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Regression models
beyond typical data
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Linear regression models and beyond

[ Linear models... but the truth is (almost) never linear!
(the linearity property is used as a good and easy approximation)

1 Nevertheless, it is convenient to have simple assumptions...
(but there are many different issues that can go wrong...)

1 Recall, that there are a few levels of linearity in the model
(linearity of the predictor, linearity of the expectation, linearity of LS)

NMFM 334 | Lecture 11




! otivation

Linear regression models and beyond

[ Linear models... but the truth is (almost) never linear!
(the linearity property is used as a good and easy approximation)

1 Nevertheless, it is convenient to have simple assumptions...
(but there are many different issues that can go wrong...)

1 Recall, that there are a few levels of linearity in the model
(linearity of the predictor, linearity of the expectation, linearity of LS)

[ the data are too flexibile (higher order approximations/splines)
[ the data are too irregular (piecewise approximation)
[ the data are too complex (additive models)
[ the data are too volatile (robust estimation approaches)
[ the nature of Y contradicts the linear model (GLM)
[J and many more reasons (and way more alternatives)
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Recap: Linear regression framework

O for a generic random vector (Y, X")" € RP™ we assume an unknown
population model Y = X' 3 + ¢ for an unknown vector 3 € R?

O for a random sample {(Y;, X;")"; i=1,...,n} drawn from the joint
distribution F(y x) we have data model Y; = X8+ ¢

O the data model can be also expressed as Y|X ~ (X3, o°I), for the random
vector Y = (Y1,...,Y,) " and X = (X1,..., X,) " € R™P, rank(X) = p
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Recap: Linear regression framework

O for a generic random vector (Y, X")" € RP™ we assume an unknown
population model Y = X' 3 + ¢ for an unknown vector 3 € R?
O for a random sample {(Y;, X;")"; i=1,...,n} drawn from the joint
distribution F(y x) we have data model Y; = X8+ ¢
O the data model can be also expressed as Y|X ~ (X3, o°I), for the random
vector Y = (Y1,...,Y,) " and X = (X1,..., X,) " € R™P, rank(X) = p
1 Moreover:
0 B=(XTX)"'XTY and ¥ = X3
0 Y =HY +MY, where H = X(XTX)"'XT = (hy)],_; and M = (my)
QY=MY=(I-H)Y=Y-Y=(U,...,U)T
1 SSe = 27:1(Y" —Y)?=|Y - Y|3=|U|3 and MSe = SSe/(n — p)
[ standardized residuals V; = U;//MSe - mj;, if mjj >0

n
ij=1
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Motivation

Linear regression models

Least squares and the linear regression models based on the LS
minimization are, in general, very sensitive (non-robust) with respect to
atypical (non-normal, skewed, and heavy-tailed) data...

But it is not straightforward to say what atypical actually means...

Two common concepts are:

(d Outlying observations
an outlying observation in some regression model Y = X" 8+ ¢ is an
observation for which the response expectaion (E[Y|X]) does not follow
the assumed model X T 8, respectively, it is an observation ¢ € {1,...,n}
such that E[Y,|X,] # X' 8 (i.e., E[Y.|X.] = X8 +7)

1 Leverage points
a leverage point in some regression model Y = X' 8 + ¢ is an observation
which is, in some sense, unusual with respect to the regresor values in X .
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Outlying observations and leverage points

[ It is a well-known fact that a few bad leverage points or outlyiers can
result in a (very) poor fit to the bulk of the data

[d Morever, this can be even the case when using more robust alternatives
that should avoid this drawback

[d outlying observations and leverage points are of different nature—either of
them can appear in the data (model) but they can also appear
simultanously

[ different strategies are proposed in the literature to deal with the outliers,
with the leverage points, or both of them simultaneously
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Motivation

Outlying observations and leverage points

[ It is a well-known fact that a few bad leverage points or outlyiers can
result in a (very) poor fit to the bulk of the data

[d Morever, this can be even the case when using more robust alternatives
that should avoid this drawback

[d outlying observations and leverage points are of different nature—either of
them can appear in the data (model) but they can also appear
simultanously

[ different strategies are proposed in the literature to deal with the outliers,
with the leverage points, or both of them simultaneously

[ for a simple illustration, consider a problem of a simple mean and a simple
median calculated from some univariate random sample... while the
average is sensitive with respect to just one outlying observation, the
sample median is way more robust...
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Outlying observations: mathematically

(1 for a regression (data) model Y; = X" B + &; and some observation
t€{1,...,n} (fixed) we deffine the following two models:

1 Leave-one-out model
M, Y—L|X—L ~ (X—Lﬂ7 Uz]lnfl)

where —. denotes the observation which is omitted

[d Outlyier model
Mo VX~ (KB 44, s 0%Tn-1)

where ¢ denotes the observation which is outlying and j, is a unit vector
with one on the position ¢ € {1,...,n}
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Outlying observations: mathematically

(1 for a regression (data) model Y; = X" B + &; and some observation
t€{1,...,n} (fixed) we deffine the following two models:

1 Leave-one-out model
M, Y—L‘X—L ~ (X—LB7 0'2]1,771)

where —¢ denotes the observation which is omitted

[d Outlyier model
M, Y X, ~ (X8 +J'LT’YL702Hn—1)

where ¢ denotes the observation which is outlying and j, is a unit vector
with one on the position ¢ € {1,...,n}

[ It can be proved, that the residual sum of squares in both models are the
same (meaning that SSe_, = SSe,). The vector B_. solves the normal

equations in the model M o if and onIy if (BL ) soIves the normal
equations in M,, where ,B_L = ,HL and5 =Y, - X ﬁ_
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Detection of outlying observations

1 for any ¢ € {1,..., n} we denote ?[L] = XLT,B\_L which is acually a least
squares estimate of u, = E[Y,|X,] but using only n — 1 observations for
i=1,...,.—1¢t4+1,...,n

[ the whole vector :\\; can be estimated by using a leave-one-out model,
obtaining Yy = (Y, -+ Yia)

[ It also holds that

09 =Y. - X B =Y. -V, =%

my,
QB =B =B- 7-(XTX)IX,

2
0 SSe_, = SSe, = SSe — — = SSe — MSe(V2)

L
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Detection of outlying observations

1 for any ¢ € {1,..., n} we denote ?[L] = XLT,Z'}\_L which is acually a least
squares estimate of u, = E[Y,|X,] but using only n — 1 observations for
i=1,...,.—1¢t4+1,...,n

[ the whole vector :\\; can be estimated by using a leave-one-out model,
obtaining Yy = (Y, -+ Yia)

[ It also holds that

A=Y= XTB . =Y. - V=

a E_L = EL = E_ ,%—(XTX)—le
2
YL — 5Se — MSe(V2)

L

J SSe_, = SSe, = SSe —

[ thus, the original regression model Y|X ~ (X8, 0?l) can be used o detect
outlying observations in the model

A from the inferential point of view, it is also easy to test the null hypothesis
Ho : 7. = 0 (detection of an outlier)
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Something to keep in mind

[ Two or more outliers next to each other can hide each other

[ A notion of outlier is always relative to considered model—an observation
which is an outlier with respect to one model is not necessarily an outlier
with respect another model

[ Outlier can also suggest that a particular observation is a data-error that
must be corrected

[ If some observation is indicated to be an outlier, it should always be
explored

[ Often, identification of outliers with respect to some model is of primary
interest (e.g., credit card transactions)
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Motivation

Cross-validation (CV)

4 Cross-validation is a very popular and commonly used statistical
techniques (also applied in regression) which is based on the vector

/Y\[] = (?[1], e ?[,,])T (so-called leave-one-out CV)

[ the residual U, = Y, — Y, for some observation ¢ € {1,...,n} may be
considered to be too optimistic, because the v/glue ofAYL was usedAto train
the model—i.e., to estimate 8 and to obtain Y = X3 (and also Y,)

[ slightly less optimistic residual (sometimes also called the deleted residual)
obtained by the quantity 7, = Y, — ?[L] = U,/m,, because the value of Y,
is not estimated by using the data that does not contain Y, itself

[d more general concepts (so-called k-fold cross-validation) are also know in
the literature and these techniques are commonly used in regression
modelling in practice
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Leverage points

O considering the hat matrix H = X(XTX )X = (hy)7;_;, the element h;
for some i € {1,...,n} is called the leverage of X;

0 it is easy to show that Y7 h; = tr(H) = tr(QQ") = tr(Q'Q) = p
thus, the average leverage is h=1>"" h; = k/n

(1 some rule-of-thumb for identifying leverage points uses the criterion
hi > 3k/n

[d Other alternatives include

1 DFBETAS
the analysis of the effect of a particular observation on the estimates of
some parameter j3;

1 DFFITS
the analysis of the effect of the Lt observation on the estimates of Y,

J COVRATIO
the analysis of the effect of a particular observation on the estimates of the
parameter vector

1 Cook distance
the analysis of the effect of a particular observation on the estimates of the
mean vector p = E[Y|X]
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How to deal with outliers and leverage points

Different techniques and methodological approaches can be used to deal
with the outlying observations, with the leverage points, for both
simultaneously...
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Motivation

How to deal with outliers and leverage points

Different techniques and methodological approaches can be used to deal
with the outlying observations, with the leverage points, for both
simultaneously...

[ naive methods use the principle of deleting bad outiers and bad leverage
poitns... this should, however, never be done automatically—a proper
exploratory is needed

[d more advanced methods used (iterative) re-weighted least squares where
the weights are determed by some of the criterion mentioned above

[ robust regression alternative which are not that much sensitive to the
ouliers, leverage points, or both simultaneously can be used instead (e.g.,
the median regression)
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Summary

[d Outlying observations

[ unusual observations with respect to the observed values of the response
[ outliers may have serious consequences with respect to the final fit

(1 different recommendations are used to detect and classify outliers

[ various alternatives are proposed to incorporate outliers into the model

[ Leverage points

[ unusual observations with respect to the values of the covariates

[ leverage points may also have serious impact on the final fit

[ different tools are used to explore leverage points

[ modifications of the regression framework are used to bad leverage points
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