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Transition models
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Lecture 10

GLM extensions for the longitudinal data

❏ Marginal models
❏ primary interest is given to the conditional mean structure (similar to GLM)
❏ separate models for the mean and the correlated observations (working cor)

❏ Random effects models
❏ one equation used to account for both—the mean and the correlation
❏ mostly used when subject specific inference is of some interest

❏ Transition models
❏ primary interest again with respect to the mean structure (marginal)
❏ the correlation structure due to historical observations within the model

Different models result in different parameter interpretation and the models above are
(generally) not equivalent... Some caution is needed when switching between the
marginal and the hierarchical model.
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Lecture 10

Transition models – general overview
❏ Extension of generalized linear models where, in addition to the covariates

in Xij , the conditional distribution of Yij depends (explicitly) also on the
past subject’s responses Yi(j−1), . . . ,Yi1

❏ For simplicity, it is assumed that the observation time points ti1 < . . . tini

are all equally spaced (for all subjects i = 1, . . . ,N)
❏ For brevity, the past responses of each subject (subject specific history at

time tj) is denoted as Hij = {Yik ; k = 1, . . . , j − 1}, where i = 1, . . . ,N

❏ Different types of the transition models are used in theory and practice
but the most commonly used transition models are based on the Markov
chain (of some specific order s ∈ N)

❏ The integer value s ∈ N refers to the model order – the order (history
length) of the underlying Markov chain used in the transition model

❏ In general, the following distributional assumption is imposed

Yij |Hij ,Xij ∼ f (y |Hij) = exp{[yθij − ψ(θij)]/ϕ+ c(y , ϕ)}

where y ∈ R and ψ(·) and c(·, ·) are known functions
(similarly as for GLMM, it holds that µij = ψ′(θij) and vij = ψ′′

ij (θij)ϕ)
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Lecture 10

Transition models – more formally
❏ The conditional mean µij = E [Yij |Hij ,Xij ] is typically expressed via the

link function g as

g(µij) = X⊤
ij β +

s∑
ι=1

fι(Hij ,γ)

such that the variance vij = Var [Yij |Hij ,Xij ] satisfies the equation

vij = v(µij)ϕ

where v(·) is the variance function, g(·) is the link function and fι are
some suitable functions (for ι ∈ {1, . . . , s}) that depends on γ ∈ Rd

❏ The model uses an additive decomposition of the overall dependence
(mean structure) into the part with the covariates in Xij and the subject
specific historical responses in Hij (not necessarily disjoint in β and γ)

❏ A wide range of different transition models can be formulated within such
framework (depending on the value of s ∈ N and the specific forms of the
functions fι for ι ∈ {1, . . . , s})
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Lecture 10

Transition models – examples (linear model)
❏ Linear model

– linear regression model for Yij and autoregressive error structure for Hij

Yij = X⊤
ij β +

s∑
ι=1

γι(Yi(j−ι) − X⊤
i(j−ι)β) + ωij

where fι(Hij ,γ) = γι(Yi(j−ι) − X⊤
i(j−ι)β), for ι ∈ {1, . . . , s},

γ = (γ1, . . . , γs)⊤ ∈ Rs , and ωij ∼ N(0, σ2)

– the historical subject specific responses in Hij can be also rewritten (for
each i ∈ {1, . . . ,N})in terms of the AR(s) model as

εij =
s∑

ι=1

γιεi(j−ι) + ωij

which gives a model expression in terms of Yij = X⊤
ij β + εij , where the

sequence {εij}ni
j=1 form an autoregressive process of the order s ∈ N

❏ the model parameters in β ∈ Rp can be estimated using a standard linear
regression approaches and the parameters in γ ∈ Rs can be estimated
using standard tools within the time-series framework
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Lecture 10

Transition models – examples (logistic model)
❏ Logistic model

– regression model for 0/1 response and one-step history (Cox, 1970;
Korn and Whittemore, 1979) defined as

logit(µij) = logit
(
P[Yij |Hij ,Xij ]

)
= X⊤

ij β + γYi(j−1)

where fι(Hij ,γ) = γYi(j−ι) for ι = 1, with γ ∈ R

– the model can be also generalized for higher order autoregressive process
for the historical outcomes in Hij obtaining

logit(µij) = logitP[Yij |Hij ,Xij ] = X⊤
ij β(s) +

s∑
ι=1

γιYi(j−ι)

but the interpretation of the the parameters in β(s)∈ Rp changes with the
autoregressive order s ∈ N (different interpretation for different s ∈ N)

❏ the standard assumption for the exponential family implies that the
variance vij = Var [Yij |Hij ,Xij ] is given by the expression vij = µij(1 − µij)
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Lecture 10

Transition models – examples (Poisson counts)

❏ Log-normal model
– for count data a log-linear model proposed by Zeger and Quqish (1988)
can be assumed where

log(µij) = X⊤
ij β + log

( Y ⋆
i(j−1)

exp(X⊤
i(j−1)β)

)γ

for fι(Hij ,γ) = γ(logY ⋆
i(j−ι) − X⊤

i(j−ι)β), Y ⋆
i,j = max(Yij , 0), and ι = 1

– note the balancing effect of γ ∈ R – the expectation increases (γ > 0) if
the previous outcome exceeds exp(X⊤

i(j−1)β) and vise-versa for γ < 0

❏ unlike the standard linear regression model, for generalized regression
models it is difficult to formulate a model where the interpretation of
β ∈ Rp does not depend of the Markov chain order s ∈ N (linearity)
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Lecture 10

Some other models

❏ The logistic (transition) model from above can be further generalized to
model longitudinal data with categorical (nominal/ordinal) type of the
dependent variable

❏ Different modifications of the log-normal model for the count data are
proposed in the literature

❏ µij = exp(X⊤
ij β)

[
1 + exp(−γ0 − γ1Yi(j−1))

]
❏ µij = exp(X⊤

ij β + γYi(j−1))
❏ µij = exp(Xij β + γ(log(Y ⋆

i(j−i)) − X⊤
i(j−1)β))

❏ Usually, different forms of specific models arise from specific problems
occurring in real-life situations (with a particular focus on the main
research question of interest)

❏ Many other models with various generalizations and extensions have been
proposed in the statistical literature
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Lecture 10

Maximum likelihood for transition models
❏ Note, that the distributional assumption

Yij |Hij ,Xij ∼ f (y |Hij) = exp{[yθij − ψ(θij)]/ϕ+ c(y , ϕ)}

specifies only the conditional distribution f (y |Hij) – thus, the likelihood
for the first s ∈ N observations is not directly specified

❏ Thus, the full (subject specific – for one i ∈ {1, . . . ,N}) likelihood
in an s-order Markov chain model can be written as

Li (β,γ,Di ) = f (Yi1, . . . ,Yis) ·
ni∏

j=s+1

f (Yij |Hij)

where Di represents the available data for subject i and the marginal
distribution f (Yi1, . . . ,Yis) for the first s observations is not specified

❏ In a normal linear model the marginal distribution of (Yi1, . . . ,Yis)⊤ is
multivariate normal and the full likelihood can be typically formulated but
this is not a general case for other distribution types...
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Lecture 10

Restricted maximum likelihood
❏ For repeated observations {(Yij ,X⊤

ij )⊤; i = 1, . . . ,N; j = 1, . . . , ni } the
restricted likelihood of the form

L(β,γ,D) =
N∏

i=1

ni∏
j=1

f (Yij |Hij)

is typically used to obtain the “maximum likelihood estimates” for the
unknown parameters β ∈ Rp and γ ∈ Rs (iterative algorithms)

❏ Reasonable results are only obtained in situations where the number of
repeated observations (within each subject) is relatively large compared
with the order of the underlying Markov chain (missing values)

❏ Relatively straightforward estimation can be obtained in situations where
fι(Hij ,γ) = γιfι(Hij) meaning that the whole model can be expressed as

g(µij) = X⊤
ij β +

s∑
ι=1

γιfι(Hij)

which holds for the linear model but, for instance, not for the logistic
model or the log-linear Poisson model (linearity)
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Lecture 10

Maximum likelihood estimates for β and γ

❏ In situations where the functions fι(Hij ,γ) depends on γ ∈ Rs in
a non-linear way (and, moreover, fι may also depend on β ∈ Rp) the
maximum likelihood estimates can be obtained from the score functions

N∑
i=1

ni∑
j=s+1

∂µij

∂δ
v−1

ij (Yij − µij) = 0,

where δ = (β⊤,γ⊤)⊤ ∈ Rp+s

❏ The estimates are obtained by an iterative method and, when the correct
model is specified, the estimates are asymtotically normal (for N → ∞)

❏ More formally, δ̂
D∼ Np+s(δ,V) for N → ∞ where, in adition

V̂ =

(
N∑

i=1

X⊤
i WiXi

)−1

and Xi =
(

∂µi(s+j)
∂δk

)ni −s,p+s

j=1,k=1
and Wi = diag

(
1/vi(s+1), . . . , 1/vini

)
(note that both matrices Xi and Wi depend on the unknown parameter δ – plug-in method)
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Lecture 10

Robust estimation of the variance-covariance

❏ If the (conditional) mean is correctly specified and the conditional
variance-covariance is not, consistent estimate for δ ∈ Rp+s can be still
obtained and some (asymptotic) inference can be performed using the
so-called robust variance estimate of the form

VR =

(
N∑

i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiViWiXi

)(
N∑

i=1

X⊤
i WiXi

)−1

where unknown Vi = Var [(Yi(s+1), . . . ,Yini )⊤|Hi ] ∈ R(ni −s)×(ni −s) which
is replaced by the residual based estimate of the form

V̂i = (Ỹi − µ̂i )(Ỹi − µ̂i )⊤

where Ỹi = (Yi(s+1), . . . ,Yini )⊤ and µ̂ is the corresponding (conditional)
mean estimate for Ỹi
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Lecture 10

Some advantages/disadvantages
❏ Advantages

❏ beside standard cross-sectional comparisons, the transition models allow for
capturing and interpreting changes over time (within subjects)

❏ relatively straightforward interpretation (especially for low-order models)
in terms of conditional odds ratios or multiplicative effects (binomial data
and count data)

❏ usually the transition models effectively use fewer parameters than full
random effects models

❏ Disadvantages
❏ the interpretation of the odds ratios is conditional not marginal
❏ requires consecutive observations, missing data may significantly reduce

the sample
❏ model selection issues (the order s ∈ N and the following interpretation of

the β parameters)
❏ the estimates are usually based on iterative and plug-in methods

(rather slow convergence)
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Lecture 10

Summary
Three commonly used toolboxes for repeated/correlated/dependent data (observations
within subjects) but other alternatives also exist in the statistical literature...

❏ Marginal models
– population-averaged interpretation (cannot account for subject-specific

variability) but quite robust with respect to the correlation structure
miss-specification

– relatively very simple models for an implementation (aka classical GLM)

❏ Random effects models
– allows for subject-specific effects (modeling individual trajectories) but

more complex interpretation (with no straightforward transition between
the hierarchical and marginal models)

– estimation and inference typically based on the full likelihood, allowing for
AIC/BIC model comparisons and likelihood ratio based tests

– estimates can be biased for small samples and there my by some
convergence issues in complex models or sparse data

❏ Transition models
– explicit dependence on previous outcomes (useful in situations when the

past state is a strong predictor) but requires full data across consecutive
time points

– more complex to fit and interpret than standard GLM (or marginal models)
but more straightforward (in some situations) than random effects models
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