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II. Limit of a sequence

Definition
Suppose that to each natural number n ∈ N we assign a real
number an. Then we say that {an}∞n=1 is a sequence of real
numbers. The number an is called the nth member of this
sequence.
A sequence {an}∞n=1 is equal to a sequence {bn}∞n=1 if an = bn

holds for every n ∈ N.
By the set of all members of the sequence {an}∞n=1 we
understand the set

{x ∈ R; ∃n ∈ N : an = x}.

https:
//www.geogebra.org/calculator/q7vv3gjp
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Posloupnost {1/n}
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Posloupnost {(–1)^n}
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Posloupnost {n}
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Posloupnost {P_n}
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Exercise
Find the formula for an.

Figure:
https://www.cpp.edu/conceptests/question-library/mat116.shtml
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Exercise
Find the first 4 terms of a sequences

A an =
(−1)n

n

B an =
n + 1

n

Exercise
Find the formula for the following sequence

A 1,
1
2
,

1
4
,

1
8
,

1
16
, . . .

B −1,
1
2
,
−1
3
,

1
4
,
−1
5
. . .
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Definition
We say that a sequence {an} is

bounded from above if the set of all members of this
sequence is bounded from above,

bounded from below if the set of all members of this
sequence is bounded from below,
bounded if the set of all members of this sequence is
bounded.
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Exercise
Which of these sequences are bounded?

A blue B red C yellow
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Definition
We say that a sequence {an} is

increasing if an < an+1 for every n ∈ N,

decreasing if an > an+1 for every n ∈ N,
non-decreasing if an ≤ an+1 for every n ∈ N,
non-increasing if an ≥ an+1 for every n ∈ N.

A sequence {an} is monotone if it satisfies one of the conditions
above. A sequence {an} is strictly monotone if it is increasing
or decreasing.

Exercise
Find non-decreasing sequences.

A an = ln n

B an = e−n

C an = −4

D an =
(−1)n

3n

E an = (−2)n
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Exercise
Check, if the sequence is monotone:

1. an =
n

4 + n2

2. an =
n

n + 1
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Definition
Let {an} and {bn} be sequences of real numbers.

By the sum of sequences {an} and {bn} we understand a
sequence {an + bn}.

Analogously we define a difference and a product of
sequences.
Suppose all the members of the sequence {bn} are
non-zero. Then by the quotient of sequences {an} and {bn}
we understand a sequence {an

bn
}.

If λ ∈ R, then by the λ-multiple of the sequence {an} we
understand a sequence {λan}.

Exercise
Let an = 1, 2, 3, 4, 5, . . ., bn = (−1)n. Find

A an + bn B an/bn C 3an
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Definition
We say that a sequence {an} has a limit which equals to a
number A ∈ R if to every positive real number ε there exists a
natural number n0 such that for every index n ≥ n0 we have
|an − A| < ε, i.e.

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an − A| < ε.

We say that a sequence {an} is convergent if there exists A ∈ R
which is a limit of {an}.
https://www.geogebra.org/m/GAcTpGCh
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Theorem 1 (uniqueness of a limit)

Every sequence has at most one limit.

We use the notation lim
n→∞

an = A or simply lim an = A.
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Theorem 2

Every convergent sequence is bounded.
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Exercise
Find a sequence, which is

1. bounded and convergent
2. bounded and divergent
3. unbounded and convergent
4. unbounded and divergent
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Definition
Let {an}∞n=1 be a sequence of real numbers. We say that a
sequence {bk}∞k=1 is a subsequence of {an}∞n=1 if there is an
increasing sequence {nk}∞k=1 of natural numbers such that
bk = ank for every k ∈ N.

https:
//www.geogebra.org/calculator/q7vv3gjp

Exercise
Let an = 3, 7, 4, 1/2, π,−1. Find bn = a2n:

A 6, 14, 8 . . .
B 5, 9, 6 . . .

C 7, 1/2,−1 . . .
D 4, 1/2, π . . .

By:https://www.cpp.edu/conceptests/
question-library/mat116.shtm
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Theorem 3 (limit of a subsequence)

Let {bk}∞k=1 be a subsequence of {an}∞n=1. If
limn→∞ an = A ∈ R, then also limk→∞ bk = A.
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Remark
Let {an}∞n=1 be a sequence of real numbers, A ∈ R, K ∈ R,
K > 0. If

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an − A| < Kε,

then lim an = A.

Mathematics I - Sequences 20 / 44



Theorem 4 (arithmetics of limits)

Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then
(i) lim

n→∞
(an + bn) = A + B,

(ii) lim
n→∞

(an · bn) = A · B,

(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then
lim

n→∞
(an/bn) = A/B.

Remark
Consider cases

1. an = (−1)n, bn = (−1)n

2. an = n, bn =
1
n

3. an = n2, bn =
1
n

Mathematics I - Sequences 21 / 44



Theorem 4 (arithmetics of limits)

Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then
(i) lim

n→∞
(an + bn) = A + B,

(ii) lim
n→∞

(an · bn) = A · B,

(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then
lim

n→∞
(an/bn) = A/B.

Remark
Consider cases

1. an = (−1)n, bn = (−1)n

2. an = n, bn =
1
n

3. an = n2, bn =
1
n

Mathematics I - Sequences 21 / 44



Theorem 4 (arithmetics of limits)

Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then
(i) lim

n→∞
(an + bn) = A + B,

(ii) lim
n→∞

(an · bn) = A · B,

(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then
lim

n→∞
(an/bn) = A/B.

Remark
Consider cases

1. an = (−1)n, bn = (−1)n

2. an = n, bn =
1
n

3. an = n2, bn =
1
n

Mathematics I - Sequences 21 / 44



Theorem 5 (arithmetics of limits)

Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then
(i) lim

n→∞
(an + bn) = A + B,

(ii) lim
n→∞

(an · bn) = A · B,

(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then
lim

n→∞
(an/bn) = A/B.

Idea of the proof
Proof for + follows from definition.
Proof for · is harder and is based on important trick of “adding
and subtracting”:

A · B− an · bn = A · B− A · bn + A · bn − an · bn

= A︸︷︷︸
|.|≤C

· (B− bn)︸ ︷︷ ︸
|.|≤ε

+(A− an)︸ ︷︷ ︸
|.|≤ε

· bn︸︷︷︸
|.|≤C
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Theorem 6 (limits and ordering)

Let lim an = A ∈ R and lim bn = B ∈ R.
(i) Suppose that there is n0 ∈ N such that an ≥ bn for every

n ≥ n0. Then A ≥ B.

(ii) Suppose that A < B. Then there is n0 ∈ N such that
an < bn for every n ≥ n0.
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Theorem 7 (limits and ordering)

Let lim an = A ∈ R and lim bn = B ∈ R.
1. Suppose that there is n0 ∈ N such that an ≥ bn for every

n ≥ n0. Then A ≥ B.
2. Suppose that A < B. Then there is n0 ∈ N such that

an < bn for every n ≥ n0.

Exercise (True or false)
Let lim an = A ∈ R and lim bn = B ∈ R.
If an < bn, then A < B.
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Theorem 8 (two policemen (sandwich theorem))

Let {an}, {bn} be convergent sequences and let {cn} be a
sequence such that

(i) ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an ≤ cn ≤ bn,
(ii) lim an = lim bn.
Then lim cn exists and lim cn = lim an.
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Theorem 9 (two policemen)

Let {an}, {bn} be convergent sequences and let {cn} be a
sequence such that

(i) ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an ≤ cn ≤ bn,
(ii) lim an = lim bn.
Then lim cn exists and lim cn = lim an.

Exercise

Find the cops for the sequence an =
cos n

n
.

Corollary 10

Suppose that lim an = 0 and the sequence {bn} is bounded.
Then lim anbn = 0.
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Definition
We say that a sequence {an} has a limit +∞ (plus infinity) if

∀L ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an > L.

We say that a sequence {an} has a limit −∞ (minus infinity) if

∀K ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an < K.

Theorem 1 on the uniqueness of a limit holds also for the limits
+∞ and −∞. If lim an = +∞, then we say that the sequence
{an} diverges to +∞, similarly for −∞. If lim an ∈ R, then we
say that the limit is finite, if lim an = +∞ or lim an = −∞,
then we say that the limit is infinite.
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Theorem 2 does not hold for infinite limits. But:

Theorem 2’
Suppose that lim an = +∞. Then the sequence {an} is not
bounded from above, but is bounded from below.
Suppose that lim an = −∞. Then the sequence {an} is not
bounded from below, but is bounded from above.

Exercise
Give an example of an →∞ and find its lower bound.

Theorem 3 (limit of a subsequence) holds also for infinite limits.
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Definition
We define the extended real line by setting
R∗ = R ∪ {+∞,−∞} with the following extension of
operations and ordering from R:

a < +∞ and −∞ < a for a ∈ R, −∞ < +∞,
a + (+∞) = (+∞) + a = +∞ for a ∈ R∗ \ {−∞},
a + (−∞) = (−∞) + a = −∞ for a ∈ R∗ \ {+∞},
a · (±∞) = (±∞) · a = ±∞ for a ∈ R∗, a > 0,
a · (±∞) = (±∞) · a = ∓∞ for a ∈ R∗, a < 0,

a
±∞ = 0 pro a ∈ R.

Exercise

1. 2 +∞
2. −∞+ 3
3. π∞

4. −4(−∞)
5. −7∞
6. ∞−3

7. 5
∞
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The following operations are not defined:
(−∞) + (+∞), (+∞) + (−∞), (+∞)− (+∞),
(−∞)− (−∞),
(+∞) · 0, 0 · (+∞), (−∞) · 0, 0 · (−∞),
+∞
+∞ , +∞

−∞ , −∞−∞ , −∞
+∞ , a

0 for a ∈ R∗.
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Theorem 5’ (arithmetics of limits)
Suppose that lim an = A ∈ R∗ and lim bn = B ∈ R∗. Then

(i) lim(an ± bn) = A± B if the right-hand side is defined,

(ii) lim(an · bn) = A · B if the right-hand side is defined,
(iii) lim an/bn = A/B if the right-hand side is defined.

Theorem 11
Suppose that lim an = A ∈ R∗, A > 0, lim bn = 0 and there is
n0 ∈ N such that we have bn > 0 for every n ∈ N, n ≥ n0. Then
lim an/bn = +∞.
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Theorem 7 (limits and ordering) and Theorem 9 (two cops
theorem) hold also for infinite limits. Even the following
modification holds:

Theorem 9’ (one policeman)

Let {an} and {bn} be two sequences.
If lim an = +∞ and there is n0 ∈ N such that bn ≥ an for
every n ∈ N, n ≥ n0, then lim bn = +∞.
If lim an = −∞ and there is n0 ∈ N such that bn ≤ an for
every n ∈ N, n ≥ n0, then lim bn = −∞.
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Definition
Let A ⊂ R be non-empty. If A is not bounded from above, then
we define supA = +∞. If A is not bounded from below, then
we define inf A = −∞.

Lemma 12
Let M ⊂ R be non-empty and G ∈ R∗. Then the following
statements are equivalent:
(1) G = supM.
(2) The number G is an upper bound of M and there exists a

sequence {xn}∞n=1 of members of M such that lim xn = G.

Exercise
Find a sequence {xn} for a set M = [2, 5).
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Theorem 13 (limit of a monotone sequence)

Every monotone sequence has a limit. If {an} is
non-decreasing, then lim an = sup{an; n ∈ N}. If {an} is
non-increasing, then lim an = inf{an; n ∈ N}.

Mathematics I - Sequences 39 / 44



0
 n

K

Mathematics I - Sequences 40 / 44



0
 n

KK

Mathematics I - Sequences 40 / 44



0
 n

KK

Mathematics I - Sequences 40 / 44



0
 n

KK

Mathematics I - Sequences 40 / 44



0
 n

ε s-

ε s+

Mathematics I - Sequences 40 / 44



0
 n

ε s-

ε s+

Mathematics I - Sequences 40 / 44



s 

0
 n

ε s-

ε s+

Mathematics I - Sequences 40 / 44



s 

0
 n

ε s-

ε s+

ε s-

ε s+

Mathematics I - Sequences 40 / 44



s 

0
 n

0
 n

ε s-

ε s+

ε s-

ε s+

Mathematics I - Sequences 40 / 44



s 

0
 n

0
 n

ε s-

ε s+

ε s-

ε s+

Mathematics I - Sequences 40 / 44



Theorem 14 (Cauchy criteria)

∃ lim
n→∞

an ∈ R ⇐⇒ ∀ε > 0 ∃N ∈ N ∀n,m ≥ N : |an−am| < ε.

Proof
“⇒” Easy: if b = lim

n→∞
an, then

∀ε ∃N ∈ N ∀n,m ≥ N : |an − am| ≤ |an − b|+ |am − b| < 2ε.

“⇐” Complicated: relies on the infimum axiom. Take a
sequence of epsilons: ε = 1

2 ,
1
4 , . . . ,

1
2k , . . . .

For ε = 1
2 ∃N1 ∈ N ∀n,m ≥ N1 : |an − am| < 1

2 . Put m = N1,
then for all n ≥ N1 : an ∈ [A1 := aN1 − 1

2 ,B1 := aN1 +
1
2 ].

For ε = 1
4 ∃Ñ2 ∈ N ∀n,m ≥ Ñ2 : |an − am| < 1

4 . Set
m = N2 := max

{
N1, Ñ2

}
, then for all n ≥ Ñ2 : an ∈ [A2,B2],

where A2 = max
{

A1, aN2 − 1
4

}
, B2 = min

{
B1, aN2 +

1
4

}
.

Continuing, we construct a sequence of nested contracting
segments {[Ap,Bp, ]}, A1 ≤ A2 ≤ . . .Ap ≤ Bp ≤ . . . ≤ B2 ≤ B1.
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Theorem 15 (Bolzano-Weierstraß)
Every bounded sequence contains a convergent subsequence.
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Theorem 16 (Bolzano-Weierstraß)
Every bounded sequence contains a convergent subsequence.

Exercise
Find a convergent subsequence:

A an = (−1)n

B an = {0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . .}
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