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Marginal models
for non-normal response
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Lecture 9

GLM extensions for the longitudinal data

❏ Marginal models
❏ primary interest is given to the conditional mean structure
❏ separate models for the mean and the covariance structure

❏ Random effects models
❏ one equation used to account for both—the mean and the covariance
❏ mostly used when some subject specific inference is of the main interest

❏ Transition models
❏ primary interest again with respect to the mean structure
❏ the correlation structure due to historical observations within the subject

All three categories of the regression models for correlated (repeated) observations
above lead to the same model (with the same interpretation) for the Gaussian type of
the data but for the discrete data different models can produce different
interpretations (due to the non-linearity involved n the models)
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Lecture 9

Marginal models in general

❏ For simplicity, let Yi = (Yi1, . . . ,Yini )⊤ denote a vector of a correlated
binary responses for some individual i ∈ {1, . . . ,N}

❏ The idea is to model P[Yi = y |Xi ], for y ∈ {0, 1}×ni by utilizing the
marginals of the joint distribution (conditionally on Xi ) P[Yi = y |Xi ]

❏ The saturated model has 2ni − 1 parameters and different “marginals”
❏ First order marginals µj = P[Yij = 1], for j = 1, . . . , ni
❏ Second order marginals µjk = P[Yij = 1, Yik = 1], for j ̸= k
❏ Third order marginals µjkl = P[Yij = 1, Yik = 1, Yikl = 1], for j ̸= k ̸= l
❏ ...
❏ The nth

i order marginal µ1,...,N = P[Yi = 1], where 1 = (1, . . . , 1)⊤ ∈ Rni

❏ Which marginals should be used in the model and how should they explain
the overall joint probability P[Yi = y ] (always conditionally on Xi )

❏ full log-linear model
❏ log-linear model for first and higher order marginals (GEE formulation)
❏ Bahadur model for first order marginals and correlations
❏ marginal model for µj and marginal odds ratios
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Lecture 9

Full log-linear model
❏ the joint probability P[Yi = y ] for y = (y1, . . . , yni )⊤ ∈ {0, 1} × . . . {0, 1}

can be expressed as P[Yi = y ] = P[Yi1 = y1 ∧ Yi2 = y2 ∧ · · · ∧ Yini = yni ]
❏ there are many options how to define a saturated model (with 2n total

parameters but only 2n − 1 free parameters)
❏ the model commonly used model (by Bishop et al. 1975) is a log-linear

model which can be formulated as

P[Yi = y ] = c(θi ) exp
{ n∑

j=1

θ
(1)
ij yj +

∑
j1<j2

θ
(2)
ij1j2 yj1yj2 + · · · + θ

(ni )
i1...ni

y1 . . . yni

}
for the vector θi = (θ(1)

i1 , . . . , θ
(1)
ini
, θ

(2)
i12, . . . , θ

(n)
i1...ni

)⊤ ∈ R2ni −1
which is the

canonical vector of the unknown model parameters (θ(1)
ij are conditional

log odds and θ(k)
i... for k ≥ 2 are conditional log odds ratios)

❏ however,the association between Yj and Yk depends on all other values of
Yl for l ̸= j, k, respectively

log
[P[Yij = 1|Yik = yk ,Yil = 0∀l ̸= j, k]

P[Yij = 0|Yik = yk ,Yil = 0∀l ̸= j, k]

]
= θ

(1)
ij + θ

(2)
ijk yk

❏ it would be more interesting to model P[Yj = 1|X] = E [Yj |X] = µj
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Lecture 9

Marginal models towards GEE
❏ Mean structure

The marginal (conditional) expectation of the response depends (non-linearly)
on a linear combination of the explanatory variables (i.e., linear predictor)

h(µij ) = X⊤
ij β, for µij = E [Yij |Xij ] and β ∈ Rp

for a known, strictly monotone, and twice continuously differentiable function h

❏ Variance structure
The marginal (conditional) variance of the response depends on the marginal
mean (and, optionally, some other overdispersion parameter ϕ > 0) as

Var(Yij |Xij ) = v(µij )ϕ, for ϕ > 0

for a known positive and continuously differentiable function v

❏ Covariance structure
The correlation between two observations Yij and Yik (within the same
subject i ∈ {1, . . . , N}) is assumed to be modeled as

Cor(Yij , Yik |Xij , Xik) = ρ(µij , µik , α), for α ∈ Rq

for a known covariance function ρ
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Lecture 9

Key pivots of the marginal models
❏ Instead of specifying the whole distribution (i.e., the exponential family of

distributions) which is required, for instance, for the likelihood based
estimation in GLM, only a specification of the first two moments (and
their mutual relationship) is provided (quasi-likelihood and GEE instead)

❏ For Yi = (Yi1, . . . ,Yini )⊤ and Xi = (Xi1, . . . ,Xini )⊤ we separately specify
the mean E [Yi |Xi ] = Xi β and the covariance Var [Yi |Xi ] = Vi (Xi ,β, ϕ,α)

❏ As the distribution is not provided the likelihood based on the data can
not be constructed. Therefore, in a sense, this is not a parametric model
(where the parameters specify the whole distribution) but rather a
semi-parametric one (the parameters only specify the first two moments)

❏ In a log-linear model (with the first (β) and higher order (α) marginals)
the score function for β ∈ Rp leads to a GEE formulation with the
equations (∂µ/∂β)⊤[Var(Y )]−1(Y − µ) = 0

❏ Therefore, in order to use the quasi-likelihood estimation approach
appropriately, one has to correctly specify both, the mean and the
variance-covariance function
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Lecture 9

Maximum likelihood for GLM
❏ for some generic random vector (Y ,X⊤)⊤ ∼ F(Y ,X) we assume that

f (y |X) = exp{ϕ−1(yθ − ψ(θ)) + c(y , ϕ)} is an exponential family
❏ the linear predictor θ = X⊤β is associated with the conditional mean

E [Y |X] = µ via the link function g , such that g(µ) = θ ≡ θ(β)
❏ as far as f (y |X) is a probability density function, it holds that∫

(y |X)dy = 1 (integrating with respect to the appropriate measure)

❏ first and second partial derivatives of
∫

(y |X)dy = 1 with respect to θ
yields the following:

∂

∂θ
:
∫

[y − ψ′(θ)]f (y |X)dy = 0

and
∂2

∂θ2 :
∫

[ψ−1(y − ψ′(θ))2 − ψ′′(θ)]f (y |X)dy = 0

which gives µ = E [Y |X] = ψ′(θ) and Var [Y |X] = ϕψ′′[(ψ′)−1(µ)]
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Lecture 9

Score equations under MLE
❏ for the random sample DS = {(Yi ,Xi ); i = 1, . . . ,N} we have

f (y |Xi ) = exp{ϕ−1(yθi − ψ(θi )) + c(y , ϕ)} where θi = X⊤
i β ≡ θi (β)

❏ as θi = X⊤
i β and we aim to estimate the unknown parameter vector

β ∈ Rp, we need partial derivatives with respect to β ∈ Rp

❏ Log-likelihood

ℓ(β, ϕ,DS ) =
1
ϕ

N∑
i=1

[Yiθi − ψ(θi )] +
N∑

i=1

c(Yi , ϕ)

❏ First order derivatives wrt. β

∂ℓ(β, ϕ,DS )
∂β

=
1
ϕ

N∑
i=1

∂θi

∂β
[Yi − ψ

′(θi )]

❏ Score equations for β

S(β) =
N∑

i=1

∂θi

∂β
[Yi − ψ

′(θi )] = 0
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Lecture 9

Score equations under MLE – continuation

❏ since µi = ψ′(θi ) a also vi = v(µi ) = ψ′′(θi ) the score equations become

S(β) =
N∑

i=1

∂µi

∂β
v−1

i [Yi − ψ
′(θi )] = 0

and, thus, the estimation of β ∈ Rp depends on the exponential
distribution only through the mean µi and the variance function vi = v(µi )

❏ the solution is obtained numerically (e.g., Newton-Raphson, iterative
re-weighted LS, Fisher scoring)

❏ the inference about β ∈ Rp is based on classical maximum likelihood
theory (i.e., asymptotic Wald tests, likelihood ratio tests, score tests)

❏ the estimation of the over-dispersion parameter can be estimated from the
residuals

ϕ̂ =
1

N − p

N∑
i=1

[Yi − µ̂i ]2

vi (µ̂i )
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Lecture 9

General Estimating Equations (GEE)
❏ for independent observations Y1, . . . ,YN (within the GLM framework) the

corresponding score equations for estimating β ∈ Rp are

S(β) =
N∑

i=1

∂µi

∂β
v−1

i [Yi − µi ] = 0

❏ for longitudinal observations Y1, . . . ,Yn (within the GEE framework) the
score equations for β ∈ Rp can be seen as multivariate extensions

S(β) =
N∑

i=1

ni∑
j=1

∂µij

∂β
v−1

ij [Yij − µij ] = 0

❏ which can be also expressed in a more common (as a sum of independent
subjects) matrix notation

S(β) =
N∑

i=1

D⊤
i [Vi (α)]−1[Yi − µi ] = 0

where Di =
(

∂µij
∂βk

)ni ,p

j,k=1
and Vi (α) ≡ Vi (Xi ,β, ϕ,α)
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Lecture 9

Correlation structure within Yi

❏ Note, that the variance matrix Var [Yi |Xi ] is relatively complex and
specific structural decomposition is typically used to model the
variance-covariance structure more carefully

Var [Yi |Xi ] = Vi (Xi ,β, ϕ,α) = ϕA1/2
i (β)Ri (α)A1/2

i (β)

where the matrix A1/2
i (β) models the covariance of the repeated

observations for the given subject i ∈ {1, . . . ,N}

A1/2
i (β) =


√

vi1(µi1) . . . 0
...

. . .
...

0 . . .
√

vini (µini )


and the correlation of the repeated observations is modeled by Ri (α)

❏ Recall, that the covariances and variances follow from the mean
structure... for modeling purposes we specify the mean structure and the
correlations (i.e., the working correlation matrix)
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Lecture 9

Statistical properties and inference

❏ the GEE estimates of β are consistent even if the working correlation
matrix is incorrect

√
N(β̂N − β) ∼

as.
Np(0, I−1

0 I1I−1
0 )

where I0 is the limit matrix of
∑N

i=1 D
⊤
i [Vi (β)]−1Di and, analogously also

I1 is the limit matrix of
∑N

i=1 D
⊤
i [Vi (β)]−1Var(Yi )[Vi (β)]−1Di

❏ note, that if the variance matrix Var(Yi ) is correctly specified, the
asymptotic variance only reduces to I−1

0 (the likelihood variance)
❏ an estimate for I1 can be obtained by replacing Var(Yi ) by

(Yi − µ̂i )(Yi − µ̂i )⊤ which usually leads to a good estimate of I1 even if it
is a bad estimate for Var(Yi )
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Lecture 9

Alternatives and extensions

❏ Prentice’s two sets of GEE
(two sets of GEE equations—one to obtain the estimates for β and the
other one to get the estimates for α)

❏ GEE based on linearization
(linearization in a form of Yij = µij + εij , where εij = µij with probability
1 − µij and εij = 1 − µij with probability µij)

❏ GEE2 up to GGEk generalizations
(extended marginal mean structure considering the first and second
(possibly up to k th order) marginals and pairwise associations)

❏ Alternating Logistic Regression (ALR)
(parameters β and α are estimated in two separate alternating regression
formulations that are iterated until convergence)
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Lecture 9

Alternating logistic regression

❏ when the response variable only takes two possible values Yij ∈ {0, 1}
(i.e., logistic regression) the mean and the correlation structure can be
estimated using two alternating regression models

❏ first order marginals are used to model the conditional mean structure
using the equation logit(E [Yij |Xij ]) = X⊤

ij β and the marginal odds ratios
are used to model the associations

logit P[Yij = 1|Yik = yik ] = αijkyik+ln
(P[Yij = 1,Yik = 1]P[Yij = 0,Yik = 0]

P[Yij = 0,Yik = 1]P[Yij = 1,Yik = 0]

)
where αijkyik ∈ R is modeled as a predictor variable and some unknown

parameter and the odds ratio is an offset parameter (intercept)
❏ the alternating logistic regression is (almost) as efficient as GEE2 and

(almost) as computationally easy as GGE
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Lecture 9

Summary

❏ Marginal models for correlated observations are specifically suitable for
population interpretation and population based inference

❏ Different strategies can be used to build the model using the marginals of
the joint distribution P[Yi = y |Xi ]

❏ Different models imply different interpretation of the estimated
parameters and also different limitations for a practical utilization

❏ For a subject specific interpretation another models need to be used – for
instance, models with random effects
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