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Regression models
beyond the expectation
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Motivation

Linear regression models

o Random sample {(Yi ,X>i )>; 1 = 1, . . . ,N} drawn from the joint
distribution of some generic random vector (Y ,X>)> ∼ F(Y ,X)

o The conditional distribution of Y |X is assumed to be normal (or at
least close to normal) such that Y |X ∼ N(X>β, σ2)

o The model specifies the conditional expectation E [Y |X] = X>β or,
alternatively, in terms of the empirical data E [Yi |Xi ] = X>i β

o The unknown parameters β ∈ Rp and σ2 > 0 are obtained either by
minimizing the least squares criterion or by maximizing the likelihood

o The estimates β̂ = (X>X)−1X>Y and σ̂2 = SSe/(n − p) are unbiased
and consistent estimates of their theoretical (unknown) counterparts
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Motivation

Least squares vs. maximum likelihood
o In an ordinary linear regression model (without the normality assumption)

the likelihood can not be obtained and the estimates for β ∈ Rp are
obtained by minimizing least squares

β̂ = Arg min
β∈Rp

N∑
i=1

(Yi − X>i β)2

o In a normal linear regression model (under the normality assumption) the
full likelihood for β and σ2 can be formulated and the estimates are
obtained by maximizing the likelihood function

β̂ = Arg max
β∈Rp

(2πσ2)−N/2 · exp

{
− 1
2σ2

N∑
i=1

(Yi − X>i β)2
}

o Note, that under the normal linear model the least squares estimation and
the maximum likelihood estimation are two equivalent formulation of the
same problem—the minimization of the sum of squared residuals

3 / 11
NMFM 334 | Lecture 12

N



Motivation

Least squares vs. maximum likelihood
o In an ordinary linear regression model (without the normality assumption)

the likelihood can not be obtained and the estimates for β ∈ Rp are
obtained by minimizing least squares

β̂ = Arg min
β∈Rp

N∑
i=1

(Yi − X>i β)2

o In a normal linear regression model (under the normality assumption) the
full likelihood for β and σ2 can be formulated and the estimates are
obtained by maximizing the likelihood function

β̂ = Arg max
β∈Rp

(2πσ2)−N/2 · exp

{
− 1
2σ2

N∑
i=1

(Yi − X>i β)2
}

o Note, that under the normal linear model the least squares estimation and
the maximum likelihood estimation are two equivalent formulation of the
same problem—the minimization of the sum of squared residuals

3 / 11
NMFM 334 | Lecture 12

N



Motivation

Simple expectation and beyond
o For some real random variable X ∼ F (and the density f with respect to

the Lebesgue or count measure) and some measurable funtion h : R→ R
we can obtain the expectation (if the integral exists) as

Eh(X) =
∫
R

h(x)dF (x) =
∫
r

h(x)f (x)dx

o For the random sample X1, . . . ,XN drawn from the same distribution as
the distribution of X we can construct the empirical distribution function
FN and the empirical counterpart for Eh(X) (i.e., the empirical estimate)

Êh(X) =
∫
R

h(x)dFN(x) =
N∑

i=1

h(Xi )

o The quantity (parameter) µh = Eh(X) is sometimes called the theoretical
functional of the distribution F while the quantity µ̂h = Êh(X) is called
the (empirical) functional of the empirical distribution FN

o Note, that different fuctions can be used in place of h in both expressions
(e.g., h(x) = x gives the mean EX and the corresponding sample mean (average) X N)
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Motivation

Different choices of the function h

o The mean (theoretical functional) and the average (empirical functional)
can be also obtained via different formulation for h(x) = (x − a)2 as

E [X ] = Arg min
a∈R

E(X − a)2 = Arg min
a∈R

∫
R
(x − a)2dF (x)

and, correspondingly also

X N = Arg min
a∈R

∫
R
(x − a)2dFN(x) = Arg min

a∈R

N∑
i=1

(Xi − a)2

o Note, that in both cases we actually formulate the least squares problem
(theoretical and empirical) and the solution is the theoretical mean and
the empirical average (i.e., the estimate for the mean)

o This principle can be generalized even further—for the regression
concepts and different forms of the function h
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Motivation

Regression in terms of the functional representation
o For the (population) regression model Y = Xβ + ε, where ε ∼ (0, σ2) and

E [Y |X] = X>β the true (unknown) vector of parameters β ∈ Rp satisfies

β = Arg min
b∈Rp

E [Y − X>b]2 = Arg min
b∈Rp

∫
R1+p

(y − x>b)2dF(Y ,X)(y , x)

where β = F(F(Y ,X)) can be seen as a (theoretical) functional (TF) of
the joint distribution F(Y ,X)

o For the random sample {(Yi ,X>i )>; 1 = 1, . . . ,N} drawn from the same
distribution F(Y ,X) we can formulate the empirical counterpart as

β̂N = Arg min
b∈Rp

∫
R1+p

(y − x>b)2dF (Y ,X)
N (y , x) = Arg min

b∈Rp

N∑
i=1

(Yi − X>i b)2

where β̂N = F(F (Y ,X)
N ) can be now seen as the corresponding (empirical)

functional (EF) of the empirical distribution function F (Y ,X)
N
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Motivation

Regression models beyond the expectation I
o Median regression

TF: β = Arg min
b∈Rp

E |Y − X>b| and EF: β̂N = Arg min
b∈Rp

N∑
i=1

|Yi − X>i b|

for the choice h(x) = |x − a| where X>β is the conditional median of Y
given X and β̂N is the corresponding (empirical) estimate

o Quantile regression

TF: β = Arg min
b∈Rp

hτ (Y−X>b) and EF: β̂N = Arg min
b∈Rp

N∑
i=1

hτ (Yi−X>i b)

for the so called quantile check function hτ (x) = τ(x − I{x<0}) and some
quantile level τ ∈ (0, 1) where X>β is the conditional τ -level quantile of
Y given X and β̂N is the corresponding (empirical) estimate
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Motivation

Regression models beyond the expectation II
o Expectile regression

TF: β = Arg min
b∈Rp

hτ (Y−X>b) and EF: β̂N = Arg min
b∈Rp

N∑
i=1

hτ (Yi−X>i b)

for the choice hτ (x) = |τ − I{x<0}|x2 and some expectile level τ ∈ (0, 1)
where X>β is the conditional expectile of Y given X and β̂N is the
corresponding (empirical) estimate

o Robust regression

TF: β = Arg min
b∈Rp

ρ(Y −X>b) and EF: β̂N = Arg min
b∈Rp

N∑
i=1

ρ(Yi −X>i b)

for some convex (and robust) loss function ρ(x) where the interpretation
of X>β and its empirical counterpart β̂N now depends on the choice of
the loss function ρ
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Motivation

Basic properties of the regression variants
o Median regression

o More robust than the standard least squares regression
o For symmetric error distributions the median corresponds with the mean
o Easy and straightforward intepretation of the estimated parameters

o Quantile regression
o Generalization of the median regression (which is obtained for τ = 0.5)
o Provideds a complex insight about the conditional distribution of Y |X
o Relatively easy interpretation but not that much popular in practice

o Expectle regression
o Generalization of the least squares (which are obtained for τ = 0.5)
o Expectiles form elastic and elucitable risk measures (unlike quantiles)
o Relatively difficult interpretation of β but very popular in risk theory

o Robust regression
o Generalization of the regression for outlyiers and heavy-talied distributions
o Least squares for ρ(x) = x2, median regression for ρ(x) = |x |, maximum

likelihood for ρ(x) = −log(x)
o Other choices are common in practice as well (e.g., Huber function, Tukey

function, Andrew’s function)
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Motivation

Exam terms

o Exam 1
Thursday, 16.05.2024 | Lecture room Praktikum KPMS | Start at 12:20

o Exam 2
Tuesday, 28.05.2024 | Lecture room K11 | Start at 09:00

o Exam 3
Tuesday, 30.05.2024 | Lecture room K11 | Start at 09:00

o Exam 4
↪→ will be schedulled later (in the week 10.06 – 14.06, 2024)

o Exam 5
↪→ will be schedulled later (in september 2024)

Registration for any exam via the SIS system only!
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