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Exercise (Motivation)

The farmer would like to enclose a rectangular place for sheep.
She has 40 meters of fence and land by the river. What is the
biggest possible area of the place?
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Figure: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/
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Derivative

Limit Definition of the Derivative f'(c)

y
im fle+h)—flc) _ Ay
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Figure: https://ginsyblog.wordpress.com/2017/02/04/how-to-solve-
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Definition
Let f be a function and a € R. Then
@ the derivative of the function f at the point a is defined by
h) —
f/(a) :hmf<a+ })l f(a>,

h—0

if the respective limits exist.

flz+Az f ! t t
f(zas)
f(x) flx) fz)
T AT T i > T >

Figure: https://cs.wikipedia.org/wiki/Derivace
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Let f be a function and a € R. Then
o the derivative of the function f at the point a is defined by

@) — i Fa ) ~f(@)

h—0 h ’

@ the derivative of f at a from the right is defined by

/ . h) —

o the derivative of f at a from the left is defined by

if the respective limits exist.
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Definition

Suppose that the function f has a finite derivative at a point
a € R. The line

T, = {lxy] €R% y=f(a) +f(@)(x—a)}.
is called the tangent to the graph of f at the point [a, f(a)].

https:
//www.desmos.com/calculator/10puzw0Ozvm
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Suppose that the function f has a finite derivative at a point
a € R. Then f is continuous at a.
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(3 +2x% — 3) = 3x> + 4x (sgnx)’(0) = o0

(Vx)' = 3 |x|" at O does not exist
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Derivatives of elementary functions

@ (const.) =0,
) =m" L xeRneN;xe R\ {0},neZ,n<0,
logx)" = L for x € (0, +00),

@D

xpx) =expxforx € R,
x) = ax*~! forx € (0,+00),a € R,
*) =a‘logaforx e R,a e R,a >0,

Q

inx)’ = cosx forx € R,

S

(
(
(
(
(
(
(cosx) = —sinx forx € R,
(
(
(
(
(
(

tgx) = CO;ZX for x € Dy,
cotgx)' = —— for x € Deotg,

sin? x

'= A _forxe (—1,1),

arcsinx)’ = e
e (arccosx) = _\/117_)@ forx e (—1,1),
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Proof (sinx)’

sin(x +h) —sinx  (sinx-cosh + cosx - sinh) — sinx

h h
_ sinx(cosh — 1) 4+ cosx - sinh
B h
. cosh—1 sin h
=sinx ——— +cosx — cosx ash — 0.
——— ~——
—0 —1

Proof (x")’.

(x+h)" —x" (" +n-x""h+ax"h + . ah") — X"

h h
=n-X""'+h (azx”_2 + .. .anh"_z)

~~

—0
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Proof (logx)’

% gl 4 ) — o) = (log (x~ (1 L

1
h
h
x

1 1 h
== <logx+log(1 - )—logx) = EIO 1+;)
1 h
:—-)—Clog(1+—>
x h X
—_——
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Theorem 2 (arithmetics of derivatives)

Suppose that the functions f and g have finite derivatives at
a € Randlet o € R. Then

i) (f +8)(a) =f'(a) + &'(a)

(i) (af)(a) = a-f'(a),
(i) (fg)'(a) = f'(a)g(a) +f(a)g (a),
(iv) if g(a) # 0, then

(f )' (@) = fla)s(a) —fla)g'(a)

8
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Proof (f + g)’

(fr+h) +8x+h) - Flx) + )
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Proof (fg)’

Flox+ Wglx+ h) = F@g()
h
Sl g+ ) = f(x+ R)g(0) +(x+ h)g() — F()g()
h
Sl g+ h) = f(x+ R)g() +(x+ h)g() — f()g)
h
_ S ) (8l + ) — g0) + (e + ) = £() )
h
Y UL ORI O
e N o~
—/() e W
> F(3)g(x) + ' ()g(x)




Proof (1/g)’

g(x) —g(x+h)

% (g(xl+ h)

1 ) B
g(x))  hg(x+h)g(x)
glx +h) — g(x)

glr+h)g(x) h y




(tanx)’

sinx)’  (sinx) cosx — sin x(cos x)’

(tanx)" = = .
CoS X cos? x
. . 2 . 2
cosxcosx — sinx(—sinx)  cos*x + sin”x 1
cos? x cos? x cos?x’
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f = cosxsinx. Find f'.

A cos?x C cos?x —sin’x

B sin’x D —sinxcosx
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cos x sin x. Find f'.

A cos?x C cos?x —sin’x
B

sin® x D —sinxcosx
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f = cosxsinx. Find f'.

A cos?x C cos?x —sin’x

B sin’x D —sinxcosx
f=e¢ . Findf'
A 7eb B ¢’ Cco )

et .
= 2 Find f'.

e C e'x* — 2xe”
2x x
(x — 2
B % - e2x + x’e*
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Theorem 3 (derivative of a compound function)

Suppose that the function f has a finite derivative at yy € R, the
function g has a finite derivative at xy € R, and yo = g(xo)-
Then

(F o 8) (x0) = £/ (30) - &' (x0). 1

f = sinx + €. Find f".

COS X

A cosx+e

B cosx + ™™

C cosx -+ sinx e“*®*

sin x

D cosx+cosxe
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Proof derivative of composition
1. g(xo+h) # g(xp) ash — 0.

fglxo + 1)) — f(g(x0))

h
_ f(go+h)) —f(8(x)) 8(x0 +h) — g(x0)
g(xo + h) — g(xo) N flr .
—g’(x0)
Denote yo = f(xo).
y = g(xo + h)

hmf(é’(xo +h) —f(gx)) _
h—0  g(xo + h) — g(xo)

y — g(x0),h =0
(I):y# glxo),h =0
_ iy FO) = 00) _ (3)

y=y oY — Yo
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Proof derivative of composition (continue)

2. what if 3x, — xo such that g(x,) = g(xo)? Then

f(8(x)) —f(g(x0))

Xn — X0

and f(g(x0))’ = 0, g'(xo) = .

:()7
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Proof derivative of composition (continue)

2. what if 3x, — xo such that g(x,) = g(xo)? Then

Flem)) ~ Flae)) _ o

Xn — X0

and f(g(x0))’ = 0, g'(xo) = .

Missing point: why (f(g(x))) exists?

If not, then there exist two sequences, on which the expression
for the derivative has two different limits:
I{x. 12, = x0, I{%,}—, — xo such that A # B and

FleG) ~Few) | , g FEE) ~flet) |, g

Xn — X0 Xn — X0

V.

But if g(X,) # g(xo),n — oo, then A = f'(g(x0))g’(xo) = 0.
If g(x,,) = g(x0), then B = 0. So, in any case A = B(= 0).
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(a") = (e“““)/ = ¢ (xIna)’ = ¢™lna = a'lna.
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Theorem 4 (derivative of an inverse function)

Let f be a function continuous and strictly monotone on an
interval (a,b) and suppose that it has a finite and non-zero
derivative f'(xo) at xo € (a, b). Then the function f~' has a
derivative at yy = f(xo) and

1 1

Y00 = 70 = 7o)
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arcsin

y = arcsinx, x = siny;

1 1 1 1
/
y X = = = = .
) X(y)  cosy  \/1—sinfy VI-A

y = arctanx, x = tany;

V() = ,1 _ coszy _ cos? y‘ _ 1
x'(y) cos?y+sin’y 1+ tan?y
1
142
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Exercise (True or false?)

1. If f'(x) = g'(x), then f(x) = g(x). (For every x.)
2. Iff'(a) # ¢'(a), then f(a) # g(a).

(We are talking about particular point a.)
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Theorem 5 (necessary condition for a local extremum)

Suppose that a function f has a local extremum at xo € R. If
1" (xo) exists, then f'(x) = 0.

(x*) = 2x

(sinx)’ = cosx

TN NG S AN A
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(x}) = 3x?
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First Derivative Test for Local Extrema

Absolute max
" undefined
Local max
f'=0

=0

No extreme

f=0

L2l <0
1 Local min
1

1

Absolute min :
I

|
I

|

1

1

|

1 |
| |
1 |
| |
1 1
1 |
1 |
1 I
c

a B 2 €3 4 es b

FIGURE 3.21 A function’s first derivative tells how the graph rises and falls.

Figure: http://slideplayer.com/slide/7555868/
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Theorem 6 (Rolle)

Suppose that a,b € R, a < b, and a function f has the following
properties:

(i) it is continuous on the interval [a, b|,

(1) it has a derivative (finite or infinite) at every point of the
open interval (a, b),

(iii) f(a) =f(b).
Then there exists £ € (a, b) satisfying f'(£) = 0.

fla)=f(b)

a c b

Figure: https://commons.wikimedia.org/wiki/File:
Rolle%27s theorem.svg
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Theorem 7 (Lagrange, mean value theorem)

Suppose that a,b € R, a < b, a function f is continuous on an
interval |a, b| and has a derivative (finite or infinite) at every
point of the interval (a, b). Then there is £ € (a,b) satisfying
b—a

f(a)

Figure: https://en.wikipedia.org/wiki/File:
Mittelwertsatz3.svg
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Apply previous (Rolle) theorem to the function
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Theorem 8 (Cauchy, (extended) mean value theorem)

Suppose that a,b € R, a < b, functions f, g are continuous on
an interval |a, b| and have derivatives (finite or infinite) at every
point of the interval (a, b). Then there is ¢ € (a, b) satisfying

(f(b) —f(a)) &'(c)

(8(b) — 8(a)).f"(c)-

(fic), g(c)

(fia), gla)) \

\ (fib), g(b))

Figure: https://en.wikipedia.org/wiki/Mean_value_
theorem (sharp) Cauchy’ s mean value theorem
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Proof of Cauchy’s mean theorem

1. g(a) = g(b). By Rolle’ thm, 3¢ € (a,b) : g'(c) = 0.
) =

(a,
Hence, 0 = (f(b) — f(a))¢'(c) = (g(b) — g(a))f"(c).
2. g(a) # g(b). Define h(x) = f(x) — rg(x), with r such that

h(a) = h(b).
I 1)~ fl@)
fla) = rg(a) = f(b) — rg(b), 2(b) — (@)
Rolle’s thm: 3¢ € (a,b) : '(c) = 0. Le.
f/(C) . f(b) _f(a) g/(C) -0

g(b) — g(a)




Theorem 9 (sign of the derivative and monotonicity)

Let J C R be a non-degenerate interval. Suppose that a function
f is continuous on J and it has a derivative at every inner point
of J (the set of all inner points of J is denoted by Int J ).

(i) Iff'(x) > O forall x € Int J, then f is increasing on J.

(i) Iff'(x) < O forall x € Int J, then f is decreasing on J.
(iii) Iff'(x) > O for all x € Int J, then f in non-decreasing on J.
(W)Uf@ﬂSOﬁwaﬂxeIMJJMmfmnmrMWaUMgonlj

https://mathinsight.org/applet/derivative_
function

https://www.geogebra.org/m/mCTgH7u4
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Theorem 10 (computation of a one-sided derivative)

Suppose that a function f is continuous from the right at a € R
and the limit hm+ f'(x) exists. Then the derivative f' (a) exists
xX—a

and

fi(a) = lim f'().

x—a+
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Theorem 11 (I’Hopital’s rule)
Suppose that functions f and g have finite derzvatzves on some
punctured neighbourhood of a € R* E g exist.
x—>a

Suppose further that g'(x) # 0,x — a and that one of the
following conditions hold:

(i) limf(x) =limg(x) =0,

Xx—a xX—a
(ii) lim |g(x)| = +oo.

&)
Then the limit )lcl_rg ) exists and lim,_,, )

3
-
-
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Proof of I’Hopital’s rule [Fikhhtengolc, page 222, Theorem 1]:

Case: a € R and limf(x) = lim g(x) = 0.

X—a X—a
Step 1. Define f(a) = 0, g(a) = 0. Then f, g are continuous at
X =a.
Step 2. Since g'(x) # 0 as x — a, then also g(x) # 0as x — 0.
(otherwise, contradiction with Rolle’s thm).

Step 3.
O f@-fla) _flo)
@) sm—s@ g W
(Cauchy’s mean theorem)
Step 4. Limit of a composition:
/ y = C(x) /
lim@ = limf (c(x)) =|y—ax—a|= limf 0)

agx)  mage) | g | Te80)
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Proof of I’Hopital’s rule:

Case a = +00 and limf(x) = lim g(x) = 0.
x—a x—a

Apply previous case to the function f (i), g(i), and the point 0.

Proof of I’Hopital’s rule:

Case a € R, limf(x) = limg(x) = +oo, im L&) — K e R.
x—a x—a ¥—a 8§ &)

fx) k= f(xo) — Kg(xo) _l_f(x) —f(x0) + Kg(xo) — Kg(x)
8(x) 8(x) g(x)

_ flw) — Ke(w) | (8(x) —8(x0)) (Lot k)

5 )
LK) () gl (7

g(x) g(x)




Proof of I’Hopital’s rule:

Casea € R, limf(x) = limg(x) = +oo, im L& = K € R.
x—a x—a x—a 8 (x)

fx) f(x0) — Kg(xo) _ 8(xo) _ f(x) —f(x)
‘gm K‘ = ' 50 ‘1 5 ’g<x> —eCo)
) —f(xo) felx,x0))
) —gt) g N

can be made small by taking both x, x, close to a.

8(xo)
8(x)
is in the interval (0, 1) by choosing first x; close to a such that

g(xp) > 0, and then by choosing x even closer to a (so that g(x)
is large). Similar: ]W can be made small by choosing x.
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Fix an arbitrary ¢ > 0.

3(51 > 0 Ve € (a,a—|—51)

N ™

30, > 0 Vxg € (a,a + &) g(xo) > 0.

Denote 03 = min(dy, d,) and fix an arbitrary xo € (a,a + ;).

36 € (0,63) Vx € (a,a+ ) : ’f(%)g_(—xljg(x()) %
and g(xo) < g(x), ie.0 <1 — i_j)) < 1.
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Convex and concave functions

Inspired by: realisticky.cz
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realisticky.cz

Convex and concave functions

function

¥k ¥i
Conyex convex
dowrnward I upward
function y=fix) ¢

I
Xy %, b X

Figure: https://www.math24.net/convex-functions/
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conCAVE:

Figure: https://math.stackexchange.com/questions/3399/why-does-
convex-function-mean-concave-up
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Convex combination
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Convex combination

X %

I-X1+O‘X2:X1+O'(X2—X1):Xl
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Convex combination

X %

O-xi+1-x=x+1-(p—x)=x
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Convex combination

X %

! + ! + 1( x1)
J— J— — — (X, —
2X1 2X2 X1 3 2 1
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Convex combination

X, X,

le + sz =X + Z(Xz —Xx1)
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Convex combination

X %

! +3 = +3(x —x1)
4X1 4X2—x1 4 2 1
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Convex combination

X %

)\xl—i—(l—)\)xzle—i-(l—)\)(xz—xl), AE [O, 1]

Mathematics I - Derivatives



We say that a function f is

@ convex on an interval / if
FOx1 4+ (1= A)xz) < M (x1) + (1 = A)f(x2),

for each x;,x, € I and each \ € [0, 1];
@ concave on an interval / if

FOx+ (1= Nx2) 2 M) + (1 = A)f(x),

for each x;,x, € I and each \ € [0, 1];
@ strictly convex on an interval [ if

FOx 4+ (1= Xx) <M (n) + (1= A)f (),

for each x1,x, € I, x; # x, and each \ € (0, 1);
@ strictly concave on an interval [ if

FOx + (1= A)x2) > M () + (1 = A)f(x2).
for each x,x, € I, x; # x, and each A € (0, 1).

Mathematics I - Derivatives



Mathemati



fig) [ ;

f(x)
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fig) [ ;

f(x)
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e M+ (1 - A,

f()\x1 + (1 — )\)XZ)

f(x0)
N (1) +(1=A)f (x2)
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L M+ (1 - A,

f()\x1 + (1 — )\)XZ)

f(x0)
N (1) +(1=A)f (x2)
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A function f is convex on an interval I if and only if

fl) —fu) _ fln) —flx)

X2 — X T X3 X

for each three points x1,x5,x3 € I, x; < x < X3.
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A function f is convex on an interval I if and only if

fl) —fu) _ fln) —flx)

X2 — X T X3 X

for each three points x1,x,,x3 € I, x; < x; < x3.

()

f(x)

(%)
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Definition
Suppose that a function f has a finite derivative on some

neighbourhood of a € R. The second derivative of f at a is
defined by

f"(a) = lim

if the limit exists.

fla+h) —f'(a)
h
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Definition

Suppose that a function f has a finite derivative on some
neighbourhood of a € R. The second derivative of f at a is

defined b
e Fla+h) —f(a)
h

f"(a) = lim

if the limit exists.

Let n € N and suppose that f has a finite nth derivative (denoted
by £) on some neighbourhood of a € R. Then the (n + 1)th
derivative of f at a is defined by

f"a+h) —f"(a)
h

() () — 1i
f7(a) = lim

if the limit exists.
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Theorem 13 (second derivative and convexity)

Let a,b € R*, a < b, and suppose that a function f has a finite
second derivative on the interval (a,b).

(i) Iff"(x) > O for each x € (a,b), then f is strictly convex on
(a,b).

(i1) Iff"(x) < O for each x € (a,b), then f is strictly concave
on (a,b).

(iii) Iff"(x) > O for each x € (a,b), then f is convex on (a,b).
(iv) Iff"(x) < 0 for each x € (a,b), then f is concave on (a,b)

v

https://www.geogebra.org/m/rgebuwyw https:
//www.khanacademy.org/math/ap-calculus—-ab/
ab-diff-analytical-applications—-new/
ab-5-9/e/
connecting-function—-and-derivatives
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Definition

Suppose that a function f has a finite derivative at a € R and let
T, denote the tangent to the graph of f at [a, f(a)]. We say that
the point [x, f(x)] lies below the tangent T, if

f(x) <fla) +f(a) - (x—a).

We say that the point [x, f(x)] lies above the tangent T, if the
opposite inequality holds.
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¥i ¥a

convex convex
downward upward
function ; function

=¥

0 a X, b % 0 a *, b

Figure: https://www.math24.net/convex-functions/
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Definition

Suppose that a function f has a finite derivative at a € R and let
T, denote the tangent to the graph of f at [a,f(a)]. We say that a
is an inflection point of f if there is A > 0 such that

(i) Vx € (a — A,a): [x,f(x)] lies below the tangent 7,
(i) Vx € (a,a+ A): [x,f(x)] lies above the tangent 7,
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Definition

Suppose that a function f has a finite derivative at a € R and let
T, denote the tangent to the graph of f at [a,f(a)]. We say that a
is an inflection point of f if there is A > 0 such that

(i) Vx € (a — A,a): [x,f(x)] lies below the tangent 7,
(i) Vx € (a,a+ A): [x,f(x)] lies above the tangent 7,
or

(i) Vx € (a— A, a): [x,f(x)] lies above the tangent T,
(i) Vx € (a,a+ A): [x,f(x)] lies below the tangent T,.
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https://en.wikipedia.org/wiki/Inflection_
point#/media/File:Animated_illustration_
of_inflection_point.gif
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Theorem 14 (necessary condition for inflection)

Let a € R be an inflection point of a function f. Then " (a)
either does not exist or equals zero.

NSNS NS
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Theorem 15 (necessary condition for inflection)

Let a € R be an inflection point of a function f. Then " (a)
either does not exist or equals zero.

(x* —x)" = 12x?
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Theorem 16 (necessary condition for inflection)

Let a € R be an inflection point of a function f. Then " (a)
either does not exist or equals zero.
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Theorem 16 (necessary condition for inflection)

Let a € R be an inflection point of a function f. Then " (a)
either does not exist or equals zero.

Theorem 17 (sufficient condition for inflection)

Suppose that a function f has a continuous first derivative on an
interval (a,b) and z € (a,b). Suppose further that

o Vx € (a,z): f"(x) >0,
o Vx e (z,b): f"(x) <O.
Then z is an inflection point of f.

Mathematics I - Derivatives



Definition

The line which is a graph of an affine function x — kx + g,
k,q € R, is called an asymptote of the function f at 4+-oco (resp.
v —o0) if

lim (f(x) —kx—g¢q) =0, (resp. lim (f(x) —kx—gq)=0).

xX——+00 X——00

v
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Definition

The line which is a graph of an affine function x — kx + g,
k,q € R, is called an asymptote of the function f at oo (resp.
v —o0) if

lim (f(x) —kx—g¢q) =0, (resp. lim (f(x) —kx—¢q)=0).

x——+o00 X——00

Proposition 18

|<E

A function f has an asymptote at +00 given by the affine
function x — kx + q if and only if

lim f(—x):kG]R and lim (f(x) —kx) =g € R.

x—+oo X x——+o0o

\
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Exercise

Let us assume that a function y = f(x) is continuous at R.
Sketch f.

y' =0 =0
y' >0| y' >0 |y’ <0
T T T
zy z2 x3
i i
|
|
I

i i
Y'=0 y'=0
| |
Yy’ <0jy”" >0 | y’' <0

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Exercise

Let us assume that a function y = f(x) is continuous at R.
Sketch f.

y' =0 =0
y' >0| y' >0 |y’ <0
T T T
1 z2 x3
i i
|
|
I

i i
Y'=0 y'=0
| |
Yy’ <0jy”" >0 | y’' <0

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Exercise

Let us assume that a function y = f(x) is continuous at R.

Sketch f.
3’ undefined y' =0
y' >0 y' <0 Iy >0
1 1 &
x1 z2
i i
4’ undefined }
| |
Yy’ >0 } Yy’ >0

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Exercise

Let us assume that a function y = f(x) is continuous at R.

Sketch f.
3’ undefined y' =0
y' >0 y' <0 Iy >0
1 1 &
x1 z2
i i
4’ undefined }
| |
Yy’ >0 } Yy’ >0

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Investigation of a function

1. Determine the domain and discuss the continuity of the
function.

2. Find out symmetries: oddness, evenness, periodicity.
3. Find the limits at the “endpoints of the domain”.

4. Investigate the first derivative, find the intervals of
monotonicity and local and global extrema. Determine the
range.

5. Find the second derivative and determine the intervals
where the function is concave or convex. Find the
inflection points.

6. Find the asymptotes of the function.
7. Draw the graph of the function.
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Taylor polynomial

|

T/ (x) = f(x0) +f'(x0) - (x — x0) + 5 " (x0) - (x — x0)?

+ %f”’(x()) (= x0) .+ %f(") (x0) - (x — xp)"

Taylor expansion with remainder in form of Peano

| \

Let f be n times differentiable at a point x,. Then

f(x) =T, (x) + o((x — x0)")

| A\

Taylor expansion with remainder in form of Lagrange

Let f be n + 1 times differentiable on an interval 1. Let x, x € I.
Then 3¢ € (xo,x) :

X0 1 n+1 n+1
fx) =T (x) + mf( () (x — x0)™*

A,
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Proof: Peano

n=1.
o T = ()

X—rX0 X — Xo

D=L _ 1z +-o1)

f(x) = f(x0) +£"(x0) (x — X0) + (x — x0)o(1)

=o0(x—xp)

= f'(x0)
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Proof: Peano: 1’Hopitalle

n=2
o £~ 7 (0) = (50)x = o)
X—x0 (x — x9)?

Proof: Peano: 1’Hopitalle

n=2

J(x) —f(x0) —f"(x0) (x — xo0)

(x — x)?

= 2" () +o(1)

/ 1 /! 2 2
F(x) = f(x0) 1" (x0) (x—=x0) + 21" (x0) (x=x0)"+0(1) - (x — x0)

o((x—x0)?)

v
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Proof: Peano: 1’Hopitalle

general n + 1: (TF(x))' = T, ()

[ =T 1 ) = T )

lim

X—rXo (x — X()>n+1 B n+ 1 x—x (x — xo)"
_ 1 im fl(x) - Ti_,xlo (x) _ 1 . lf(n-l-l)(xo)
n+1lxx  (x—x)" n+1 n!
fx) — T (x) 1

x—x) ! (n+ 1)!f(n+1)(x0) +o(1)

flx) =T (x)+ D (x0) (x—x0)"! +0(1) (x — x0)" !

(n+ 1)t

o((x—x0)"*)

V.

Mathematics I - Derivatives



Proof: Lagrange

n = 0 : Lagrange:
J(x) = f(x)

X — Xo

=1(6).
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Proof: Lagrange

n=1i g() =F0) — f(x) = (x0)y — x0)
— () = £x0) = (30) (= 30))

g(xp) =0 g(x) =0.Rolle: Iy € (x,x) : g'(n) =0.

£0) =0) ~ () = (1) —F(sa) & = x0) 22—

We see that g'(xp) = 0. Rolle: 3¢ € (xon) :  g"(§) = 0.

g//(y) :f//(y) . (f(x) _fl(xo)(x - XO)) '

%(x — X0)?

Since g"(&) = 0, then f(x) = f'(x0) (x — xo) + 3f"(£) (x — x0)*. )




Proof: Lagrange

General n. Fix x, xy € I.
gy) =) = T () — (fx) — T (x)) O = %)™

g(0) =0+ fxg) = TE0(x0);  g(x) = 0.
Rolle: 31, € (x0,x) : g'(m) = 0.

(n+1)(y —xo)"

g0) =£0) = T0) = () ~ T W) — = v

g'(x0) =0: f'(x0) = Tf T(x);  g(m)=0.
Rolle: 3, € (xo,m1) = &"(m) =0
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Proof: Lagrange remainder

n Hi(y —
£90) = £ 0)=1 "0} - (1) - Tho(e)) SO
= (x0)

g (x)=0;  g"(x)=0.
Rolle: 3¢ € (xo,7,) : g™V (&) = 0.

n _ r(n X0 (I’l + 1)‘

gV () =) - (flx) — T (%)) G —xo)

Since gt (¢) = 0,we have

78 = T + G O =50
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Application: Newton approximation method

Let f(x) = 0, and x, be some point.
f(x) = f(x0) +f'(x0)(x — Xo) + 0(x — xo)
[(x) = f(x0) +f(x0) (x — xo)

"~~~
=0

f(xo)
f'(x0) )

Practical application

JAED)
£ (xn) )

f(x) :x2_a.Thenxn+1 = %xn'i'ﬁ.

f(x) =x*+ 1. Then x, 1 = 3x, — 2)%

XX Xy —

Take any x;, and then define x,,. | = x,, —
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Definition

A polynomial is a function P of the form
Px)=ay+aix+---+ax", xeR,

where n € NU {0} and ay, ay, . .., a, € R. The numbers
ay, - . . , a, are called the coefficients of the polynomial P.
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Definition
A polynomial is a function P of the form

Px)=ay+aix+---+ax", xeR,

where n € NU {0} and ay, ay, . .., a, € R. The numbers
ay, - . . , a, are called the coefficients of the polynomial P.

| A

Remark
Letn,m € NU {0} and

P(x)=ap+ax+---+ax", x€eR,
O(x)=by+bix+---+bx" xR,
where ag,ay,...,a, € R,a, #0, by, by,...,b, € R, b, #0.If

the polynomials P and Q are equal (i.e. P(x) = Q(x) for each
x € R),thenn =mand ay = by, ...,a, = b,.
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Definition
Let P be a polynomial of the form

P(x)=ao+aix+---+ax", xeR.

We say that P is a polynomial of degree n if a, # 0. The degree
of a zero polynomial (i.e. a constant zero function defined on R)
is defined as —1.

<
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Definition

Let {a,}>, be a sequence. If lim, . (ap +a; + - - - + a,)
exists, we denote it by

o
g ag or ay+a;+az+...
k=0
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Definition

The exponential function (denoted by exp) is defined by

= XK 1, 1, 1.,
exp(x ;k——l—i—x—kix—i—gx—l—ﬂx + ...

for every x € R. The number exp(1) is denoted by e (and it is
called Euler’s number).
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Definition

The exponential function (denoted by exp) is defined by

= X 1 1 1
exp(x z:(:)k——l+x+2x +6x +ﬂx—|—

for every x € R. The number exp(1) is denoted by e (and it is
called Euler’s number).

Theorem 19 (existence of the exponentlal)

| \

For every x € R the limit lim ) ;_ k, exists and is finite.

n—oo
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Properties of the exponential function
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Properties of the exponential function
° Dexp =R, Rexp - <07 +OO)’
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Properties of the exponential function
° Dexp =R, Rexp - <07 +OO)’

@ the function exp is continuous and increasing on R,
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Properties of the exponential function
° Dexp =R, Rexp - <07 +OO)’
@ the function exp is continuous and increasing on R,

o exp0=1,expl =e,
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Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,

o Vx,y € R: exp(x+y) = exp(x) exp(y),
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Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,
e Vx,y € R: exp(x +y) = exp(x) exp(y),
o Vx € R: exp(—x) = 1/expux,
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Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,
e Vx,y € R: exp(x +y) = exp(x) exp(y),
o Vx € R: exp(—x) = 1/expux,
o Vn e ZVx e R: exp(nx) = (expx)”,
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Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,
e Vx,y € R: exp(x +y) = exp(x) exp(y),
o Vx € R: exp(—x) = 1/expux,
o Vn e ZVx e R: exp(nx) = (expx)”,

o lim expx = 4o0, lim expx =0,
x——+00 X——00
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Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,
e Vx,y € R: exp(x +y) = exp(x) exp(y),
o Vx € R: exp(—x) = 1/expux,
o Vn e ZVx e R: exp(nx) = (expx)”,

@ lim expx =400, lim expx =0,
x——+00 X——00

exp(x)—1 __
(X) - 1’

o lim
x—0

Mathematics I - Derivatives



Properties of the exponential function
® Do = R, Ry, = (0, +00),
@ the function exp is continuous and increasing on R,
o exp0=1,expl =e,
e Vx,y € R: exp(x +y) = exp(x) exp(y),
o Vx € R: exp(—x) = 1/expux,
o Vn e ZVx e R: exp(nx) = (expx)”,

@ lim expx =400, lim expx =0,
x——+00 X——00

exp(x)—1 __
(X) - 1’

o lim
x—0

o VreQ: expr==¢.
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
° Dlog = (07 +OO)’ Rlog =R,
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
° Dlog = (07 +OO)’ Rlog =R,

@ log is continuous and increasing on (0, +00),
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
° Dlog = (07 +OO)’ Rlog =R,
@ log is continuous and increasing on (0, +00),

@ logl =0,loge =1,
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
® Do = (0,+00), Riog = R,
@ log is continuous and increasing on (0, +00),
@ logl =0,loge =1,
@ Vx,y € (0,+00): log(xy) = log(x) + log(y),
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
® Dy, = (0,4+00), Rios = R,
@ log is continuous and increasing on (0, +00),
@ logl =0,loge =1,
@ Vx,y € (0,+00): log(xy) = log(x) + log(y),
@ Vx € (0,+00): log(l/x) = —logux,
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
® Dy, = (0,4+00), Rios = R,
@ log is continuous and increasing on (0, +00),
@ logl =0,loge =1,
@ Vx,y € (0,+00): log(xy) = log(x) + log(y),
@ Vx € (0,+00): log(l/x) = —logux,
o VneZVxe (0,+00): logx" = nlogux,
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
® Dy, = (0,4+00), Rios = R,
@ log is continuous and increasing on (0, +00),
@ logl =0,loge =1,
@ Vx,y € (0,+00): log(xy) = log(x) + log(y),
e Vx € (0,+00): log(l/x) = —log x,
o VneZVxe (0,+00): logx" = nlogux,

e lim logx = o0, hm logx = —o0,
X—400 —04
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The natural logarithm (denoted by log) is defined as the inverse
function to the function exp.

Properties of the logarithm
® Dy, = (0,4+00), Rios = R,
@ log is continuous and increasing on (0, +00),
@ logl =0,loge =1,
@ Vx,y € (0,+00): log(xy) = log(x) + log(y),
e Vx € (0,+00): log(l/x) = —log x,

o VneZVxe (0,+00): logx" = nlogux,

e lim logx = o0, hm logx = —o0,
xX—+00 —0+

o limsx — 1.

x—1 % -1
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Leta,b € R, a > 0. The general power a’ is defined by

a’ = exp(bloga).
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Leta,b € R, a > 0. The general power a’ is defined by

a’ = exp(bloga).

| \

Definition
Leta,b € (0,40), a # 1. The general logarithm to base a is
defined by
log b
log, b = )

loga’
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Definition

The sine and cosine functions (denoted by sin and cos) are
defined by

2k+ 1 €9

sin x Z 2k+ COSX =

for every x € R.
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The sine and cosine functions (denoted by sin and cos) are
defined by

for every x € R.

Theorem 20 (existence of sine and cosine functions)

For every x € R the limits hm Zk > 2::11),, lim Zk o

exist and they are finite.
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The sine and cosine functions (denoted by sin and cos) are
defined by

for every x € R.

Theorem 20 (existence of sine and cosine functions)

For every x € R the limits hm Zk > 2::11),, lim Zk o

exist and they are finite.
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Properties of the sine and cosine
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Properties of the sine and cosine
o Dsin — Dcos - ]R’ Rsin — Rcos - [_17 1]
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Properties of the sine and cosine
o Dsin — Dcos - ]R’ Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

T s T s 27 37 St
x |91 sl 93|35 | % | % | ™
@ | sinx | 0 5 =5 1 5 5= 3
V3| V2| 1 L V2| V3
cosx | 1 > 5 3 0 3 5 5 1
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

T s T s 27 37 St
x |91 sl 93|35 | % | % | ™
: 1| V2| 3 V3 V2 1
@ | sinx | 0 5 5 5 1 = 5 3
V3| V2| 1 L V2| VB
cosx | 1 > 5 3 0 3 5 5 1

@ The function cos is even, the function sin is odd.
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

» (ol zl33[s5[3F[F[% ]~
@ |sinx [0 1 % ? 1 % % 1

cosx | 1 ? g 3 10]-2 —% —? -1
@ The function cos is even, the function sin is odd.
@ The functions sin and cos are 27-periodic.
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

 [o[z[3[35[3]%3[¥[% [~
@ | sinx | O % % ? 1 % % %
cosxl?% 3 10]-2 —% —? -1
@ The function cos is even, the function sin is odd.
@ The functions sin and cos are 27-periodic.
o Vx € R: sin(x + 7) = —sinx, cos(x + m) = — cos x.
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

x [0z 133 [5[3 (5[ %~
@ | sinx | O % % ? 1 % % %
cosxl?% % 0—% —% —? -1
@ The function cos is even, the function sin is odd.
@ The functions sin and cos are 27-periodic.
o Vx € R: sin(x + 7) = —sinx, cos(x + m) = — cos x.
e Vx € R: sin(x) = cos(§ — x), cos(x) = sin(5 — x).

s
2
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

x [0z 133 [5[3 (5[ %~
@ | sinx | O % % ? 1 % % %
cosxl?% % 0—% —% —? -1
@ The function cos is even, the function sin is odd.
@ The functions sin and cos are 27-periodic.
o Vx € R: sin(x + 7) = —sinx, cos(x + m) = — cos x.
e Vx € R: sin(x) = cos(§ — x), cos(x) = sin(5 — x).
°

Vx € R: sin’x + cos?x = 1.
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

 [o[z[3[35[3]%3[¥[% [~
@ | sinx | O % % ? 1 % % %
cosxl?% % 0—% —% —? -1
The function cos is even, the function sin is odd.
The functions sin and cos are 27-periodic.
Vx € R: sin(x + ) = —sinx, cos(x + 7) = — cosx.

Vx € R: sin(x) = cos(§ — x), cos(x) = sin(
Vx € R: sin®x + cos?x = 1.
Vx,y € R: sin(x £ y) = sinxcosy £ cosxsiny,

cos(x +y) = cosxcosy F sinxsiny.

T —x).

® 6 6 6 o o
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

s s s s 27 3w s
X 0 6 4 3 2 3 4 6
@ |sinx | 0] 3 S5 |1 %5 5= 5
V3| V2 1 1 V2 V3
cosx | 1|5 | 5| 3 0] —> 5 5 1

@ The function cos is even, the function sin is odd.

@ The functions sin and cos are 27-periodic.

o Vx € R: sin(x + 7) = —sinx, cos(x + m) = — cos x.

e Vx € R: sin(x) = cos(§ — x), cos(x) = sin(5 — x).

e Vx € R: sin’x + cos’x = 1.

@ Vx,y € R: sin(x £y) =sinxcosy + cosxsiny,
cos(x +y) = cosxcosy F sinxsiny.

@ Vx,y € R: sinx —siny = 2sin ( ) cos (x+y)
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Properties of the sine and cosine
o Dsin — Dcos - ]R, Rsin — Rcos - [_17 1]
@ The functions sin and cos are continuous on R.

 [o[z[3[35[3]%3[¥[% [~
@ | sinx | O % % ? 1 % % %
cosxl?% 3 10]-2 —% —? -1
@ The function cos is even, the function sin is odd.
@ The functions sin and cos are 27-periodic.
o Vx € R: sin(x + 7) = —sinx, cos(x + m) = — cos x.

e Vx € R: sin(x) = cos(§ — x), cos(x) = sin(5 — x).

e Vx € R: sin’x + cos’x = 1.

@ Vx,y € R: sin(x £y) =sinxcosy + cosxsiny,
cos(x +y) = cosxcosy F sinxsiny.

e Vx,y € R: sinx —siny = 2sin (*3*) cos (*32).

o lim 8% — 1,

x—0
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The function tangent is denoted by tg and defined by

for every x € R for which the fraction is defined, i.e.

Dy ={xeR; x #7/2 +kn,k € Z}.
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The function tangent is denoted by tg and defined by

for every x € R for which the fraction is defined, i.e.
Dy ={xeR; x #7/2 +kn,k € Z}.

The function cotangent is denoted by cotg and defined on a set
Deotg = {x € R; x # km,k € Z} by

COS X

cotgx = —.
Sin x
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Properties of the tangent and cotangent
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Properties of the tangent and cotangent

() tg%=cotg§:1
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Properties of the tangent and cotangent
e tgi =cotg =1
@ The functions tg and cotg are continuous at every point of
their domains.
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Properties of the tangent and cotangent
e tgi =cotg =1
@ The functions tg and cotg are continuous at every point of
their domains.

@ The functions tg and cotg are odd.
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Properties of the tangent and cotangent
e tgi =cotg =1
@ The functions tg and cotg are continuous at every point of
their domains.
@ The functions tg and cotg are odd.
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Properties of the tangent and cotangent
e tgi =cotg =1
@ The functions tg and cotg are continuous at every point of
their domains.
@ The functions tg and cotg are odd.
@ The functions tg and cotg are m-periodic.

@ The function tg is increasing on (—x /2, 7 /2), the function
cotg is decreasing on (0, 7).
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Properties of the tangent and cotangent
e tgi =cotg =1
@ The functions tg and cotg are continuous at every point of
their domains.
@ The functions tg and cotg are odd.
@ The functions tg and cotg are m-periodic.

@ The function tg is increasing on (—x /2, 7 /2), the function
cotg is decreasing on (0, 7).

e lim tgx =400, lim tgx= —o0, lim cotgx = +o0,
x5 — x—=—3+ x—0+
lim cotgx = —o0

X—T—
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Properties of the tangent and cotangent

(*]

tgy =cotg i =1
The functions tg and cotg are continuous at every point of
their domains.

@ The functions tg and cotg are odd.

The functions tg and cotg are m-periodic.

@ The function tg is increasing on (—x /2, 7 /2), the function

cotg is decreasing on (0, 7).

lim tgx = +o0, lim tgx = —o0, lim cotgx = +o0,
x5 — x—=—3+ x—0+

lim cotgx = —o0
X—T—
Rtg = Rcotg =R
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@ The function arcsine (denoted by arcsin) is an inverse
function to the function sin |[_§7§].
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function to the function sin |[_%7§].

@ The function arccosine (denoted by arccos) is an inverse
function to the function cos |o,x.
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Definition
@ The function arcsine (denoted by arcsin) is an inverse
function to the function sin |[_%7§].
@ The function arccosine (denoted by arccos) is an inverse
function to the function cos |o,x.

@ The function arctangent (denoted by arctg) is an inverse

function to the function tg[(_z =).
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Definition

@ The function arcsine (denoted by arcsin) is an inverse
function to the function sin |[_%7§].

@ The function arccosine (denoted by arccos) is an inverse
function to the function cos |o,x.

@ The function arctangent (denoted by arctg) is an inverse

function to the function tg[(_z =).

@ The function arccotangent (denoted by arccotg) is an
inverse function to the function cotg |(0,7r).
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Properties of inverse trigonometric functions
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Properties of inverse trigonometric functions
@ Diresin = Darceos = [_17 1]’ Darctg - Darccotg =R
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Properties of inverse trigonometric functions
@ Diresin = Darceos = [_17 1]’ Darctg - Darccotg =R
@ The functions arcsin and arctg are odd.

@ The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).
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Properties of inverse trigonometric functions
@ Diresin = Darceos = [_17 1]’ Darctg - Darccotg =R
@ The functions arcsin and arctg are odd.

@ The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).

us

@ arctg0 =0, arctg I = 7, arccotg 0 = 7

Mathematics I - Derivatives



Properties of inverse trigonometric functions
@ Diresin = Darceos = [_17 1]’ Darctg - Darccotg =R
@ The functions arcsin and arctg are odd.

@ The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their

domains).
_ T -z
@ arctg0 =0, arctg I = 7, arccotg 0 = 7
° hm arcsinx __ 111’[1 arctgx — 1
x—0 X x—0 X
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Properties of inverse trigonometric functions
@ Diresin = Darceos = [_17 1]’ Darctg - Darccotg =R
@ The functions arcsin and arctg are odd.

@ The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).

(]

arctg0 = 0, arctg 1 = 7, arccotg0 = 7

arctgx __
== =1

lim arcsinx __ = lim
x—0 F x—0
Vx € [-1,1]: arcsinx + arccosx = %

2’
Vx € R: arctgx + arccotgx = 7

(]
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Properties of inverse trigonometric functions

(*]

(]

Dresin = Darccos = [_17 1]’ Darctg - Darccotg =R
The functions arcsin and arctg are odd.

The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).

@ arctg0 =0, arctg 1 = 7, arccotg 0 = 7

° hm arcsinx __ 111’[1 arctgx — 1
x—0 X =0 ¥
e Vx € [—1,1]: arcsinx + arccosx = Z

2 9
Vx € R: arctgx + arccotgx = 7

lim arctgx =
X—+00

lim arccotgx =0, lim arccotgx =m
X—+00 X—r—00

s . o T
z xl}r_noo arctgx = —7
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