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Why study Math?

1. Excellent for your brain
2. Real-world applications
3. Better problem-solving skills
4. Helps almost every career
5. Helps understand the world better
6. It is the universal language
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Goal of the course

Preparation for other courses — Statistics,
Microeconomics, . . .

Training of logical thinking and mathematical exactness

At the end of the course students should be able to

compute limits and derivatives and investigate functions
understand definitions (give positive and negative
examples) and theorems (explain their meaning, neccessity
of the assumptions, apply them in particular situations)
perform mathematical proofs, give mathematically exact
arguments, write mathematical formulae, use quantifiers
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Mathematics I

Introduction
Limit of a sequence
Mappings
Functions of one real variable
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Textbooks

Hájková et al: Mathematics 1
Trench: Introduction to real analysis
Ghorpade, Limaye: A course in calculus and real analysis
Zorich: Mathematical analysis I
Rudin: Principles of mathematical analysis
Fikhtengoltz: The fundamentals of Mathematical Analysis.
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Sets

We take a set to be a collection of definite and distinguishable
objects into a coherent whole.

x ∈ A . . . x is an element (or member) of the set A

Exercise (True or false)
A - set of all animals living in Australia.

A a ∈ A B b ∈ A C c ∈ A D d ∈ A E e ∈ A
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Sets

x /∈ A . . . x is not a member of the set A

Exercise (True or false)
A - set of all animals living in Australia.

A a 6∈ A B b 6∈ A C c 6∈ A D d 6∈ A E e 6∈ A
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Sets

Ac . . . the complement of the set A

B ⊂ A . . . the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B ⊂ A.
A = B . . . the sets A and B have the same elements; the
following holds: A ⊂ B and B ⊂ A
∅ . . . an empty set
A ∪ B . . . the union of the sets A and B
A ∩ B . . . the intersection of the sets A and B
disjoint sets . . . A and B are disjoint if A ∩ B = ∅
A \ B = {x ∈ A : x /∈ B} . . . difference of the sets A and B
A1 × · · · × Am = {(a1, . . . , am) : a1 ∈ A1, . . . , am ∈ Am}
. . . the Cartesian product
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Sets - questions

Exercise
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 3, 5, 7, 9} and
B = {1, 2, 3, 4, 5}. Find

1. A ∪ B
2. A ∩ B

3. Ac

4. (Bc)c
5. A \ B
6. B \ A

Exercise (True or false)
Let A be a set.

A ∅ ∈ A
B ∅ ⊂ A
C 0 = ∅

D {x} ∈ {x, y, z}

E x ∈ {x, y, z}
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Sets
A1 × · · · × Am = {(a1, . . . , am) : a1 ∈ A1, . . . , am ∈ Am} . . . the
Cartesian product

Exercise
Let A = {1, 2, 3}, B = {2, 4}. Find A× B, B× B and sketch
them.
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Sets

Let I be a non-empty set of indices and suppose we have a
system of sets Aα, where the indices α run over I.⋃

α∈I
Aα . . . the set of all elements belonging to at least one of

the sets Aα

⋂
α∈I

Aα . . . the set of all elements belonging to every Aα

Example.

A1 ∪ A2 ∪ A3 is equivalent to
3⋃

i=1
Ai, and also to

⋃
i∈{1,2,3}

Ai.

Infinitely many sets: A1 ∪ A2 ∪ A3 ∪ . . . is equivalent to
∞⋃

i=1
Ai,

and also to
⋃
i∈N

Ai.
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Sets

Exercise
Let A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 3}. Find

1.
3⋃

i=1

Ai
2.

⋂
i∈{1,2,3}

Ai
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de Morgan’s laws

de Morgan’s laws

Let S, Aα, α ∈ I 6= ∅ be some sets. Then

S \
⋃
α∈I

Aα =
⋂
α∈I

(S \ Aα)

and
S \
⋂
α∈I

Aα =
⋃
α∈I

(S \ Aα).
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Logic

A statement (or proposition) is a sentence which can be
declared to be either true or false.

Exercise
Find statements.

A Let it be!
B We all live in a yellow submarine.
C Is there anybody out there?
D We don’t need any education.
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Statements

¬, also · · ·, non . . . negation
& (also ∧) . . . conjunction, logical “and”
|| (also ∨) . . . disjunction (alternative), logical “or”
⇒ . . . implication
⇔ . . . equivalence; “if and only if”

Exercise
1. Alice does not like chocolate ice cream.
2. Alice likes chocolate and lemon ice cream.
3. Alice likes chocolate or lemon ice cream.
4. If it will be raining tomorrow, we will play board games.
5. We will play board games tomorrow if and only if it will

be raining.
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.

General form:
V(x), x ∈ M

V(x1, . . . , xn), x1 ∈ M1, . . . , xn ∈ Mn

Example

V(x): x is even
M = {1, 2, 3, 4, 5}
V(3) false, V(4) true.

V(x1, x2): x1 · x2 = 1
M = {2, 1

2 , 3, 4}
V(2, 1

2) true, V(2, 3) false.
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If A(x), x ∈ M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

∀x ∈ M : A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to

∃x ∈ M : A(x).

The statement “There is only one x in M such that A(x) holds.”
is shortened to

∃!x ∈ M : A(x).

Example

∀x ∈ R : |x| ≥ 0
∃x ∈ Q : x + 3 ≤ 12
∃!x ∈ R+ : x2 = 42
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If A(x), x ∈ M and B(x), x ∈ M are predicates, then

∀x ∈ M,B(x) : A(x) means ∀x ∈ M : (B(x)⇒ A(x)),

∃x ∈ M,B(x) : A(x) means ∃x ∈ M : (A(x) & B(x)).

Example

∀x ∈ R, x ≥ −1 : 1 + 2x ≤ (1 + x)2

∃x ∈ R, x ≥ 0 : x ≥ x2
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Negations of the statements with quantifiers:

¬(∀x ∈ M : A(x)) is the same as ∃x ∈ M : ¬A(x),

¬(∃x ∈ M : A(x)) is the same as ∀x ∈ M : ¬A(x).

Example
Find negation

∀x ∈ R, x ≥ −1 : 1 + 2x ≤ (1 + x)2

∀x ∈ R,∀y ∈ R, x ≥ 0, y ≥ 0 :
x + y

2
≥ √xy

∃x ∈ R, x ≥ 0 : x ≥ x2
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Methods of proofs

direct proof
indirect proof (proof by contrapositive)
proof by contradiction
mathematical induction
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direct proof (A⇒ B follows from A⇒ C1 ⇒ C2 ⇒ B)
indirect proof (proof by contrapositive) (A⇒ B is
equivalent to ¬B⇒ ¬A)
proof by contradiction (A⇒ B is equivalent to ¬(A ∧ ¬B))
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Methods of proof

Exercise (direct proof) (Cauchy inequality)(
n∑

j=1
ajbj

)2

≤

(
n∑

j=1
a2

j

)(
n∑

j=1
b2

j

)
.

Exercise (proof by contrapositive)

For a integer n, if n2 is even, then n is also even.

Exercise (proof by contradiction)

The number
√

2 is irrational.

Exercise (proof by induction)
n∑

i=1

(2i− 1) = n2
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Natural, Integer, Rational numbers

The set of natural numbers

N = {1, 2, 3, 4, . . . }

The set of integers

Z = N ∪ {0} ∪ {−n : n ∈ N} = {. . . ,−2,−1, 0, 1, 2, . . . }

The set of rational numbers

Q =

{
p
q
: p ∈ Z, q ∈ N

}
,

where p1
q1

= p2
q2

if and only if p1 · q2 = p2 · q1.
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Real numbers

By the set of real numbers R we will understand a set on which
there are operations of addition and multiplication (denoted by
+ and ·), and a relation of ordering (denoted by ≤), such that it
has the following three groups of properties.

I. The properties of addition and multiplication and their
relationships.

II. The relationships of the ordering and the operations of
addition and multiplication.

III. The infimum axiom.

Mathematics I - Introduction 24 / 50



Real numbers

By the set of real numbers R we will understand a set on which
there are operations of addition and multiplication (denoted by
+ and ·), and a relation of ordering (denoted by ≤), such that it
has the following three groups of properties.

I. The properties of addition and multiplication and their
relationships.

II. The relationships of the ordering and the operations of
addition and multiplication.

III. The infimum axiom.

Mathematics I - Introduction 24 / 50



The properties of addition and multiplication and their
relationships:

∀x, y ∈ R : x + y = y + x (commutativity of addition),
∀x, y, z ∈ R : x + (y + z) = (x + y) + z (associativity),
There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x ∈ R,
∀x ∈ R ∃y ∈ R : x + y = 0 (y is called the negative of x,
such y is only one, denoted by −x),
∀x, y ∈ R : x · y = y · x (commutativity),
∀x, y, z ∈ R : x · (y · z) = (x · y) · z (associativity),
There is a non-zero element in R (called identity, denoted
by 1), such that 1 · x = x for every x ∈ R,
∀x ∈ R \ {0} ∃y ∈ R : x · y = 1 (such y is only one,
denoted by x−1 or 1

x ),
∀x, y, z ∈ R : (x + y) · z = x · z + y · z (distributivity).

Mathematics I - Introduction 25 / 50



The properties of addition and multiplication and their
relationships:
∀x, y ∈ R : x + y = y + x (commutativity of addition),
∀x, y, z ∈ R : x + (y + z) = (x + y) + z (associativity),
There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x ∈ R,
∀x ∈ R ∃y ∈ R : x + y = 0 (y is called the negative of x,
such y is only one, denoted by −x),
∀x, y ∈ R : x · y = y · x (commutativity),
∀x, y, z ∈ R : x · (y · z) = (x · y) · z (associativity),
There is a non-zero element in R (called identity, denoted
by 1), such that 1 · x = x for every x ∈ R,
∀x ∈ R \ {0} ∃y ∈ R : x · y = 1 (such y is only one,
denoted by x−1 or 1

x ),
∀x, y, z ∈ R : (x + y) · z = x · z + y · z (distributivity).

Mathematics I - Introduction 25 / 50



The relationships of the ordering and the operations of
addition and multiplication:

∀x, y, z ∈ R : (x ≤ y & y ≤ z)⇒ x ≤ z (transitivity),
∀x, y ∈ R : (x ≤ y & y ≤ x)⇒ x = y (weak
antisymmetry),
∀x, y ∈ R : x ≤ y ∨ y ≤ x,
∀x, y, z ∈ R : x ≤ y⇒ x + z ≤ y + z,
∀x, y ∈ R : (0 ≤ x & 0 ≤ y)⇒ 0 ≤ x · y.

Mathematics I - Introduction 26 / 50



The relationships of the ordering and the operations of
addition and multiplication:
∀x, y, z ∈ R : (x ≤ y & y ≤ z)⇒ x ≤ z (transitivity),
∀x, y ∈ R : (x ≤ y & y ≤ x)⇒ x = y (weak
antisymmetry),
∀x, y ∈ R : x ≤ y ∨ y ≤ x,
∀x, y, z ∈ R : x ≤ y⇒ x + z ≤ y + z,
∀x, y ∈ R : (0 ≤ x & 0 ≤ y)⇒ 0 ≤ x · y.

Mathematics I - Introduction 26 / 50



Definition
We say that the set M ⊂ R is bounded from below if there
exists a number a ∈ R such that for each x ∈ M we have x ≥ a.

Such a number a is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M ⊂ R is bounded if it is
bounded from above and below.

Exercise
Which sets are bounded from below? Bounded from above?
Bounded?

A N
B {1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .}

C R \Q ∩ (−3, 2]
D {x ∈ R : x < π}
E (−∞,−1) ∪ {0} ∪ [1,∞)
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g ∈ R such that

(i) ∀x ∈ M : x ≥ g,

(ii) ∀g′ ∈ R, g′ > g ∃x ∈ M : x < g′.
The number g is denoted by inf M and is called the infimum of
the set M.

Figure:
https://mathspandorabox.wordpress.com/2016/03/11/the-difference-
between-supremum-and-infimum-equivalent-and-equal-set/
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Remark
The infimum axiom says that every non-empty set
bounded from below has infimum.

The infimum of the set M is its greatest lower bound.
The real numbers exist and are uniquely determined by the
properties I–III.
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The following hold:
(i) ∀x ∈ R : x · 0 = 0 · x = 0,

(ii) ∀x ∈ R : − x = (−1) · x,
(iii) ∀x, y ∈ R : xy = 0⇒ (x = 0 ∨ y = 0),
(iv) ∀x ∈ R ∀n ∈ N : x−n = (x−1)n,
(v) ∀x, y ∈ R : (x > 0 ∧ y > 0)⇒ xy > 0,

(vi) ∀x ∈ R, x ≥ 0 ∀y ∈ R, y ≥ 0 ∀n ∈ N : x < y⇔ xn < yn.
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Let a, b ∈ R, a ≤ b. We denote:
An open interval (a, b) = {x ∈ R : a < x < b},
A closed interval [a, b] = {x ∈ R : a ≤ x ≤ b},
A half-open interval [a, b) = {x ∈ R : a ≤ x < b},
A half-open interval (a, b] = {x ∈ R : a < x ≤ b}.

The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the
interval which is not an endpoint is called an inner point of the
interval.
Unbounded intervals:

(a,+∞) = {x ∈ R : a < x}, (−∞, a) = {x ∈ R : x < a},

analogically (−∞, a], [a,+∞) and (−∞,+∞).

Mathematics I - Introduction 31 / 50



Let a, b ∈ R, a ≤ b. We denote:
An open interval (a, b) = {x ∈ R : a < x < b},
A closed interval [a, b] = {x ∈ R : a ≤ x ≤ b},
A half-open interval [a, b) = {x ∈ R : a ≤ x < b},
A half-open interval (a, b] = {x ∈ R : a < x ≤ b}.

The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the
interval which is not an endpoint is called an inner point of the
interval.

Unbounded intervals:

(a,+∞) = {x ∈ R : a < x}, (−∞, a) = {x ∈ R : x < a},

analogically (−∞, a], [a,+∞) and (−∞,+∞).

Mathematics I - Introduction 31 / 50



Let a, b ∈ R, a ≤ b. We denote:
An open interval (a, b) = {x ∈ R : a < x < b},
A closed interval [a, b] = {x ∈ R : a ≤ x ≤ b},
A half-open interval [a, b) = {x ∈ R : a ≤ x < b},
A half-open interval (a, b] = {x ∈ R : a < x ≤ b}.

The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the
interval which is not an endpoint is called an inner point of the
interval.
Unbounded intervals:

(a,+∞) = {x ∈ R : a < x}, (−∞, a) = {x ∈ R : x < a},

analogically (−∞, a], [a,+∞) and (−∞,+∞).

Mathematics I - Introduction 31 / 50



Label the Venn diagram with N, Q, Z, R, R \Q.

We have N ⊂ Z ⊂ Q ⊂ R. If we transfer the addition and
multiplication from R to the above sets, we obtain the usual
operations on these sets.
A real number that is not rational is called irrational. The set
R \Q is called the set of irrational numbers.

Mathematics I - Introduction 32 / 50



Label the Venn diagram with N, Q, Z, R, R \Q.

We have N ⊂ Z ⊂ Q ⊂ R. If we transfer the addition and
multiplication from R to the above sets, we obtain the usual
operations on these sets.
A real number that is not rational is called irrational. The set
R \Q is called the set of irrational numbers.

Mathematics I - Introduction 32 / 50



Consequences of the infimum axiom

Definition
Let M ⊂ R. A number G ∈ R satisfying

(i) ∀x ∈ M : x ≤ G,
(ii) ∀G′ ∈ R,G′ < G ∃x ∈ M : x > G′,
is called a supremum of the set M.

Theorem 1 (Supremum theorem)
Let M ⊂ R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.

The supremum of the set M is denoted by supM.
The following holds: supM = − inf(−M).
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Definition
Let M ⊂ R. We say that a is a maximum of the set M (denoted
by maxM) if a is an upper bound of M and a ∈ M.
Analogously we define a minimum of M, denoted by minM.

Exercise
Find infimum, minimum, maximum and supremum:

1. {1, 2, 3, 4}
2. [−2, 3]
3. (−2, 3)
4. (−2, 3]
5. [−2,−1) ∪ (0, 25]

6. (−7,−0) ∪ (1, 2)

7. [0,∞)

8. {1, 1
2 ,

1
3 ,

1
4 , . . .}

9. N
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Theorem 2 (Archimedean property)
For every x ∈ R there exists n ∈ N satisfying n > x.

Theorem 3 (existence of an integer part)
For every r ∈ R there exists an integer part of r, i.e. a number
k ∈ Z satisfying k ≤ r < k + 1. The integer part of r is
determined uniquely and it is denoted by [r].
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Theorem 4 (nth root)
For every x ∈ [0,+∞) and every n ∈ N there exists a unique
y ∈ [0,+∞) satisfying yn = x.

Theorem 5 (density of Q and R \Q)
Let a, b ∈ R, a < b. Then there exist r ∈ Q satisfying a < r < b
and s ∈ R \Q satisfying a < s < b.
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II. Limit of a sequence

Definition
Suppose that to each natural number n ∈ N we assign a real
number an. Then we say that {an}∞n=1 is a sequence of real
numbers. The number an is called the nth member of this
sequence.
A sequence {an}∞n=1 is equal to a sequence {bn}∞n=1 if an = bn

holds for every n ∈ N.
By the set of all members of the sequence {an}∞n=1 we
understand the set

{x ∈ R : ∃n ∈ N : an = x}.
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Posloupnost {1/n}
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Posloupnost {(–1)^n}
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Posloupnost {n}
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Posloupnost {P_n}
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Definition
We say that a sequence {an} is

bounded from above if the set of all members of this
sequence is bounded from above,

bounded from below if the set of all members of this
sequence is bounded from below,
bounded if the set of all members of this sequence is
bounded.
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Definition
We say that a sequence {an} is

increasing if an < an+1 for every n ∈ N,

decreasing if an > an+1 for every n ∈ N,
non-decreasing if an ≤ an+1 for every n ∈ N,
non-increasing if an ≥ an+1 for every n ∈ N.

A sequence {an} is monotone if it satisfies one of the conditions
above. A sequence {an} is strictly monotone if it is increasing
or decreasing.
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Definition
Let {an} and {bn} be sequences of real numbers.

By the sum of sequences {an} and {bn} we understand a
sequence {an + bn}.

Analogously we define a difference and a product of
sequences.
Suppose all the members of the sequence {bn} are
non-zero. Then by the quotient of sequences {an} and {bn}
we understand a sequence {an

bn
}.

If λ ∈ R, then by the λ-multiple of the sequence {an} we
understand a sequence {λan}.
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Definition
We say that a sequence {an} has a limit which equals to a
number A ∈ R if to every positive real number ε there exists a
natural number n0 such that for every index n ≥ n0 we have
|an − A| < ε, i.e.

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an − A| < ε.

We say that a sequence {an} is convergent if there exists A ∈ R
which is a limit of {an}.
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Theorem 6 (uniqueness of a limit)

Every sequence has at most one limit.

We use the notation lim
n→∞

an = A or simply lim an = A.
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Remark
Let {an} be a sequence of real numbers and A ∈ R. Then

lim an = A⇔ lim(an − A) = 0⇔ lim |an − A| = 0.

Theorem 7

Every convergent sequence is bounded.
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Definition
Let {an}∞n=1 be a sequence of real numbers. We say that a
sequence {bk}∞k=1 is a subsequence of {an}∞n=1 if there is an
increasing sequence {nk}∞k=1 of natural numbers such that
bk = ank for every k ∈ N.

Theorem 8 (limit of a subsequence)

Let {bk}∞k=1 be a subsequence of {an}∞n=1. If
limn→∞ an = A ∈ R, then also limk→∞ bk = A.
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Remark
Let {an}∞n=1 be a sequence of real numbers, A ∈ R, K ∈ R,
K > 0. If

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an − A| < Kε,

then lim an = A.
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Theorem 9 (arithmetics of limits)

Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then
(i) lim(an + bn) = A + B,

(ii) lim(an · bn) = A · B,
(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then lim(an/bn) = A/B.
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