertices such that the subgraph induced by V \ S has more
components than G.

Induced reordering

A =

A11 0 AT
31

0 A22 AT
32

A31 A32 A33

 (54)
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Initial reordering

Global nested dissection orderings

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35
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Global nested dissection orderings

1 2

3

4 5

6

7

8

9

10 11 13 14

12 15

16

17

18
19

20

21

22 23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39
40

41

42

43

44

45

46

47

48

49
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Global nested dissection orderings
1
2
3
4
5
6
7
8
9
10
11
12
13



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗



1

2

3

4

5

6

7

8

9

10

11

12

13

B VS W 567 / 705
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Global nested dissection orderings

1
2
3
4
5
9
10
11
12
13
6
7
8



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


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Global nested dissection orderings

Provided the variables are eliminated in the permuted order, no fill
occurs within the zero off-diagonal blocks.
If |VS | is small and |B| and |W| are similar, these zero blocks
account for approximately half the possible entries in the matrix.
The reordering can be applied recursively to the submatrices AB,B
and AW,W until the vertex subsets are of size less than some
prescribed threshold.
Combinations with local reorderings.
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Global nested dissection orderings

Algorithm (Nested dissection algorithm)
Input: Graph G of a symmetrically structured matrix A and a partitioning algorithm PartitionAlg.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: recursive function (p = nested_dissection(A, PartitionAlg))
2: if dissection has terminated then ▷ Vertex subsets are smaller than some threshold
3: p = AMD(V, E) ▷ Compute an AMD ordering
4: else
5: Use PartitionAlg(V, E) to obtain the vertex partitioning (B,W,VS)

6: pB = nested_dissection(AB,B, PartitionAlg)
7: pW = nested_dissection(AW,W , PartitionAlg)
8: pVS

is an ordering of VS

9: Set p =

 pB
pW
pVS


10: end if
11: end recursive function
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Bordered forms
The matrix (53) is an example of a doubly bordered block diagonal
(DBBD) form. More generally, a matrix is said in DBBD form if it
has the block structure

ADB =


A1,1 C1

A2,2 C2

... .
ANb,Nb CNb

R1 R2 ... RNb B

 , (55)

The blocks can have very different sizes. A nested dissection
ordering can be used to permute a symmetrically structured matrix
A to a symmetrically structured DBBD form (S{Ri} = S{CT

i }).
If S{A} is close to symmetric then nested dissection can be
applied to S{A+AT }. In finite-element applications, the DBBD
form corresponds to partitioning the underlying finite-element
domain into non-overlapping subdomains.

571 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 582 — #582 i
i

i
i

i
i

Reorderings

Bordered forms

Coarse-grained parallel approaches aim to factorize the Alb,lb

blocks in parallel before solving the interface problem that
connects the blocks.
The block factorization of ADB is

ADB =


L1

L2

...
LNb

R̂1 R̂2 ... R̂Nb LS



U1 Ĉ1

U2 Ĉ2

... .

UNb ĈNb

US

 ,

where

R̂lb = RlbU
−1
lb , Ĉlb = L−1

lb Clb (1 ≤ lb ≤ Nb), LSUS = B−
Nb∑
lb=1

R̂lbĈlb.

Here, for simplicity, no permutations emphasized.
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Bordered forms

Algorithm (Coarse-grained parallel LU factorization using DBBD
form)
Input: Matrix ADB in DBBD form (55).
Output: Block LU factorization.

1: Initialise S = B

2: for lb = 1 : Nb do
3: Alb,lb = LlbUlb ▷ LU factorization of square block on diagonal
4: R̂lb = RlbU

−1
lb ▷ Triangular solve for bottom-border blocks

5: Ĉlb = L−1
lb Clb ▷ Triangular solve for right-border blocks

6: end for
7: S = S −

∑Nb
lb=1 R̂lbĈlb ▷ Assemble updates to interface block

8: S = LSUS ▷ Factorize updated interface block (Schur complement)
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Bordered forms

Factorization of each individual Alb,lb and solve steps can be
parallelized.
The assembly of the interface block S and its LU can be partially
parallelized.
S is generally significantly denser than the other blocks.
If A is not SPD then factorizing the Alb,lb blocks without
considering the entries in the border can potentially lead to
stability problems. Consider the first step in factorizing Alb,lb and
the threshold pivoting test for a sparse LU factorization. The pivot
candidate (Alb,lb)11 must satisfy

max{max
i>1
|(Alb,lb)i1|,max

k
|(Rlb)k1|} ≤ γ−1|(Alb,lb)11|,

where γ ∈ (0, 1] is the threshold parameter.
Large entries in the row border matrix Rlb can prevent pivots being
selected within Alb,lb.
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Singly bordered form
Singly bordered block diagonal (SBBD) form

ASB =


A1,1 C1

A2,2 C2

. . . .
ANb,Nb CNb

 ,

Alb,lb are rectangular mlb × nlb. The linear system becomes
A1,1 C1

A2,2 C2

. . . .
ANb,Nb CNb




x1
...

xNb

xI

 =


b1
b2
...

bNb

 , (56)

xlb is of length nlb, xI is a vector of length nI of interface variables,
and the right-hand side vectors blb are of length mlb, such that(

Alb,lb Clb

)(xlb
xI

)
= blb, 1 ≤ lb ≤ Nb.
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Singly bordered form

A partial factorization of each block matrix is performed, that is,

(
Alb,lb Clb

)
= Plb

(
Llb

L̄lb I

)(
Ulb Ūlb

Slb

)
Qlb, (57)

Pivots can only be chosen from the columns of Alb,lb because the
columns of Clb have entries in at least one other border block Cjb

(jb ̸= lb).
The pivot candidate (Alb,lb)11 at the first elimination step must
satisfy

max
i>1
|(Alb,lb)i1| ≤ γ−1|(Alb,lb)11|,
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Reorderings

Singly bordered form

Algorithm (Coarse-grained parallel LU factorization and solve
using SBBD form)
Input: Linear system in SBBD form (56).
Output: Block LU factorization and computed solution x.

1: S = 0 and zI = 0

2: for lb = 1 : Nb do
3: Perform a partial LU factorization (57) of (Alb,lb, Clb).

4: Solve Plb

(
Llb

L̄lb I

)(
ylb
ȳlb

)
= blb

5: S = S + Slb and zI = zI + ȳlb ▷ Assemble S and zI
6: end for
7: S = PsLsUsQs ▷ Ps and Qs are permutation matrices
8: Solve PsLs yI = zI and then UsQs xI = yI ▷ Forward then back substitution
9: for lb = 1 : Nb do
10: Solve Ulb Qlb xlb = ylb − Ūlb Qlb xI

11: end for
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Reorderings

Ordering to singly bordered form

The objective is to permute A to an SBBD form with a narrow
column border.
One way to do this is to choose the number Nb > 1 of required
blocks and use ND to compute a vertex separator VS of
G(A+AT ) such that removing VS and its incident edges splits
G(A+AT ) into Nb components.
Then initialise the set SC of border columns to VS and let
V1b,V2b, . . . ,VNb be the subsets of column indices of A that
correspond to the Nb components and let ni,kb be the number of
column indices in row i that belong to Vkb. If
lb = argmax1≤kb≤Nb |ni,kb| then row i is assigned to partition lb. All
column indices in row i that do not belong to Vlb are moved into SC .
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Reorderings

Ordering to singly bordered form

Algorithm (SBBD ordering of a general matrix)
Input: Matrix A, the number Nb > 1 of blocks, vertex separator VS of G(A+AT ).
Output: Vector block such that block(i) denotes the partition in the SBBD form to which row i is
assigned (1 ≤ i ≤ n) and SC is the set of border columns.

1: Initialise SC = VS and block(1 : n) = 0

2: Initialise Vkb to hold the column indices of A that correspond to component kb of G(A+AT )

after the removal of VS , 1 ≤ kb ≤ Nb

3: for each row i do
4: Add up the number ni,kb of column indices belonging to Vkb, 1 ≤ kb ≤ Nb

5: Find lb = argmax1≤kb≤Nb ni,kb

6: block(i) = lb

7: for each column index j in row i do
8: if j ∈ Vkb and kb ̸= lb then
9: Remove j from Vkb and add to SC
10: end if
11: end for
12: end for
13: Assign the rows i for which block(i) = 0 equally between the Nb partitions.
14: If some column j ∈ SC has nonzero entries only in rows belonging to partition kb then

remove j from SC and add to Vkb
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Complexity

Complexity of factorizations

Starting by showing complexity of LU and Cholesky
The complexity of the most critical steps in the factorization is
highly dependent on the amount of fill-in, as can be seen from the
following observation.

Observation

The operations to perform the sparse LU factorization A = LU and the
sparse Cholesky factorization A = LLT are
O(
∑n

j=1 | colL{j}| | rowU{j}| ) and O(
∑n

j=1 | colL{j}|2 ) respectively,
where | rowU{j}| and | colL{j}| are the number of off-diagonal entries
in row j of U and column j of L, respectively.
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Complexity

Complexity

Overall time dominated by time for the factorization
General dense matrices

▶ Space: O(n2)
▶ Time: O(n3)

General sparse matrices
▶ Space: η(L) = n+

∑n−1
i=1 (η(L∗i)− 1)

▶ Time in the i-th step: η(L∗i)− 1 divisions, 1/2(η(L∗i)− 1)η(L∗i)
multiple-add pairs

▶ Time totally: 1/2
∑n−1

i=1 (η(L∗i)− 1)(η(L∗i) + 2)
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Complexity

Complexity

Band schemes (β << n)
▶ Space: O(βn)
▶ Time: O(β2n)

Band
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Complexity

Complexity

Profile/envelope schemes
▶ Space:

∑n
i=1 βi

▶ Frontwidth: ωi(A) = |{k|k > i ∧ akl ̸= 0 for some l ≤ i}|
▶ Time: 1/2

∑n−1
i=1 ωi(A)(ωi(A) + 3)

Profile (Envelope)
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From direct to iterative methods

Complexity

General sparse schemes can be analyzed in some cases
▶ Nested dissection

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

Definition
(α, σ) separation of a graph with n vertices: each its subgraph can be
separated by a vertex separator S such that its size is of the order
O(nσ) and the separated subgraphs components have sizes
≤ αn,1/2 ≤ α < 1.
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From direct to iterative methods

Complexity: Generalized nested dissection

Vertex separator

C_1 C_2

S

Planar graphs, 2D finite element graphs (bounded degree)
▶ σ = 1/2, α = 2/3
▶ Space: O(n log n)
▶ Time: O(n3/2)

3D Finite element graphs
▶ σ = 2/3
▶ Space: O(n4/3)
▶ Time: O(n2)

Lipton, Rose, Tarjan (1979), Teng (1997).
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Algebraic preconditioning

Algebraic preconditioning

Finite precision arithmetic: computed factors are not exact.

Moreover, the effort to obtain more accurate results can lead to
complex coding and unavoidable inefficiencies magnified by
modern computer architectures.

Potential solution: intentionally relaxing the required accuracy of
the computed factors.

Simpler, cheaper, sparser approximate factorization of A (or A−1):
preconditioners.
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Algebraic preconditioning

Algebraic preconditioning: use in combination with iterations

Using the preconditioner in combination with an iterative solver.

Our terminology: an algebraic approximate factorization is called
an incomplete factorization to distinguish it from a complete
factorization of a direct method.

Used with iterative methods for solving Ax = b from their two main
classes:

▶ stationary (relaxation) iterative methods and
▶ Krylov subspace methods.
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Algebraic preconditioning

Stationary iterative methods

Stationary iterative methods work by splitting A as follows:

A = M −N,

The matrix M is chosen to be nonsingular and easy to invert. An
initial guess x(0), the iterations are then given by

x(k+1) = M−1Nx(k) +M−1b, k = 0, 1, . . . (58)

This can be rewritten as

x(k+1) = x(k) +M−1(b−Ax(k)) = x(k) +M−1 r(k), k = 0, 1, . . .
(59)

where the vector r(k) = b−Ax(k) is the residual in the k-th
iteration.
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Algebraic preconditioning

Stationary iterative methods

By substituting b = r(k) +Ax(k) into x = A−1 b, we obtain

x = A−1(r(k) +Ax(k)) = x(k) +A−1 r(k).

If M is used to approximate A, we again get the iteration above.
Further

r(k+1) = b−A(x(k) +M−1 r(k)) = (I −AM−1) r(k) = . . . = (I −AM−1)k+1 r(0),

for the error vector on iteration k: e(k) = x− x(k):

e(k+1) = M−1N e(k) = . . . = (M−1N)k+1 e(0) = (I−M−1A)k+1 e(0).

The matrix I −M−1A or I −AM−1 is called the iteration matrix.
In general, monitoring residuals is more practical.
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Algebraic preconditioning

Stationary iterative methods

Theorem
For any initial x(0) and vector b, the stationary iteration converges if
and only if the spectral radius of (I −M−1A) is less than unity.

Proof.
The spectral radius of an n× n matrix C with eigenvalues λ1, λ2, . . . , λn is defined to be

ρ(C) = max{|λi| | 1 ≤ i ≤ n}.

Furthermore, the sequence of matrix powers Ck, k = 0, 1, . . . , converges to zero if and only if
ρ(C) < 1. It follows that if the spectral radius of (I −M−1A) is less than unity then the iteration
converges for any x(0) and b. Conversely, the relation

x(k+1) − x(k) = (I −M−1N)(x(k) − x(k−1)) = . . . = (I −M−1N)kM−1(b−Ax(0))

shows that if the iteration converges for any x(0) and b then (I −M−1N)kv converges to zero

for any v. Consequently, ρ(I −M−1A) must be less than unity, and the result follows. □
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Algebraic preconditioning

Stationary iterative methods

Generally impractical to compute the spectral radius and sufficient
conditions that guarantee convergence are used.
A sufficient condition for convergence is ∥I −M−1A∥ < 1.
Consider splitting (diagonal, strict lower triangular, strict upper
triangular)

A = DA + LA + UA.

For ω > 0 is a scalar parameter, classical methods include:
▶ Richardson method: M = ω−1I,
▶ Jacobi and damped Jacobi methods: M = DA and M = ω−1DA,
▶ Gauss-Seidel and SOR methods: M = DA + LA and

M = ω−1DA + LA.
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Algebraic preconditioning

Stationary iterative methods

Theorem
If A ∈ Rn×n is strongly diagonally dominant then Jacobi method and
Gauss-Seidel method are convergent.

Theorem
If A ∈ Rn×n is symmetric with positive diagonal DA then the Jacobi
method is convergent iff A and 2DA −A are positive definite.

Theorem
If A ∈ Rn×n is symmetric and positive definite then the Gauss-Seidel
method is convergent.
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Algebraic preconditioning

Krylov subspace methods
Non-stationary iterative methods are of the form

x(k+1) = x(k) + ω(k)M−1 r(k), k = 0, 1, . . . .

where the ω(k) are scalars.
In this class, Krylov subspace methods are the most effective.
Given a vector y, the k-th Krylov subspace K(k)(A, y) generated
by A from the vector y is defined to be

K(k)(A, y) = span(y,Ay, . . . , Ak−1 y).

Generate a sequence of approximate solutions
x(k) ∈ x(0) +K(k)(A, r(0)) such that the norm of the corresponding
residuals r(k) ∈ K(k+1)(A, r(0)) converge to zero.
SPD systems the conjugate gradient method (CG); nonsymmetric
systems: GMRES, BiCG, no single method of choice.
At each iteration only matrix-vector products with A (and possibly
with AT ) required.
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Algebraic preconditioning

Krylov subspace methods

Powerful, if (and only if) combined with a preconditioner: the most
widely-used class of preconditioned iterative methods.
Unfortunately, for a given A, b and x(0), it is usually not possible to
predict the rate of convergence.
If A is a SPD matrix then for CG

∥x− x(k)∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x− x(0)∥A,

where κ(A) is the spectral condition number.
Often highly pessimistic. Does not show the potential for CG to
converge superlinearly and that the rate of convergence depends
on the distribution of all the eigenvalues of A.
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Algebraic preconditioning

Krylov subspace methods

For non-SPD matrices, less is known.

Some favourable properties like: the minimal residual method
(MINRES) for solving symmetric indefinite systems in exact
arithmetic, has the norm of the residual monotonically decreasing.

No general descriptive convergence theory is available for Krylov
subspace methods for nonsymmetric systems (including GMRES).
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Algebraic preconditioning

Krylov subspace methods

Preconditioning: application of a matrix (or linear operator) to the
linear system to yield a different linear system with more
favourable properties.
Consider the preconditioned linear system

M−1Ax = M−1 b.

Here M−1 is applied to A from the left. We say that A is
preconditioned from the left and M is a left preconditioner.
Analogously, from the right:

AM−1 y = b, x = M−1 y.

597 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 608 — #608 i
i

i
i

i
i

Algebraic preconditioning

Krylov subspace methods

It is not possible to determine a priori which variant is the best.

Theorem
Let δ and ∆ be positive numbers. Then for any n ≥ 3 there exist
nonsingular n× n matrices A and M such that all the entries of
M−1A− I have absolute value less than δ and all the entries of
AM−1 − I have absolute values greater than ∆.

The choice between left and right preconditioning may be based
on properties of the coupling of the preconditioner with the
iterative method or on the distribution of the eigenvalues of A.

598 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 609 — #609 i
i

i
i

i
i

Algebraic preconditioning

Krylov subspace methods

The computed quantities readily available during a preconditioned
iterative method depend on how the preconditioner is applied and
this may influence the choice. These quantities may be used, for
example, to decide when to terminate the iterations.
An obvious advantage of right preconditioning is that in exact
arithmetic, the residuals for the right preconditioned system are
identical to the true residuals, enabling convergence to be
monitored accurately.
In some cases, the numerical properties of an implementation
and/or the computer architecture may also play a part.
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Algebraic preconditioning

Krylov subspace methods

For M in factorized form M = M1M2, two-sided (or split)
preconditioning is an option. The iterative method then solves the
transformed system

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y.

If A and M are SPD matrices then we would like the
preconditioned matrix M−1

1 AM−T
1 to be SPD. However, it is not

necessary to use a two-sided transformation with the
preconditioned conjugate gradient (PCG) method because it can
be formulated using the M -inner product in which the matrix
M−1A is self-adjoint.
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Algebraic preconditioning

Krylov subspace methods

Theorem
Let A and M be SPD matrices. Then M−1A is self-adjoint in the
M -inner product.

Proof.
Self-adjointness is implied by the following chain of equivalences.

⟨M−1Ax, y⟩M = ⟨Ax, y⟩ = ⟨x,Ay⟩ = ⟨x,MM−1Ay⟩ = ⟨Mx,M−1Ay⟩ = ⟨x,M−1Ay⟩M .

□

Left preconditioned CG with the M -inner product is
mathematically equivalent to right preconditioned CG with the
M−1-inner product.
If A is symmetric but not PD, the PCG method can breakdown
(division by a zero quantity).
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Algebraic preconditioning

Krylov subspace methods
An obvious goal: to achieve rapid convergence.
The preconditioner should aim to reduce the condition number.
This may not be sufficient to give fast convergence.
For general matrices, despite the lack of theoretical guarantees
regarding convergence, many useful preconditioners motivated by
bounding the condition number of the preconditioned matrix.
Choosing a preconditioner is often based on how costly it is to
compute and on some indicators that potentially reflect its quality.
In particular, the accuracy of a preconditioner M can be assessed
using the norm of the error matrix

∥E∥ = ∥M −A∥,
and its stability can be measured using

∥M−1E∥ = ∥I −M−1A∥ or ∥EM−1∥ = ∥I −AM−1∥.
In some cases, the inverse M−1 is computed directly. In this case
we have an approximate inverse preconditioner. 602 / 705
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Algebraic preconditioning

Simple preconditioners
The simplest preconditioner consists of the diagonal of the matrix
M = DA. This is known as the (point) Jacobi preconditioner.
Block versions can be derived by partitioning V = {1, 2, . . . , n} into
mutually disjoint subsets V1, . . . ,Vl and then setting

mij =

{
aij if i and j belong to the same subset Vk for some k, 1 ≤ k ≤ l,

0 otherwise.

The SSOR preconditioner, like the Jacobi preconditioner, can be
derived from A without any work. If A is symmetric then using the
notation (592), the SSOR preconditioner is defined to be

M = (DA + LA)D
−1
A (DA + LA)

T ,

or, using a parameter 0 < ω < 2, as

M =
1

2− ω
(
1

ω
DA + LA)(

1

ω
DA)

−1(
1

ω
DA + LA)

T .

Finding optimal value of ω typically expensive.
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Algebraic preconditioning

The Eisenstat trick
Generally cheaper to apply M−1 and A separately,
But: let M be given by

M = (D + LA) [D
−1(D + UA)] = M1M2,

where D is a nonsingular diagonal matrix.
The SSOR matrix is one example in the symmetric case but more
generally D ̸= DA.
Using two-sided preconditioning, this becomes

A′y = M−1
1 AM−1

2 y = (D+LA)
−1A[D−1(D+UA)]

−1 y = (D+LA)
−1b.

Setting

L̄ = D−1LA, Ū = D−1UA, Ā = D−1A, and b̄ = (I + L̄)−1D−1 b,

we obtain
A′ = (D + LA)−1A[D−1(D + UA)]−1 = [(D + LA)−1D]D−1A[D−1(D + UA)]−1

= [D−1(D + LA)]−1D−1A(I +D−1UA)−1 = (I + L̄)−1Ā(I + Ū)−1.
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Algebraic preconditioning

The Eisenstat trick
That is, the system becomes

A′y = (I + L̄)−1Ā(I + Ū)−1 y = (I + L̄)−1D−1 b = b̄.

If y solves (605) then the solution x of (I + Ū)x = y solves Ax = b.
Further

A′ = (I + L̄)−1 (I + L̄+D−1DA − 2I + I + Ū)(I + Ū)−1

= (I + L̄)−1 [(I + L̄)(I + Ū)−1 + (D−1DA − 2I)(I + Ū)−1 + I]

= (I + Ū)−1 + (I + L̄)−1 [(D−1DA − 2I)(I + Ū)−1 + I].

Thus to compute z = A′w = (I + L̄)−1Ā(I + Ū)−1w for a given w,
it is necessary only to solve two triangular systems

(I + Ū) z1 = w followed by (I + L̄) z2 = (D−1DA − 2I) z1 + w,

and then set z = z1 + z2.
This trick is not a preconditioner: it is a way of applying the
preconditioner of special shape. 605 / 705
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Algebraic preconditioning

Some special classes of matrices

The development of algebraic preconditioners has been closely
connected to solving discretized PDEs.
Two-dimensional Poisson problem, discretized using a uniform
regular grid, finite differences, zero Dirichlet conditions on the
boundary, natural ordering.

A =



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


.

If the spatial discretization on the domain is characterized by the
mesh parameter h then the size of A is inversely proportional to h.
κ(A) depends asymptotically on h−2.
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Algebraic preconditioning

Some special classes of matrices

Matrices with similar banded sparsity patterns with nonzeros on
only a small number of subdiagonals arise from simple finite
difference or finite element discretizations of other partial
differential equations.
Particular cases of special classes of matrices help to describe
the theoretical background behind the discretized systems.
Let the off-diagonal entries of the nonsingular matrix A be
nonpositive (that is, aij ≤ 0 for all i ̸= j). Then A is a (nonsingular)
M-matrix if one of the following holds:

▶ A+D is nonsingular for any diagonal matrix D with nonnegative
entries;

▶ all the entries of A−1 are nonnegative;
▶ all principal minors of A are positive.

The matrix above is an example of an M-matrix. A symmetric
M-matrix is known as a Stieltjes matrix, and such a matrix is
positive definite.
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Algebraic preconditioning

Some special classes of matrices

The class of nonsingular H-matrices includes matrices coming
from simple discretizations of convection-diffusion problems. The
comparison matrix C(A) of A is defined to have entries

C(A)ij =

{
−|aij |, i ̸= j,

|aij |, i = j.

If C(A) is a nonsingular M-matrix then A is a nonsingular H-matrix.
A is diagonally dominant by rows if

n∑
j=1, j ̸=i

|aij | ≤ |aii|, 1 ≤ i ≤ n. (60)

A is strictly diagonally dominant by rows if strict inequality holds
for all i. A is (strictly) diagonally dominant by columns if AT is
(strictly) diagonally dominant by rows.
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Algebraic preconditioning

Some special classes of matrices

A is said to be irreducibly diagonally dominant if it is irreducible
and the inequalities are satisfied with strict inequality for at least
one row i. If A is strictly diagonally dominant by rows or columns
or is irreducibly diagonally dominant then it is nonsingular and
factorizable.
The class of diagonally dominant matrices is closely connected to
that of nonsingular H-matrices. For example, the property that
there exists a diagonal matrix D with positive entries such that AD
is strictly diagonally dominant is equivalent to A being a
nonsingular H-matrix.
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Algebraic preconditioning

Some special classes of matrices: once more

Still theoretical assumptions are rather strong.
Concept of special matrices

Theorem
Matrix A is called a regular M-matrix if aij ≤ 0, i ̸= j, is regular and
A−1 ≥ 0.

Theorem
A is a H-matrix if B = |DA| − |A−DA| is an M -matrix.

Many equivalent definitions
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Algebraic preconditioning

Incomplete factorization breakdown

Dropping entries can lead to breakdown of the incomplete
factorization, that is, a zero pivot may be encountered during the
factorization (or a non positive pivot in the Cholesky case).
It is only possible to predict when this will happen in special cases,
as stated in the following theorem, which is a consequence of the
fact that being an M-matrix or an H-matrix is preserved in the
sequence of the Schur complements during the factorization.

Theorem
Let A be a nonsingular M-matrix or H-matrix. If the target sparsity
pattern of the incomplete factors contains the positions of the diagonal
entries then the incomplete factorization of A does not break down.
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Algebraic preconditioning

Incomplete factorization breakdown

To illustrate the error accumulation in the incomplete factorization
of an M-matrix using dropping, consider the following example.
Let E be the error matrix. E is initialised to zero and at each stage
of the factorization the dropped entries are added into it.
After one step of the complete factorization of A the partially
eliminated matrix A(2) is

A(2) =



4 −1 −1
3.75 −1 −0.25 −1
−1 4 −1

−0.25 3.75 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1
−1 4 −1

−1 −1 4 −1
−1 −1 4


.
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Algebraic preconditioning

Incomplete factorization breakdown
Suppose the filled entries −0.25 in positions (2, 4) and (4, 2) are
dropped. Then the values of the corresponding diagonal entries in
the subsequent elimination matrices are larger than they would
have been without any dropping.
Furthermore, as all the off-diagonal nonzero entries are negative,
for any target sparsity pattern the dropped entries are negative.
The M-matrix property applies to all subsequent Schur
complements, which implies that all the entries added into E are
negative and so the absolute values of the entries in E grow as
the factorization proceeds (the contributions can never cancel
each other out).
Thus, although the factorization does not break down, the growth
in the error is potentially a problem for the accuracy of an
incomplete factorization of an M-matrix.
Modifying the diagonal entries of A is a common approach to
avoid breakdown in an incomplete factorization.
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Algebraic preconditioning

Incomplete factorization breakdown

A =

 3 −2 2
−2 3 −2

−2 3 −2
2 −2 8

 , L =

 1
−2/3 1

−6/5 1
2/3 4/5 −2/3 1

 , D =

3
5/3

3/5
16/3

 .

L̃ =

 1
−2/3 1

−6/5 1
2/3 −10/3 1

 , D̃ =

3
5/3

3/5
0

 .

Figure: An example to illustrate breakdown. The matrix A and its square-root
free factors are given together with the incomplete factors L̃ and D̃ that result
from dropping the entry l24 during the factorization. d̃44 = 0 means the
incomplete factorization has broken down.

Remedy: perturb the diagonal value causing the breakdown.
Practice of making simple ad hoc modifications not very positive.
If breakdown (or near-breakdown) occurs, it may be too late. 614 / 705
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Algebraic preconditioning

Incomplete factorization breakdown

An alternative and more effective strategy to avoid breakdown is
to modify all the diagonal entries of A a priori and then compute
an incomplete factorization of A+ αI, where the shift α > 0 is a
scalar parameter.
It is always possible to find α such that A+ αI is nonsingular and
diagonally dominant and is thus an H-matrix.
However, being an H-matrix is not a necessary condition for a
matrix to be factorizable and, in practice, much smaller values of α
can provide incomplete factorizations for which ∥E∥ is small.
A simple trial-and-error procedure for choosing a shift is given
below.
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Algebraic preconditioning

Incomplete factorization breakdown

Algorithm (Trial-and-error global shifted incomplete factorization)
Input: Matrix A, incomplete factorization algorithm, initial shift α(0)

Output: Shift α such that A+ αI ≈ L̃Ũ .

1: for k = 0, 1, 2, . . . do
2: A+ α(k)I ≈ L̃Ũ ▷ Perform incomplete factorization
3: If successful, α = α(k) and return
4: α(k+1) = 2α(k)

5: end for
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Algebraic preconditioning

Incomplete factorization breakdown

An alternative approach to avoid small pivots:to follow what is
done in sparse direct solvers and incorporate partial or threshold
pivoting within the incomplete factorization algorithm:
preprocessing by reordering, scaling etc.
One way to attempt to minimize the norm of the error matrix E is
to select the pivot candidate to minimize the sum of the absolute
values of the dropped (discarded) entries. However, this minimum
discarded fill ordering is typically too expensive to be useful in
practice.
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Algebraic preconditioning

Introduction to incomplete factorizations

Incomplete factorizations fall into three main classes:
▶ Threshold-based methods: locations of permissible fill-in are

determined in conjunction with the numerical factorization of A;
entries of the computed factors of absolute value greater than a
prescribed threshold τ > 0 are dropped.

▶ Memory-based methods in which the amount of memory available
for the incomplete factorization is prescribed and only the largest
entries in each row (or column) are retained.

▶ Structure-based methods: an initial symbolic factorization phase
determines the location of permissible entries using only S{A}.
This allows the memory requirements to be determined before an
incomplete numerical factorization is performed. The specified set
of positions is called the target sparsity pattern.
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Algebraic preconditioning

Introduction to incomplete factorizations
The basic dropping approaches can be combined and employed
in conjunction with sparsifying A before the factorization
commences.
Sparsification of A after permuting reveals a block structure.



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ f ∗ f f f
4 ∗ f ∗ ∗ ∗
5 ∗ f ∗ ∗ ∗
6 ∗ f ∗ ∗ ∗





2 4 1 3 5 6

2 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗
1 ∗ f ∗ ∗ f f
3 ∗ ∗ f f
5 ∗ ∗ f f ∗ ∗
6 ∗ ∗ f f ∗ ∗





2 4 1 3 5 6

2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
1 ∗ ∗
3 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗



Figure: Illustration of matrix sparsification. f denotes filled entries in the
factors. On the left is the original matrix A with its filled entries; in the centre
is the permuted matrix with its filled entries; on the right is the sparsified
permuted matrix after dropping the entries of A in positions (1, 3) and (3, 1) (it
has no filled entries).
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Algebraic preconditioning

Incomplete factorization breakdown
Polynomial preconditioning

Polynomial preconditioning selects a polynomial ϕ and applies a
Krylov subspace method to solve either

ϕ(A)Ax = ϕ(A) b

(left preconditioning) or

Aϕ(A) y = b, x = ϕ(A) y

(right preconditioning). ϕ should be of small degree and chosen to
enhance convergence.
Consider the characteristic polynomial ϕn(µ) = det(A− µI) of A
(det denotes the determinant).
The Cayley-Hamilton theorem states that A satisfies its own
characteristic equation so that

ϕn(A) =

n∑
j=0

βj A
j = 0,

where βj (0 ≤ j ≤ n) are the coefficients of the characteristic
polynomial (βn = 1, β0 = (−1)n det(A)).
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Algebraic preconditioning

Polynomial preconditioning

Provided A is nonsingular,

A−1 = (−1)n+1 1

det(A)

n∑
j=1

βj A
j−1.

A preconditioner can be constructed by taking the first k terms,
possibly weighted by some suitable scalar coefficients, that is,

M−1 =

k∑
j=0

γj A
k.
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Algebraic preconditioning

Polynomial preconditioning
An important question is why such a preconditioner can help in the
presence of the optimality properties of Krylov subspace methods.
For example, at iteration k + 1 of the CG method, x(k+1) satisfies

x(k+1) = x(0) + ϕk(A) r(0), k = 0, 1, . . . ,

where ϕk is a monic polynomial of degree k. This polynomial is
optimal in the sense that x(k+1) minimizes

∥x− x(k+1)∥2A. (61)

A preconditioner that is a polynomial in A cannot speed the
convergence because the resulting iteration again forms the new
x(k+1) as x(0) plus a polynomial in A times r(0), and thus the same
or a higher degree polynomial is needed to achieve the same
value of the A-norm of the error.
Consequently, the number of matrix-vector multiplications cannot
decrease.
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Algebraic preconditioning

Polynomial preconditioning

Nevertheless, polynomial preconditioning can be useful for a
number of reasons.

▶ The polynomial can improve the eigenvalue distribution of the
preconditioned matrix and result in a reduction in the number
of iterations required for convergence (even though the
overall complexity may increase).

▶ It requires very little memory and its implementation can be
straightforward.

▶ It can decrease the number of synchronization points in
iterative methods as represented by inner products. This is
potentially important for message-passing parallel
architectures.
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Algebraic preconditioning

Polynomial preconditioning
Even if only a small number of terms are used in approximating
A−1, a crucial issue is getting γ0, . . . , γk.
A straightforward way of doing this: based on the Neumann series
of a matrix C given by

∑+∞
j=0 C

j , which is convergent if and only if
ρ(C) < 1.

In this case,

(I − C)−1 =

+∞∑
j=0

Cj . (62)

Now let M̄ be a nonsingular matrix and ω > 0 a scalar such that
the matrix C = I − ωM̄−1A satisfies ρ(C) < 1.
Using (62),

A−1 = ω(ωM̄−1A)−1M̄−1 = ω (I − C)−1M̄−1 = ω

+∞∑
j=0

Cj

 M̄−1.
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Algebraic preconditioning

Polynomial preconditioning
Truncating the summation gives as a possible preconditioner

M−1 = ω

 k∑
j=0

Cj

 M̄−1.

Observe that

I−M−1A = I−ω

 k∑
j=0

Cj

 M̄−1A = I−

 k∑
j=0

Cj

 (I−C) = Ck+1,

which shows the positive effect of increasing k. If A and M̄ are
SPD matrices then M can be used with the CG method
preconditioned from the left because M−1A is self-adjoint in the
M̄ -inner product.
Generalizations of the approach weight the powers of C in M−1

using additional scalars. The choice of M̄ is crucial for the
effectiveness of the approach.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses
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Incomplete factorizations

World of incomplete factorizations

Direct factorizations may not be feasible (data structures and
pivoting, operation counts, stability)
Even by direct factorizations improving solution when using less
accurate arithmetic (smaller ϵ) may be needed.
The incomplete factors denoted here by L̃ and Ũ ;
SPD case: Ũ = L̃T .
We assume that the sparsity patterns of A and its incomplete
factors always include the positions of the diagonal entries.
Notation (other mentioned later): ILU(0) factorization (or an IC(0)
factorization if A is SPD): S{L̃+ Ũ} = S{A}.
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Incomplete factorizations

Exactness within the target sparsity pattern

Theorem

Consider the incomplete LU factorization A+ E = L̃Ũ with sparsity
pattern S{L̃+ Ũ}. The entries of the error matrix E are zero at
positions (i, j) ∈ S{L̃+ Ũ}.

Proof.
The result clearly holds for j = 1. Let (i, j) ∈ S{L̃+ Ũ} and assume without loss of generality
that i > j > 1. The (i, j) entry of L̃ is computed as

l̃ij =

aij −
j−1∑
k=1

l̃ik ũkj

 /ũjj

with the sums over k implying (i, k) ∈ S{L̃+ Ũ} and (k, j) ∈ S{L̃+ Ũ}. This gives

aij = L̃i,1:j−1Ũ1:j−1,j + l̃ij ũjj = L̃i,1:jŨ1:j,j = Li,1:jU1:j,j ,

and the corresponding entry of E is zero. □ 628 / 705
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Incomplete factorizations

Incomplete factorizations and patterns

Theorem⇒ extending S{L̃+ Ũ} gives a larger set of entries of A
for which (E)ij = 0.
In some situations, there are straightforward ways to extend
S{L̃+ Ũ}. In simple discretizations of a PDE may be a natural
choice is to allow S{L̃+ Ũ} to include fill-in along a few additional
diagonals within the band.

A =



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗
8 ∗ ∗ ∗


1 2 3 4

5 6 7 8
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Incomplete factorizations

Incomplete factorizations and patterns

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗


→



∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ ∗

∗ f f ∗ ∗
∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗


→



∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ f f f ∗

∗ f f f ∗ ∗ f
∗ f f ∗ ∗ ∗

∗ f f ∗ ∗ ∗
∗ ∗ ∗


Figure: An 8× 8 banded sparse SPD matrix A and its graph G(A). The first
three steps of a Cholesky factorization are shown. Filled entries are denoted
by f .
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Incomplete factorizations

Crout incomplete factorizations
The Crout variant: computes Ũ (by rows) and L̃ (by columns).

Algorithm (Crout incomplete LU factorization)
Input: Matrix A and, optionally, a target sparsity pattern S{L̃+ Ũ}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for j = 1 : n do
2: l̃jj = 1, L̃j+1:n,j = Aj+1:n,j

3: Ũj,j:n = Aj,j:n

4: for k = 1 : j − 1 such that (j, k) ∈ S{L̃} do
5: Ũj,j:n = Ũj,j:n − l̃jk Ũk,j:n ▷ Sparse linear combination
6: end for
7: Sparsify Ũj,j+1:n ▷ Drop entries from row j of Ũ
8: for k = 1 : j − 1 such that (k, j) ∈ S{Ũ} do
9: L̃j+1:n,j = L̃j+1:n,j − ũkj L̃j+1:n,k ▷ Sparse linear combination
10: end for
11: Sparsify L̃j+1:n,j ▷ Drop entries from column j of L̃
12: L̃j+1:n,j = L̃j+1:n,j/ũjj

13: end for
631 / 705
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Incomplete factorizations

Row incomplete factorizations

Algorithm (Row incomplete LU factorization)
Input: Matrix A and, optionally, a target sparsity pattern S{L̃+ Ũ}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for i = 1 : n do
2: l̃ii = 1, L̃i,1:i−1 = Ai,1:i−1

3: Ũi,i:n = Ai,i:n

4: Sparsify L̃1,1:i−1 and Ũi,i+1:n

5: for k = 1 : i− 1 such that (i, k) ∈ S{L̃} do
6: l̃ik = l̃ik/ũkk

7: L̃i,k+1:i−1 = L̃i,k+1:i−1 − l̃ik Ũk,k+1:i−1

8: Sparsify L̃i,k+1:i−1

9: Ũi,i:n = Ũi,i:n − l̃ik Ũk,i:n

10: Sparsify Ũi,i+1:n

11: end for
12: end for
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Entries of the factors that correspond to nonzero entries of A are
assigned the level 0 while each potential filled entry in position
(i, j) is assigned a level as follows:

level(i, j) = min
1≤k<min{i,j}

(level(i, k) + level(k, j) + 1). (63)

Given ℓ ≥ 0, during the factorization a filled entry is permitted at
position (i, j) provided level(i, j) ≤ ℓ.
The resulting level-based incomplete factorization is denoted by
ILU(ℓ) (or IC(ℓ)); the basic row variant is given below.
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Incomplete factorizations

Algorithm (Level-based incomplete LU factorization)

1: Initialise level to 0 for nonzeros and diagonal entries of A and to n+ 1 otherwise
2: for i = 1 : n do ▷ Loop over rows
3: l̃ii = 1, L̃i,1:i−1 = Ai,1:i−1 and Ũi,i:n = Ai,i:n ▷ Initialise row i of L̃ and Ũ

4: for k = 1 : i− 1 such that level(i, k) ≤ ℓ do
5: l̃ik = l̃ik/ũkk

6: for j = k + 1 : i− 1 do
7: l̃ij = l̃ij − l̃ik ũkj and update level(i, j)

8: end for
9: for j = i : n do
10: ũij = ũij − l̃ik ũkj and update level(i, j)

11: end for
12: end for
13: for k = 1 : i− 1 do ▷ Drop factor entries in row i for which level is too high
14: if level(i, k) > ℓ then l̃ik = 0

15: end for
16: for k = i : n do
17: if level(i, k) > ℓ then ũik = 0

18: end for
19: end for
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Figure depicts S{L̃+ L̃T } for the IC(ℓ) factorization of A from the
discretized Laplace equation on a square grid and for a matrix
with a more general symmetric sparsity structure.
The fill-in is typically generated irregularly throughout the
factorization: initially few updates are needed but later steps
involve many updates, leading to large amounts of dropping.
The amount of fill-in can grow quickly with increasing ℓ and, as a
result, l is typically small.
Level-based dropping is often combined with threshold-based
dropping or with sparsifying A before the factorization
commences.
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

IC(0) IC(2) IC(4)

IC(0) IC(2) IC(4)

Figure: The sparsity patterns of the IC(ℓ) factors of A from the discretized
Laplace equation on a square grid (top) and a more general symmetric
sparse matrix (bottom).
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

The level-based strategy comes from observing that in practical
examples the absolute values of the entries in the factors in
positions for which level is large are often small. This is the case
for model problems arising from discretized PDEs.
Theoretical understanding follows.

Theorem
Consider the ILU(ℓ) factorization of A. level(i, j) = k for some k ≤ ℓ if
and only if there is a shortest fill path i =⇒ j of length k + 1 in the
adjacency graph G(A).
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Algorithm (Find the sparsity pattern of row i of the ILU(ℓ) factor
Ũ of A: breadth first search)

1: S{Ũi,i:n} = {i}, Q = {i} ▷ Queue holds i initially
2: length(i) = 0

3: visited(i) = i

4: while Q is not empty do
5: pop(Q, k) ▷ Take k from the queue
6: for j ∈ adjG(A)(k) with visited(j) ̸= i do
7: visited(j) = i

8: if j < i and length(k) < ℓ then
9: append(Q, j) ▷ Add j to the queue
10: length(j) = length(k) + 1

11: else if j > i then
12: S{Ũi,i:n} = S{Ũi,i:n} ∪ {j} ▷ Add j to the sparsity pattern of row i of Ũ
13: end if
14: end for
15: end while
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Incomplete factorizations

Modifications based on maintaining row sums

Assume that the target sparsity pattern S{L̃+ Ũ} contains S{A}.
Modified incomplete factorizations (MILU or MIC in the SPD case)
seek to maintain equality between the row sums of A and L̃Ũ , that
is, L̃Ũe = Ae (e is the vector of all ones).
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Incomplete factorizations
Algorithm (Modified incomplete factorization (MILU))

1: Initialise l̃ij = (I + LA)ij for all (i, j) ∈ S(L̃) ▷ S(LA) ⊆ S(L̃)
2: Initialise ũij = (DA + UA)ij for all (i, j) ∈ S(Ũ) ▷ S(UA) ⊆ S(Ũ)

3: for k = 1 : n− 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
5: l̃ik = l̃ik/ũkk ▷ Check that ũkk is nonzero
6: for j = i : n such that (k, j) ∈ S{Ũ} do
7: if (i, j) ∈ S{Ũ} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ũii = ũii − l̃ik ũkj ▷ Modify diagonal instead of creating fill-in
11: end if
12: end for
13: for j = k + 1 : i− 1 such that (k, j) ∈ S{Ũ} do
14: if (i, j) ∈ S{L̃} then
15: l̃ij = l̃ij − l̃ik ũkj

16: else
17: ũii = ũii − l̃ik ũkj ▷ Modify diagonal instead of creating fill-in
18: end if
19: end for
20: end for
21: end for
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Incomplete factorizations

Modifications based on maintaining row sums
Equality of row sums: If all the filled entries are retained (that is,
S{L̃+ Ũ} = S{L+ U}) then the claim holds trivially.
Otherwise, if an entry in column j of row i of A belongs to the
target sparsity pattern then its value is modified in Step 8 if i ≤ j
or in Step 15 if i > j. Otherwise, the i-th diagonal entry of Ũ is
modified (Step 10 or Step 17). In each case, l̃ik ũkj is subtracted
from entries of the i-th row of the incomplete factors.
Consider row i of L̃Ũ . This product is given by
i−1∑
j=1

l̃ij

n∑
k=j

ũjk =

i−1∑
j=1

l̃ij ũjj +

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk +
n∑

k=i

ũik =

=

i−1∑
j=1

aij −
j−1∑
k=1

l̃ikũkj

+

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk +
n∑

k=i

aik −
i−1∑
j=1

l̃ij ũjk


=

n∑
j=1

aij +

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk −

i−1∑
j=1

j−1∑
k=1

l̃ikũkj +

n∑
k=i

i−1∑
j=1

l̃ij ũjk

 .
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Incomplete factorizations

Modifications based on maintaining row sums

Rearranging the indices in the double summations, the last three
sums cancel out.
Moreover, the added double summation is the sum of all the
modification terms l̃ik ũkj in the MILU Algorithm, and the sum of
the two subtracted double summations also comprises all the
modification terms.
Consequently, the row sums of A are preserved in the product of
the incomplete factors.
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Incomplete factorizations

Modifications based on maintaining row sums

Theorem above provides motivation for maintaining constant row
sums in the case of a model PDE problem.
The result is also valid for Neumann or mixed boundary
conditions, and there are extensions to three-dimensional
problems and MIC(ℓ) with ℓ > 0. However, although Theorem
holds for MILU factorizations, the approach may not be useful for
general A.

Theorem
Let A come from a discretized Poisson problem on a uniform
two-dimensional rectangular grid with Dirichlet boundary conditions
and discretization parameter h. Then the condition number
κ((L̃Ũ)−1A) for the level-based MIC(0) preconditioner is O(h−1).
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Incomplete factorizations

Modifications based on maintaining row sums

RILU/RIC: the update term l̃ik ũkj may be multiplied by a
parameter θ (0 < θ < 1) before it is subtracted from the diagonal
entry ũii.
This is a practical way to extend MILU to linear systems not
coming from discretized PDEs. Clearly, using θ < 1 reduces the
amount by which the diagonal entries are modified.
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Incomplete factorizations

Dynamic compensation

Instead of accepting a filled entry in position (i, j), the idea is to
add a (weighted) multiple of its absolute value to the
corresponding diagonal entries ũii and ũjj .
Provided the number of modifications is small, this can be useful if
A is diagonally dominant and scaled so that its diagonal entries
are nonnegative.
The parameter ω controls the amount by which the diagonal
entries of Ũ are modified but if ω < 1 then breakdown can still
occur.
Dynamic compensation can be successful when incorporated into
an IC factorization of a SPD matrix A because the resulting local
modifications correspond to adding positive semidefinite matrices
to A.
In practice, the behaviour of the resulting preconditioner can be
very different from that computed using the MIC approach.
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Incomplete factorizations
Algorithm (ILU factorization with dynamic compensation)

1: l̃ij = (I + LA)ij for all (i, j) ∈ S(L̃)
2: ũij = (DA + UA)ij for all (i, j) ∈ S(Ũ)

3: for k = 1 : n− 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
5: l̃ik = l̃ik/ũkk

6: for j = i : n such that (k, j) ∈ S{Ũ} do
7: if (i, j) ∈ S{Ũ} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ρij = (ũii/ũjj)

1/2

11: ũii = ũii + ωρij |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρij , ũij = 0.
12: end if
13: end for
14: for j = k + 1 : i− 1 such that (k, j) ∈ S{Ũ} do
15: if (i, j) ∈ S{L̃} then
16: l̃ij = l̃ij − l̃ik ũkj

17: else
18: ρij = (ũii/ũjj)

1/2

19: ũii = ũii + ωρij |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρij , l̃ij = 0.
20: end if
21: end for
22: end for
23: end for
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Incomplete factorizations

Dynamic compensation: getting closer to special matrices

A related scheme, called diagonally compensated reduction,
modifies A before the factorization begins by adding the values of
all of its positive off-diagonal entries to the corresponding diagonal
entries and then setting these off-diagonal entries to zero.
If A is SPD then the resulting matrix is a symmetric M-matrix and
the incomplete factorization of an M-matrix is breakdown-free.
However, the modified matrix may be too far from A for its
incomplete factors to be useful.
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Incomplete factorizations

Memory-limited incomplete factorizations

A be SPD, consider the decomposition

A = (L̃+ R̃) (L̃+ R̃)T − E.

The error matrix E is E = R̃R̃T .

On step j of the incomplete factorization, the first column of the
Schur complement S(j) is split into the sum

L̃j:n,j + R̃j:n,j ,

where L̃j:n,j contains the entries that are retained in column j of
the final incomplete factorization and R̃jj = 0 and R̃j+1:n,j

contains the entries that are discarded.
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Incomplete factorizations

Memory-limited incomplete factorizations

If a complete factorization was being computed then the Schur
complement would be updated by subtracting

(L̃j+1:n,j + R̃j+1:n,j) (L̃j+1:n,j + R̃j+1:n,j)
T .

However, the incomplete factorization discards the term

E(j) = R̃j+1:n,j R̃
T
j+1:n,j .

Thus, E(j) is implicitly added to A and because E(j) is positive
semidefinite, the approach is naturally breakdown-free.
The obvious choice for R̃j+1:n,j is the smallest off-diagonal entries
in the column.
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Incomplete factorizations

Memory-limited incomplete factorizations

Figure depicts the first step of this approach. In the first row and
column, ∗ and δ denote the entries of L̃1:n,1 and R̃1:n,1,
respectively.
Standard sparsification scheme: no fill (left)
Using intermediate memory: right.


∗ ∗ ∗ δ δ
∗ f f
∗ f f
δ
δ



∗ ∗ ∗ δ δ
∗ f f f f
∗ f f f f
δ f f
δ f f



Figure: An illustration of the fill-in in a standard sparsification-based IC
factorization (left) and in the approach that uses intermediate memory (right)
after one step of the factorization. Entries with small absolute value in row
and column 1 are denoted by δ. The filled entries are denoted by f .

650 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 661 — #661 i
i

i
i

i
i

Incomplete factorizations

Memory-limited incomplete factorizations

Enables the structure of the complete factorization to be followed
more closely than is possible using a standard approach. If the
small entries at positions (1, 3) and (3, 1) are not discarded then
there is a filled entry in position (3, 2) and this allows the
incomplete factorization using intermediate memory to involve the
(large) off-diagonal entries in positions (5, 2) and (6, 2) in the
second step of the IC factorization.


∗ ∗ δ
∗ ∗ ∗ ∗
δ ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗




∗
∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗




∗
∗ ∗
δ f ∗

∗ ∗
∗ ∗
∗ ∗ ∗


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Incomplete factorizations

Memory-limited incomplete factorizations

Unfortunately, because the column R̃j+1:n,j must be retained to
perform the updates on the next step, the total memory
requirements are essentially as for a complete factorization.
Relaxations are needed: e.g., introducing two drop tolerances so
that only entries of absolute value at least τ1 are kept in L̃ and
entries smaller than τ2 are dropped from R̃.
Or, limiting the fill-in.
But, then, no longer breakdown-free approach.
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Incomplete factorizations

Algorithm (Crout memory-limited IC factorization)

1: w(1 : n) = 0

2: for j = 1 : n do
3: for i = j : n such that aij ̸= 0 do
4: wi = aij ▷ w is a vector of length n

5: end for
6: for k < j such that l̃jk ̸= 0 do
7: for i = j : n such that l̃ik ̸= 0 do
8: wi = wi − l̃ik l̃jk
9: end for
10: for i = j : n such that r̃ik ̸= 0 do
11: wi = wi − r̃ik l̃jk
12: end for
13: end for
14: for k < j such that r̃jk ̸= 0 do
15: for i = j : n such that l̃ik ̸= 0 do
16: wi = wi − l̃ik r̃jk
17: end for
18: end for
19: Copy into L̃j:n,j the lsize+ nz(Aj:n,j) entries of w of largest absolute value
20: Copy into R̃j+1:n,j the rsize entries of w that are the next largest in absolute value
21: Scale l̃jj = (wj)

1/2, L̃j+1:n,j = L̃j+1:n,j /l̃jj , R̃j+1:n,j = R̃j+1:n,j /l̃jj
22: Reset entries of w to zero.
23: end for
24: Optionally discard R̃ ▷ R̃ is often only used in the construction of L̃
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Given the target sparsity pattern S{L̃+ Ũ}, the goal is to
iteratively generate incomplete factors fulfilling the ILU property

(L̃Ũ)ij = aij , (i, j) ∈ S{L̃+ Ũ}

Parallel computation using the constraints

min(i,j)∑
k=1

(i,k),(k,j)∈S{L̃+Ũ}

l̃ik ũkj = aij , (i, j) ∈ S{L̃+ Ũ},

and the normalization l̃ii = 1.
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Using the relations

l̃ij =

(
aij −

j−1∑
k=1

l̃ik ũkj

)
/ ũjj , i > j, (64)

ũij = aij −
i−1∑
k=1

l̃ik ũkj , i ≤ j, (65)

the approach can be formulated as a fixed-point iteration method
of the form wk+1 = f(wk), k = 0, 1, . . ., where w is a vector
containing the unknowns l̃ij and ũij . Each fixed-point iteration is
called a sweep.
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Algorithm (Fixed-point ILU factorization)
Input: Matrix A, the target sparsity pattern S{L̃+ Ũ}, and initial incomplete factors L̃ and Ũ .
Output: Updated incomplete factors.

1: Set l̃ij and ũij to initial values
2: for sweep = 1, 2, . . . do
3: for (i, j) ∈ S{L̃+ Ũ} do
4: if i > j then
5: Compute l̃ij using (64)
6: else
7: Compute ũij using (65)
8: end if
9: end for
10: end for
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Incomplete factorizations

Ordering in incomplete factorizations

Can have a positive effect on the robustness and performance of
preconditioned Krylov subspace methods.
The best choice of ordering for an incomplete factorization
preconditioner may not be the same as for a complete
factorization.
When the natural (lexicographic) ordering is used, the incomplete
triangular factors resulting from a no-fill ILU factorization can be
highly ill-conditioned, even if the matrix A is well conditioned.
Allowing more fill-in in the factors, for example, using ILU(1)
instead of ILU(0), may solve the problem but it is not guaranteed.
Minimum degree orderings: the rows (and columns) of the
permuted matrix can have significantly different counts.
A strategy is to specify that the permitted fill-in is proportional to
the row/column counts of the complete factorization.
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Incomplete factorizations

Ordering in incomplete factorizations

Global orderings cut local connections within the graph of A.
When used with incomplete factorizations, can lead to poor quality
preconditioners.
A global ordering that specifically targets incomplete factorizations
is a red-black (or checker board) ordering.
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Incomplete factorizations

Ordering in incomplete factorizations

1 2 3

4 5 6

7 8 9



1 2 3 4 5 6 7 8 9

1 4 −1 −1
2 −1 4 −1 −1
3 −1 4 −1
4 −1 4 −1
5 −1 −1 4 −1 −1
6 −1 −1 4 −1
7 −1 4 −1
8 −1 −1 4 −1
9 −1 −1 4





1 3 5 7 9 2 4 6 8

1 4 −1 −1
3 4 −1 −1
5 4 −1 −1 −1 −1
7 4 −1 −1
9 4 −1 −1
2 −1 −1 −1 4
4 −1 −1 −1 4
6 −1 −1 −1 4
8 −1 −1 −1 4



Figure: A model problem to illustrate a red-black ordering.
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Incomplete factorizations

Exploiting block structure

Blocking methods for complete factorizations can be adapted to
incomplete factorizations. The aim is to speed up the computation
of the factors and to obtain more effective preconditioners.
In a block factorization, scalar operations of the form

l̃ik = aik/ũkk

are replaced by matrix operations

L̃ib,kb = Aib,kbŨ
−1
kb,kb,

and scalar multiplications of entries of the factors are replaced by
matrix-matrix products. When dropping entries, instead of
considering the absolute values, simple norms of the block entries
(such as the one-norm, max-norm or Frobenius norm) are used.
An incomplete factorization can start with the supernodal structure
of the complete factors.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Factorizations
4 Graphs and sparse matrices
5 Sparse matrices and data structures
6 Symbolic factorizations
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Blocks in the input matrix
12 Sparse Least Squares and QR factorization
13 Reorderings
14 Algebraic preconditioning
15 Incomplete factorizations
16 Sparse approximate inverses

661 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 672 — #672 i
i

i
i

i
i

Sparse approximate inverses

Approximate inverse preconditioners

Standard solves by substitution steps can present a computational
bottleneck. In particular, in parallel computational environment.

But it is M−1, which represents an approximation of A−1, that is
applied by performing forward and back substitution steps

Therefore, an alternative strategy to standard (incomplete )
factorizations is to directly approximate A−1 by explicitly
computing M−1.
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Sparse approximate inverses

Approximate inverse preconditioners

But, there is a problem: The sparsity pattern of the inverse of an
irreducible matrix A is dense, even when A is sparse.
But, perhaps there is a way ...: although A−1 is fully dense, the
following result shows this is not the case for the factors of
factorized inverses.

Theorem
Assume the matrix A is SPD and let L be its Cholesky factor. Then
S{L−1} is the union of all entries (i, j) such that i is an ancestor of j in
the elimination tree T (A).

A consequence of this result is that L−1 need not be fully dense.
Algorithmically, if A is SPD it may be advantageous to preorder A
to limit the number of ancestors of vertices in T (A).
For example, by ND applied to S{A} or to S{A+AT }.
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Sparse approximate inverses

Basic approaches

An obvious way: to compute an incomplete LU factorization of A
and then perform an approximate inversion of the incomplete
factors.
But, two levels of approximation.
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Sparse approximate inverses

Basic approaches
Another straightforward approach is based on bordering.
Let Aj = A1:j,1:j and its inverse factorization

A−1
j = WjD

−1
j ZT

j

is known (Wj and Zj are unit upper triangular matrices and Dj is
a diagonal matrix).(

ZT
j 0

zTj+1 1

)(
Aj A1:j,j+1

Aj+1,1:j aj+1,j+1

)(
Wj wj+1

0 1

)
=

(
Dj 0
0 dj+1,j+1

)
,

where for 1 ≤ j < n

wj+1 = −WjD
−1
j ZT

j A1:j,j+1, zj+1 = −ZjD
−1
j W T

j AT
j+1,1:j ,

dj+1,j+1 = aj+1,j+1 + zTj+1Ajwj+1 +Aj+1,1:jwj+1 + zTj+1A1:j,j+1.

Starting from j = 1, this suggests a procedure for computing the
inverse factors of A. Sparsity can be preserved by dropping.
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Approximate factorizations

Approximate inverse by bordering

Algorithm (Nonsymmetric inverse bordering algorithm)
Input: Generally nonsymmetric A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that A−1 ≈ Z̃T D̃−1W̃T .

1: Set Z̃1 = (1), W̃1 = (1), D̃1 = (a11).
2: for j = 2 : n do
3: Set z̃j = −Z̃1:j−1,1:j−1D̃

−1
1:j−1,1:j−1W̃

T
1:j−1,1:j−1A1:j−1,j

4: Set w̃j = −W̃1:j−1,1:j−1D̃
−1
1:j−1,1:j−1Z̃

T
1:j−1,1:j−1A

T
j,1:j−1

5: Set d̃j = Ajj +AT
1:j−1,jw̃j +Aj,1:j−1z̃j + w̃T

j Aj−1z̃j

6: Set Z̃j =

(
Z̃1:j−1,1:j−1 z̃j

0 1

)
7: Set W̃j =

(
W̃1:j−1,1:j−1 w̃j

0 1

)
8: end for
9: Set Z̃ = Z̃n, W̃ = W̃n, D̃ = D̃n
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Sparse approximate inverses

Inverse by bordering: notes

If A is symmetric, W = Z and the required work is halved.
Furthermore, if A is SPD then it can be shown that, in exact
arithmetic, djj > 0 for all j and the process does not break down.
The computation of Z and W are tightly coupled restricting the
potential to exploit parallelism.
This implies a potential problem with efficient implementation.
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Sparse approximate inverses

Frobenius norm minimization: SPAI
Denote K = M−1.
Use minimization of

∥I −AM−1∥2F = ∥I −AK∥2F =

n∑
j=1

∥ej −Akj∥22, (66)

over all K with pattern S.
A left approximate inverse can be computed by solving a
minimization problem for ∥I −KA∥F = ∥I −ATKT ∥F .
The problem reduces to least squares problems for the columns of
K that can be computed independently and, if required, in parallel.
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Frobenius norm minimization: SPAI

These least squares (LS) problems are all of small dimension
when S is chosen to ensure K is sparse.
Let J = {i | kj(i) ̸= 0} be the set of indices of the nonzero entries
in column kj . Further, denote I = {m |Am,J ̸= 0}.
Let êj = ej(I) be the vector of length |I| that is obtained by taking
the entries of ej with row indices belonging to I.
To solve the LS problem for kj , construct the |I| × |J | matrix
Â = AI,J and solve

min
k̂j

∥êj − Â k̂j∥22. (67)

This can be done using QR factorization of Â. Extending k̂j to
have length n by zeros gives kj .
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SPAI algorithm

Construction: starting with a chosen column sparsity pattern J for
kj , construct Â, solve (67) for k̂j , set kj(J ) = k̂j and define the
residual vector

rj = ej −A1:n,J k̂j .

If ∥rj∥2 ̸= 0 then kj is not equal to the j-th column of A−1 and a
better approximation can be derived by augmenting J .
Augmentation: let L = {l | rj(l) ̸= 0} and define

J̃ = {i |AL,i ̸= 0} \ J . (68)

One or more candidate indices that can be added to J can be
chosen. For example, such that most effectively reduce ∥rj∥2.
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SPAI algorithm

A possible heuristic is to solve for each i ∈ J̃ the minimization
problem

min
µi

||rj − µiAei∥22.

This has the solution µi = rTj Aei/∥Aei∥22 with residual
∥rj∥2 − (rTj Aei)

2/∥Aei∥22.

Indices i ∈ J̃ for which this is small are appended to J .
The process can be repeated until either the required accuracy is
attained or the maximum number of allowed entries in J is
reached.
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SPAI algorithm

Solving the unconstrained LS problem after extending Â to
AI∪I′,J∪J ′ is typically performed by updating the previous
problems.
Assume the QR factorization of Â is

Â = AI,J = Q

(
R
0

)
=
(
Q1 Q2

)(R
0

)
,

where Q1 is |I| × |J |.
The QR factorization of the extended matrix is

AI∪I′,J∪J ′ =

(
Â AI,J ′

AI′,J ′

)
=

(
Q

I

)R QT
1 AI,J ′

QT
2 AI,J ′

AI′,J ′



=

(
Q

I

)(
I

Q′

)R QT
1 AI,J ′

R′

0

 .
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SPAI algorithm

Q′ and R′ are from the QR factorization of the
(|I ′|+ |I| − |J |)× |J ′| matrix(

QT
2 AI,J ′

AI′,J ′

)
.

Factorizing this matrix and updating the trailing QR factorization to
get the new k̂j is much more efficient than computing the QR
factorization of the extended matrix from scratch.
Many variations of the basic approach.
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SPAI algorithm

Algorithm (SPAI preconditioner (right-looking approach))
Input: Nonsymmetric matrix A, a convergence tolerance η > 0, an initial sparsity pattern Jj and
the maximum number nzj of permitted entries for column j of K (1 ≤ j ≤ n).
Output: K ≈ A−1 with columns kj (1 ≤ j ≤ n).

1: for j = 1 : n do ▷ The columns may be computed in parallel
2: Set J = Jj and I = {m |A(m,J ) ̸= 0}, ∥rj∥2 = ∞
3: Construct Â = AI,J and solve (67) for k̂j
4: rj = ej −A1:n,J k̂j

5: while |J | < nzj and ∥rj∥2 > η do
6: Construct J̃ given by (68) ▷ J̃ is the candidate set
7: Determine new indices J ′ ⊂ J̃ to add to J
8: I′ = {m |Am,J ′ ̸= 0} \ I
9: I = I ∪ I′ and J = J ∪ J ′ ▷ Augment the sparsity pattern
10: Construct new Â = AI,J and new k̂j ▷ Update the QR factorization
11: rj = ej −A1:n,J k̂j

12: end while
13: kj(J ) = k̂j ▷ Extend k̂j to kj by setting entries not in J to zero.
14: end for 674 / 705
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SPAI algorithm
The example: The algorithm starts with J1 = {1, 2}.

A =


10 −2
−1 10 −2

−1 10 −2
−1 10 −2

−1 10

 , Â =

10 −2
−1 10

−1

 , k̂1 =

(
0.1020
0.0101

)
, r1 =


1.00× 10−4

1.00× 10−3

1.01× 10−2

0
0

 .

Â =


10 −2
−1 10 −2

−1 10
−1

 , k̂1 =

0.1021
0.0104
0.0010

 , r1 =


1.0× 10−5

1.1× 10−4

1.1× 10−3

1.0× 10−2

0

 , k1 =


0.1021
0.0104
0.0010

0
0

 .

Figure: An illustration of computing the first column of a sparse approximate
inverse using the SPAI algorithm with nz1 = 3. On the top line is the initial
tridiagonal matrix A followed by the matrix Â and the vectors k̂1 and r1 on the
first loop of Algorithm. The bottom line presents the updated matrix Â that is
obtained on the second loop by adding the third row and column of A and the
corresponding vectors k̂1 and r1 and, finally, k1. 675 / 705
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SPAI algorithm

When A is symmetric, there is no guarantee that the computed K
will be symmetric. One possibility is to use (K +KT )/2 to
approximate A−1.
The SPAI preconditioner is not sensitive to reorderings of A. This
has the advantage that A can be partitioned and reordered in
whatever way is convenient, for instance to better suit the needs of
a distributed implementation.
The disadvantage is that orderings cannot be used to reduce fill-in
and/or improve the quality of the approximate inverse.
For instance, if A−1 has no small entries, SPAI will not find a
sparse K, and because the inverse of a permutation of A is just a
permutation of A−1, no permutation of A will change this.
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FSAI preconditioner: SPD case

The factorized sparse approximate inverse (FSAI) preconditioner
for an SPD matrix A is defined as the product

M−1 = GTG,

where the sparse lower triangular matrix G is an approximation of
the inverse of the (complete) Cholesky factor L of A.
Theoretically, a FSAI preconditioner is computed by choosing a
lower triangular sparsity pattern SL and minimizing

∥I −GL∥2F = tr
[
(I −GL)T (I −GL)

]
(69)

over all G with sparsity pattern SL.
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FSAI preconditioner: SPD case

Differentiating the formula with respect to the entries of G and
setting to zero yields

(GLLT )ij = (GA)ij = (LT )ij for all (i, j) ∈ SL. (70)

Because LT is an upper triangular matrix while SL is a lower
triangular pattern, the matrix equation (70) can be rewritten as

(GA)ij =

{
0 i ̸= j, (i, j) ∈ SL
lii i = j.

(71)
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FSAI preconditioner: SPD case

G is not available directly because L is unknown. Instead, G is
computed such that

(GA)ij = δi,j for all (i, j) ∈ SL, (72)

where δi,j is the Kronecker delta function (δi,j = 1 if i = j and is
equal to 0, otherwise).
The FSAI factor G is then obtained by setting

G = DG,

where D is a diagonal scaling matrix.
An appropriate choice for D is

D = [diag(G)]−1/2, (73)

so that
(GAGT )ii = 1, 1 ≤ i ≤ n.
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FSAI preconditioner: SPD case

Theorem
Assume A is SPD. If the lower triangular sparsity pattern SL includes
all diagonal positions then G exists and is unique.

Proof.
Set Ii = {j | (i, j) ∈ SL} and let AIi, Ii

denote the submatrix of order nzi = |Ii| of entries akl
such that k, l ∈ Ii. Let ḡi and gi be dense vectors containing the nonzero coefficients in row i of
G and G, respectively. Using this notation, solving (72) decouples into solving n independent
SPD linear systems

AIi, Ii
ḡi = enzi , 1 ≤ i ≤ n,

where the unit vectors are of length nzi. Moreover,

(GAG
T
)ii =

∑
j∈Ii

δi,jGij = Gii = (A−1
Ii,Ii

)ii.

This implies that the diagonal entries of D given by (73) are nonzero. Consequently, the

computed rows of G exist and provide a unique solution. □
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FSAI preconditioner: SPD case

Algorithm (FSAI preconditioner)
Input: SPD matrix A and lower triangular sparsity pattern SL that includes all diagonal positions.
Output: Lower triangular matrix G such that A−1 ≈ GGT .

1: for i = 1 : n do
2: Construct Ii = {j | (i, j) ∈ SL}, AIi,Ii

and set nzi = |Ii|
3: Solve AIi,Ii

ḡi = enzi

4: Scale gi = diiḡi with dii = (ḡi,nzi )
−1/2 ▷ ḡi,nzi is the last component of ḡi

5: Extend gi to the row Gi,1:i by setting entries that are not in Ii to zero
6: end for
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FSAI preconditioner: SPD case

Monotonicity property.

Theorem
Let L be the Cholesky factor of the SPD matrix A. Given the lower
triangular sparsity pattern SL that includes all diagonal positions, let G
be the FSAI preconditioner computed using Algorithm above. Then
any lower triangular matrix G1 with its sparsity pattern is contained in
SL a (G1AG

T
1 )ii = 1 (1 ≤ i ≤ n) satisfies

||I −GL||F ≤ ||I −G1L||F .
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FSAI preconditioner: SPD case

The performance is highly dependent on the choice of SL.

Theorem
Let L be the Cholesky factor of the SPD matrix A. Given the lower
triangular sparsity patterns SL1 and SL2 that include all diagonal
positions, let the corresponding FSAI preconditioners computed using
Algorithm 16.3 be G1 and G2, respectively. If SL1 ⊆ SL2 then

||I −G2L||F ≤ ||I −G1L||F .
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FSAI preconditioner: general case

The FSAI algorithm can be extended to a general matrix A. Two
input sparsity patterns are required.
First, lower and upper triangular matrices GL and GU are
computed such that

(GLA)ij = δi,j for all (i, j) ∈ SL,

(AGU )ij = δi,j for all (i, j) ∈ SU .
Then D is obtained as the inverse of the diagonal of the matrix
GLAGU , and the final nonsymmetric FSAI factors are given by
GL = GL and GU = GUD. The computation of the two
approximate factors can be performed independently.
This generalization is well defined if, for example, A is
nonsymmetric positive definite. There is also theory that extends
existence to special classes of matrices, including M- and
H-matrices.
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Determining a good sparsity pattern

Input pattern is expected to filter out entries of A−1 that contribute
little to the quality of the preconditioner.
For instance, it might be appropriate to ignore entries with a small
absolute value, while retaining the largest ones. But, locations of
large entries in A−1 are generally unknown, and this makes the a
priori sparsity choice difficult.
A a banded SPD matrix: the entries of A−1 are bounded in an
exponentially decaying manner along each row or column: there
exist 0 < ρ < 1 and a constant c such that for all i, j

|(A−1)ij | ≤ cρ|i−j|.

The scalars ρ and c depend on the bandwidth and κ(A).
A common choice for a general A is SL + SU = S{A}, .
An alternative strategy uses the Neumann series expansion of
A−1: using the pattern of a small power of A, i.e., S{A2} or S{A3}.
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Factorized approximate inverses based on incomplete conjugation
An alternative way: using incomplete conjugation
(A-orthogonalization) in the SPD case and on incomplete
A-biconjugation in the general case. For SPD matrices, the
approach represents an approximate Gram-Schmidt
orthogonalization that uses the A-inner product ⟨., .⟩A.
Sparsity pattern not needed in advance.
When A is a SPD matrix the AINV preconditioner is defined in the
form

A−1 ≈M−1 = ZD−1ZT ,

Z is unit upper triangular, D is a diagonal matrix with positive
entries.
Practical implementations need to employ sparse matrix
techniques. The left-looking scheme computes the j-th column zj
of Z as a sparse linear combination of the previous columns
z1, . . . , zj−1. The key is determining which multipliers (the α’s in
Steps 4 and 5 of the two algorithms, respectively) are nonzero and
need to computed.
The DS storage format can be used to store the partially
computed Z.
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Factorized approximate inverses based on incomplete conjugation

Algorithm (AINV preconditioner (left-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] ▷ Initialise Z to hold the columns of the identity matrix

2: for j = 1 : n do

3: for k = 1 : j − 1 do

4: α = Ak,1:n z
(k−1)
j /dkk

5: z
(k)
j = z

(k−1)
j − αz

(k−1)
k

6: Sparsify z
(k)
j ▷ Drop entries from z

(k)
j

7: end for

8: djj = Aj,1:n z
(j−1)
j

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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Factorized approximate inverses based on incomplete conjugation

Algorithm (AINV preconditioner (right-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] ▷ Initialise Z to hold the columns of the identity matrix

2: for j = 1 : n do

3: djj = Aj,1:n z
(j−1)
j

4: for k = j + 1 : n do

5: α = Aj,1:n z
(j−1)
k /djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: end for

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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AINV preconditioner: general case

In the general case, the AINV preconditioner is given by an
approximate inverse factorization of the form

A−1 ≈M−1 = WD−1ZT ,

where Z and W are unit upper triangular matrix and D is a
diagonal matrix.
Z and W are sparse approximations of the inverses of the LT and
U factors in the LDU factorization of A, respectively.

689 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 700 — #700 i
i

i
i

i
i

Sparse approximate inverses

AINV preconditioner: general case

Algorithm (Nonsymmetric AINV preconditioner (right-looking
approach))

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] and [w

(0)
1 , . . . , w

(0)
n ] = [e1, . . . , en]

2: for j = 1 : n do

3: djj = (A1:n,j)
T z

(j−1)
j or djj = Aj,1:n w

(j−1)
j

4: for k = j + 1 : n do

5: α = (A1:n,j)
T z

(j−1)
k /djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: β = Aj,1:n w
(j−1)
k /djj

9: w
(j)
k = w

(j−1)
k − βw

(j−1)
j

10: Sparsify w
(j)
k ▷ Drop entries from w

(j)
k

11: end for

12: end for

13: Z = [z
(0)
1 , . . . , z

(n−1)
n ] and W = [w

(0)
1 , . . . , w

(n−1)
n ]
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AINV preconditioner

Matrix A, AINV preconditioner
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AINV preconditioner

ILUT, inverse ILUT
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SAINV: stabilization of the AINV method

The following result is analogous to the SPD case.

Theorem
If A is a nonsingular M- or H-matrix then the AINV factorization of A
does not break down.

For more general matrices breakdown can happen because of the
occurrence of zero djj or, in the SPD case, negative djj .
In practice, exact zeros are unlikely but very small djj can occur
(near breakdown), which may lead to uncontrolled growth in the
size of entries in the incomplete factors and, because such entries
are not dropped when using a threshold parameter, a large
amount of fill-in.
The next theorem indicates how breakdown can be prevented
when A is SPD through reformulating the A-orthogonalization.
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SAINV: stabilization of the AINV method

Theorem
Consider AINV algorithm with no sparsification (Step 7 is removed).
The following holds

Aj,1:n z
(j−1)
k ≡ eTj Az

(j−1)
k = ⟨z(j−1)

j , z
(j−1)
k ⟩A, 1 ≤ j ≤ k ≤ n.

Proof.
Because AZ = Z−TD and Z−TD is lower triangular, entries 1 to j − 1 of the vector Az

(j−1)
k

are equal to zero. Z is unit upper triangular so entries j + 1 to n of its j-th column z
(j−1)
j are

also equal to zero. Thus, z(j−1)
j can be written as the sum z + ej , where entries j to n of th

vector z are zero. The result follows. □
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SAINV: stabilization of the AINV method

Algorithm (SAINV preconditioner (right-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en]

2: for j = 1 : n do

3: djj = ⟨z(j−1)
j , z

(j−1)
j ⟩A

4: for k = j + 1 : n do

5: α = ⟨z(j−1)
k , z

(j−1)
j ⟩A/djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: end for

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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From AINV to Cholesky

The factors Z and D obtained with no sparsification can be used
to compute the square root-free Cholesky factorization of A.
The L factor of A and the inverse factor Z computed using AINV
Algorithm without sparsification satisfy

AZ = LD or L = AZD−1.

Using djj = ⟨z(j−1)
j , z

(j−1)
j ⟩A, and equating corresponding entries

of AZD−1 and L gives

lij =
⟨z(j−1)

j , z
(j−1)
i ⟩A

⟨z(j−1)
j , z

(j−1)
j ⟩A

, 1 ≤ j ≤ i ≤ n.

Thus, the SAINV algorithm generates the L factor of the square
root-free Cholesky factorization of A as a by-product of
orthogonalization in the inner product ⟨. , .⟩A at no extra cost and
without breakdown.
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Sparse approximate inverses

Stabilization-like for general A

The stabilization strategy can be extended to the nonsymmetric
AINV algorithm using the following result.

Theorem
Consider nonsymmetric AINV Algorithm with no sparsification (Steps 7
and 10 removed). The following identities hold:

Aj,1:n z
(j−1)
k ≡ eTj Az

(j−1)
k = ⟨w(j−1)

j , z
(j−1)
k ⟩A,

(A1:n,j)
Tw

(j−1)
k ≡ eTj A

Tw
(j−1)
k = ⟨z(j−1)

j , w
(j−1)
k ⟩A, 1 ≤ j ≤ k ≤ n.

The nonsymmetric SAINV algorithm obtained using this
reformulation can improve the preconditioner quality but it is not
guaranteed to be breakdown free.
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Approximate factorizations

Approximate inverse by global iterations
Consider one-dimensional Newton-Raphson iterations to find a scalar
value p which is the root of a given function f , that is

f(p) = 0.

The method approaches p by a sequence of approximations p0, p1, . . ..
Consider a tangent of f at pk for some integer k ≥ 0 in the following
form

y = f ′(pk)pk + b. (74)

The tangent crosses (pk, f(pk)) and this can be put down as

f(pk) = f ′(pk)pk + b. (75)

This implies
b = f(pk)− f ′(pk)pk (76)

and we get a function of x given by

y = f ′(x)x+ f(pk)− f ′(pk)pk. (77)
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Approximate factorizations, splitting and
preconditioning

Assume that the root is achieved at pk+1. Then

0 = f ′(pk+1)pk+1 + f(pk)− f ′(pk)pk (78)

and therefore
pk+1 = pk −

f(pk)

f ′(pk)
. (79)

For f beeing the function of the inverse given by

f(x) = 1/x− a

we have
pk+1 = pk −

1/pk − a

−1/p2k
= pk(2− apk). (80)

Finding the matrix inverse in case it is well-defined:

Gi+1 = Gi(2I −AGi), i = 1, . . .

for the sequence of non-factorized approximate inverses G0, . . .. The
main problem: G is for irreducible A fully dense.
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Approximate factorizations, splitting and
preconditioning

Consider the computation of the j-th diagonal entry and assume the
exactly computed quantities. The computation from the formula

dj = Ajj +AT
1:j−1,jwj +Aj,1:j−1zj + wT

j Aj−1zj (81)

can be easily replaced by the mathematically equivalent formula which
we used in the algorithms using biconjugation computation:

dj = Aj,1:j−1zj or dj = AT
1:j−1,jwj . (82)
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Notes on parallel approaches

1. Shared memory computers

1st level of parallelism: tree structure of the decomposition.
2nd level of parallelism: local node parallel enhancements.

Both may/should be coordinated.
Tree parallelism potential decreases towards its root.
Potential for the local parallelism (larger dense matrices)
increases towards the root.
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Decomposition and computer architectures: 1st level
of parallelism

Two basic possibilities for the tree parallelism
Dynamic task scheduling on shared memory computers
Direct static mapping: subtree to subcube

1. Dynamic task scheduling on shared memory computers

Dynamic scheduling of the tasks
Each processor selects a task
Again, problem of elimination tree reordering
Not easy to optimize memory, e.g., in the multifrontal method

702 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 713 — #713 i
i

i
i

i
i

Decomposition and computer architectures: 1st level
of parallelism: II

2. Direct static mapping: subtree to subcube
Recursively map processors to the tree parts from the top
Various ways of mapping.
Note: In the SPD (non-pivoting) case the arithmetic work can be
computed and considered
Localized communication
More difficult to share the work among processors in more
complex models

1,2,3,4

1,2,3,4

1,2

1,2

3,4

3,4

703 / 705



i
i

“mrm_slides_2025” — 2025/12/15 — 8:33 — page 714 — #714 i
i

i
i

i
i

Decomposition and computer architectures: 2nd level
of parallelism

Block Cholesky/LU factorization
BLAS / parallel BLAS operations

1D partitioning

2D partitioning

1D and 2D block cyclic distribution

(Only illustrative figures for the talk!)
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Decomposition and computer architectures:
Distributed memory parallelism

Basic classical parallelization approaches (consider Cholesky)

Fan-in approach
▶ Demand-driven column-based algorithm
▶ Required data are aggregated updates asked from previous

columns
bf Fan-out approach

▶ Data-driven column-based algorithm
▶ Updates are broadcasted once computed and aggregated
▶ Historically the first approach; greater interprocessor

communication than fan-in
Multifrontal approach

▶ Example: MUMPS
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