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Why study Math?

Excellent for your brain
Real-world applications

Better problem-solving skills
Helps almost every career

Helps understand the world better

AR e

It is the universal language
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Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness
At the end of the course students should be able to
e compute limits and derivatives and investigate functions

@ understand definitions (give positive and negative
examples) and theorems (explain their meaning, neccessity
of the assumptions, apply them in particular situations)

e perform mathematical proofs, give mathematically exact
arguments, write mathematical formulae, use quantifiers
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Mathematics I

@ Introduction

e Limit of a sequence

@ Mappings

@ Functions of one real variable
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Hajkova et al: Mathematics 1

Trench: Introduction to real analysis

Ghorpade, Limaye: A course in calculus and real analysis
Zorich: Mathematical analysis I

Rudin: Principles of mathematical analysis

Fikhtengoltz: The fundamentals of Mathematical Analysis.
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Sets

Mathemati



We take a set to be a collection of definite and distinguishable
objects into a coherent whole.
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Sets

We take a set to be a collection of definite and distinguishable
objects into a coherent whole.
@ x € A ...x1is an element (or member) of the set A

Exercise (True or false)

A - set of all animals living in Australia.
AacA BbeA CcecA DdecA EecA
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@ x ¢ A...xis nota member of the set A
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Sets

@ x ¢ A...xis nota member of the set A

Exercise (True or false)

A - set of all animals living in Australia.

AadA BbdA CcdA Dd¢gA EedA
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@ A°...the complement of the set A

@ B C A ...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band B C A
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@ A°...the complement of the set A

@ B C A ...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band B C A

@ ()...an empty set
@ A U B ...the union of the sets A and B
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@ A°...the complement of the set A

@ B C A ...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band B C A

@ ()...an empty set
@ A U B ...the union of the sets A and B
@ AN B ...the intersection of the sets A and B
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@ A°...the complement of the set A

@ B C A ...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band B C A

@ ()...an empty set

@ AU B ...the union of the sets A and B

@ AN B...the intersection of the sets A and B

@ disjoint sets ...A and B are disjoint if AN B = ()

@ A\B={xe€A:x¢ B} ...difference of the sets A and B
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@ A°...the complement of the set A

@ B C A ...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band B C A

@ ()...an empty set

@ AU B ...the union of the sets A and B

@ AN B...the intersection of the sets A and B

@ disjoint sets ...A and B are disjoint if AN B = ()

@ A\B={xe€A:x¢ B} ...difference of the sets A and B

@A X--- XAm:{(al,...,am) La EAl,...,am GAm}
... the Cartesian product
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Sets - questions

LetU = {1,2,3,4,5,6,7,8,9}, A = {1,3,5,7,9} and
B={1,2,3,4,5}. Find

1. AUB 3. A° 5. A\ B
2. ANB 4. (BY)F 6. B\ A
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Sets - questions

LetU = {1,2,3,4,5,6,7,8,9}, A = {1,3,5,7,9} and
B={1,2,3,4,5}. Find

1. AUB 3. A° 5. A\ B
2. ANB 4. (BY)F 6. B\ A

Exercise (True or false)

Let A be a set.

AlbeA D {x} € {x,y,2}
BOcA
Co=20 E x € {x,y,7}
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A X XAy ={(ar,...,an): a1 EAy,...,ay, € Ay} ...the
Cartesian product
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Sets

A X XAy ={(ar,...,an): a1 EAy,...,ay, € Ay} ...the
Cartesian product

Exercise

LetA = {1,2,3}, B={2,4}. Find A x B, B X B and sketch
them.

a
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Let I be a non-empty set of indices and suppose we have a
system of sets A,,, where the indices « run over /.
e [J A, ...the set of all elements belonging to at least one of

a€l
the sets A,
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Let I be a non-empty set of indices and suppose we have a
system of sets A,,, where the indices « run over /.
e [J A, ...the set of all elements belonging to at least one of

a€l
the sets A,

@ () A, ...the set of all elements belonging to every A,
a€cl

Mathematics I - Introduction
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Let I be a non-empty set of indices and suppose we have a
system of sets A,,, where the indices « run over /.

e [J A, ...the set of all elements belonging to at least one of

agcl
the sets A,

@ () A, ...the set of all elements belonging to every A,
a€cl

Example.
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Let I be a non-empty set of indices and suppose we have a
system of sets A,,, where the indices « run over /.

e [J A, ...the set of all elements belonging to at least one of

agcl
the sets A,
@ () A, ...the set of all elements belonging to every A,
a€cl
Example.

3
A; UA; UAj is equivalent to | J A;, and alsoto | A
i=1 ic{12,3}
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Let I be a non-empty set of indices and suppose we have a
system of sets A,,, where the indices « run over /.

e [J A, ...the set of all elements belonging to at least one of

agcl
the sets A,
@ () A, ...the set of all elements belonging to every A,
a€cl
Example.

3
A; UA; UAj is equivalent to | J A;, and alsoto | A
i=1 ic{12,3}

Infinitely many sets: A} UA, UA; U ... is equivalent to | J A,

i=1
and also to |J A;.
ieN
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Sets

Exercise

Let A, = {0,1}, A, = {0,2}, A; = {0, 3}. Find

3
. UAl- 2. ﬂ A,

i€{1,2,3}
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de Morgan’s laws

de Morgan’s laws

Let S, A, a € I # () be some sets. Then

S\UAa = n(S\Aa)

acl acl

and

S\ (A« = [ J(5\ An).

a€cl a€cl
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Logic

Mathemati



A statement (or proposition) is a sentence which can be
declared to be either true or false.
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Logic

A statement (or proposition) is a sentence which can be
declared to be either true or false.

Exercise

Find statements.
A Let it be!
B We all live in a yellow submarine.
C Is there anybody out there?

D We don’t need any education.
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Statements

@ —, also -, non ...negation

e & (also A)...conjunction, logical “and”

@ || (also V) ...disjunction (alternative), logical “or”

@ = ...implication

@ & ...equivalence; “if and only if”

Exercise

1.

s 82

Alice does not like chocolate ice cream.

Alice likes chocolate and lemon ice cream.

Alice likes chocolate or lemon ice cream.

If it will be raining tomorrow, we will play board games.

We will play board games tomorrow if and only if it will
be raining.
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
General form:

V(x),xeM
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
General form:

V(x),xeM

V(x1, ... %), x1 EMy,...,x, €M,

Example

V(x): x is even
M={1,2,3,4,5}
V(3) false, V(4) true.

V(X[,Xz)l X1 Xy = 1
M={21734}
V(2,3) true, V(2,3) false.
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).

The statement “There is only one x in M such that A(x) holds.”
is shortened to
dlx € M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).

The statement “There is only one x in M such that A(x) holds.”
is shortened to

dlx € M: A(x).

VxeR:|x| >0
IxeQ:x+3<L12
Ax e RT 1 x2 =42
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If A(x), x € M and B(x), x € M are predicates, then

Vx € M,B(x): A(x) means Vxé&€ M: (B(x) = A(x)),
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If A(x), x € M and B(x), x € M are predicates, then

Vx € M,B(x): A(x) means Vxé&€ M: (B(x) = A(x)),

dx € M,B(x): A(x) means dx € M: (A(x) & B(x)).

Vx € R x > —1:142x < (1+4x)?

EI)CE]R,)CZO:)CZ)C2

Mathematics I - Introduction



Negations of the statements with quantifiers:

—(Vx € M: A(x)) isthesameas dx &€ M: —A(x),
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Negations of the statements with quantifiers:

—(Vx € M: A(x)) isthesameas dx &€ M: —A(x),

—(Ix € M: A(x)) isthesameas Vxe& M: —-A(x).

Example

Find negation
Vx € R, x> —1:142x < (1+4x)?

VxER,VyGR,xZO,yEO:x%>\/x_y

HXER,XZOSXZ)Cz

Mathematics I - Introduction 19/37



Methods of proofs
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Methods of proofs

@ direct proof
@ indirect proof (proof by contrapositive)
@ proof by contradiction

@ mathematical induction
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Methods of proofs
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Methods of proofs

e direct proof (A = B follows from A = C; = C, = B)

@ indirect proof (proof by contrapositive) (A = B is
equivalent to ~B = —A)

@ proof by contradiction (A = B is equivalent to (A A —B))

@ mathematical induction (base and step of induction)
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Methods of proof

Exercise (direct proof) (Cauchy inequality)

i) - 37) )

Exercise (proof by contrapositive)

For a integer n, if n? is even, then n is also even.

Exercise (proof by contradiction)

The number /2 is irrational.

Exercise (proof by induction)

d@i-1)=n

i=1

|
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Natural, Integer, Rational numbers

@ The set of natural numbers
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Natural, Integer, Rational numbers

@ The set of natural numbers

N={1,234,...}
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Natural, Integer, Rational numbers

@ The set of natural numbers

N={1,234,...}

@ The set of integers

Z=NUu{0lU{-n:neN}={...,—2,-1,0,1,2,...}
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Natural, Integer, Rational numbers

@ The set of natural numbers

N={1,234,...}

@ The set of integers

Z=NUu{0lU{-n:neN}={...,—2,-1,0,1,2,...}

@ The set of rational numbers
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Natural, Integer, Rational numbers

@ The set of natural numbers

N={1,234,...}

@ The set of integers

Z=NUu{0lU{-n:neN}={...,—2,-1,0,1,2,...}

@ The set of rational numbers
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Natural, Integer, Rational numbers

@ The set of natural numbers

N={1,234,...}

@ The set of integers

Z=NUu{0lU{-n:neN}={...,—2,-1,0,1,2,...}

@ The set of rational numbers
@:{’—’;pez,qu},
q

where % = Z_i if and only if p; - g2 = p> - q1.
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By the set of real numbers R we will understand a set on which
there are operations of addition and multiplication (denoted by

+ and -), and a relation of ordering (denoted by <), such that it
has the following three groups of properties.

I. The properties of addition and multiplication and their
relationships.

II. The relationships of the ordering and the operations of
addition and multiplication.

III. The infimum axiom.
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Properties of addition and multiplication and their relationships:
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Properties of addition and multiplication and their relationships:
Properties of “+:
e Vx,y € R: x +y=y+ x (commutativity of addition),
@ Vx,y,z € R: x+ (y+z) = (x +y) + z (associativity),
@ There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x € R,
e Vxe Rdye R: x+y=0(yis called the negative of x,
such y is only one, denoted by —x),
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Properties of addition and multiplication and their relationships:
Properties of “+:
e Vx,y € R: x +y=y+ x (commutativity of addition),
@ Vx,y,z € R: x+ (y+z) = (x +y) + z (associativity),
@ There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x € R,
e Vxe Rdye R: x+y=0(yis called the negative of x,
such y is only one, denoted by —x),
Properties of ““-”’:
e Vx,y € R: x-y=y-x (commutativity),
o Vx,y,z€R:x-(y-z) = (x-y) -z (associativity),
@ There is a non-zero element in R (called identity, denoted
by 1), such that 1 - x = x for every x € R,
e Vxe R\ {0} dy € R: x-y =1 (suchyis only one,
denoted by x~! or 1),
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Properties of addition and multiplication and their relationships:
Properties of “+:
e Vx,y € R: x +y=y+ x (commutativity of addition),
o Vx,y,z€ R: x+ (y+2z) = (x+y) + z (associativity),
@ There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x € R,
e Vxe Rdy e R: x+y=0(yis called the negative of x,
such y is only one, denoted by —x),
Properties of ““-”’:
e Vx,y € R: x-y=y-x (commutativity),
o Vx,y,z€R:x-(y-z) = (x-y) -z (associativity),
@ There is a non-zero element in R (called identity, denoted
by 1), such that 1 - x = x for every x € R,
e Vxe R\ {0} dy € R: x-y =1 (suchyis only one,
denoted by x~! or 1),
Relation between “+”” and “-”:
o Vx,y,z€R: (x+y)-z=x-z+y-z(distributivity).
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The relationships of the ordering and the operations of
addition and multiplication:
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The relationships of the ordering and the operations of
addition and multiplication:

e Vx,y e R: x <yVy < x(linear order),

o Vx,y,zeR: (x <y & y <z) = x < z (transitivity),
e Vx,yeR: (x<y & y <x)= x =y (antisymmetry),
o Vx,y,zeR:x<y=x+z<y+z

e Vx,yc R: (0<x & 0<y)=0<x-y.
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We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number « is called a lower bound of the set M.
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number « is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound.
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number « is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M C R is bounded if it is
bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above?
Bounded?

A N

B {1,5,3, 53 -}

C R\QnN(-3,2]

D {xeR:x< 7}

E (—oo,—1)U{0} U1, 00)
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g € R such that

i) VxeM: x> g,
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g € R such that
i) VxeM: x> g,
(i) Vg eR, g >gIxeM: x< g
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g € R such that
i) VxeM: x> g,
(i) V¢ eR,g >gIxeM: x<g.
The number g is denoted by inf M and is called the infimum of

the set M.
L 2r Bounds for A
! ]
1 I
1) The is the greater lower bound of the
. All other are smaller than
2) Furthermore if b is greater than then there
exists an - contained in the such that - <o,
Figure:

https://mathspandorabox. wordpress com/2016/03/ 11/the-difference-




@ The infimum axiom says that every non-empty set
bounded from below has infimum.
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Remark

@ The infimum axiom says that every non-empty set
bounded from below has infimum.

@ The infimum of the set M is its greatest lower bound.
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Remark

@ The infimum axiom says that every non-empty set
bounded from below has infimum.

@ The infimum of the set M is its greatest lower bound.

@ The real numbers exist and are uniquely determined by the
properties [-III.
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The following hold:

1) VxeR:x-0=0-x=0,

() Vx e R: —x=(—1)-x,

(i) Vx,ye R:xy=0= (x=0Vy=0),

(iv) Vx e RVrn e N: x" = (x7 1),

(V) Vx,y€eR: (x >0Ay>0)=xy >0,

(Vi) Vx e R x>0VyeR,y>0VneN: x <y x" <y,
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Leta,b € R, a < b. We denote:
@ Anopen interval (a,b) = {x € R:a < x < b},
@ A closed interval [a,b] = {x € R:a < x < b},
e A half-open interval [a,b) = {x € R: a < x < b},
@ A half-open interval (a,b] = {x € R: a < x < b}.
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Leta,b € R, a < b. We denote:

@ Anopen interval (a,b) = {x € R:a < x < b},

@ A closed interval [a,b] = {x € R:a < x < b},

e A half-open interval [a,b) = {x e R:a < x < b},

@ A half-open interval (a,b] = {x € R: a < x < b}.
The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the

interval which is not an endpoint is called an inner point of the
interval.
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Leta,b € R, a < b. We denote:

@ Anopen interval (a,b) = {x € R:a < x < b},

@ A closed interval [a,b] = {x € R:a < x < b},

e A half-open interval [a,b) = {x e R:a < x < b},

@ A half-open interval (a,b] = {x € R: a < x < b}.
The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the
interval which is not an endpoint is called an inner point of the

interval.
Unbounded intervals:

(a,+0) ={xeR:a<x}, (—o0,a)={xeR:x<a},

analogically (—o0, dl, [a, +00) and (—o0, +00).
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Label the Venn diagram with N, Q, Z, R, R \ Q.
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Label the Venn diagram with N, Q, Z, R, R \ Q.

We have N C Z C Q C R. If we transfer the addition and
multiplication from R to the above sets, we obtain the usual
operations on these sets.

A real number that is not rational is called irrational. The set
R\ Q is called the set of irrational numbers.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
1) VxeM: x <G,

(i) VG e R,G <GIxeM: x> G,

is called a supremum of the set M.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
1) VxeM: x <G,

(i) VG e R,G <GIxeM: x> G,

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let M C R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.
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1) VxeM: x <G,

(i) VG e R,G <GIxeM: x> G,

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let M C R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.

The supremum of the set M is denoted by sup M.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
1) VxeM: x <G,

(i) VG e R,G <GIxeM: x> G,

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let M C R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.

The supremum of the set M is denoted by sup M.
The following holds: sup M = — inf(—M).
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Definition

Let M C R. We say that a is a maximum of the set M (denoted
by max M) if a is an upper bound of M and a € M.
Analogously we define a minimum of M, denoted by min M.

Exercise
Find infimum, minimum, maximum and supremum:

1. {1,2,3,4} 6. (=7,-0) U (1,2)
2. [- 23] 7. 10, 00)

5. (-2.3) o

4. ( ] {172737_7"'}
5. [=2,—1) U (0,25] 9. N
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Theorem 2 (Archimedean property)

For every x € R there exists n € N satisfying n > x.
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Theorem 2 (Archimedean property)

For every x € R there exists n € N satisfying n > x.

Theorem 3 (existence of an integer part)

For every r € R there exists an integer part of r, i.e. a number
k € Z satisfying k < r < k + 1. The integer part of r is
determined uniquely and it is denoted by [r].
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Theorem 4 (nth root)

For every x € [0,4+00) and every n € N there exists a unique
y € [0, +00) satisfying y" = x.
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Theorem 4 (nth root)

For every x € [0,4+00) and every n € N there exists a unique
y € [0, +00) satisfying y" = x.

Theorem 5 (density of Q and R \ Q)

Leta,b € R, a < b. Then there exist r € Q satisfyinga < r < b
and s € R\ Q satisfying a < s < b.
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}
The set M is bounded from above, hence dsup M =: § real.
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—1<n
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—-1<n<S.
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—-1<n<S.

We have n 4+ 1 > S,

Mathematics I - Introduction



Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—-1<n<S.

Wehaven+ 1> S hencen+ 1 ¢ M,
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M =sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—-1<n<S.

We haven+ 1 > S, hencen+1 ¢ M,ie.n+1 > x.
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Theorem 6 (existence of an integer part)

For every x € R there exists an integer part of r, i.e. a number
n € Z satisfying n < x < n+ 1. The integer part of x is
determined uniquely and it is denoted by | x]|.

Consider the set M = sup{m € Z: m < x}

The set M is bounded from above, hence dsup M =: § real.
From the definition of supremum, S — 1 is not an upper bound,
hence

dneM: S—-1<n<S.

We haven+ 1 > S, hencen+1 ¢ M,ie.n+1 > x.

At the same time, n € M, hence n < x. Q.E.D.

Note that in the proof we did not have to prove that § € Z, or
thatn = S.
Exercise: prove it.
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