
Lecture 11 | 07.05.2024

Regression models
beyond typical data
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Motivation

Linear regression models and beyond

❏ Linear models... but the truth is (almost) never linear!
(the linearity property is used as a good and easy approximation)

❏ Nevertheless, it is convenient to have simple assumptions...
(but there are many different issues that can go wrong...)

❏ Recall, that there are a few levels of linearity in the model
(linearity of the predictor, linearity of the expectation, linearity of LS)

❏ the data are too flexibile (higher order approximations/splines)
❏ the data are too irregular (piecewise approximation)
❏ the data are too complex (additive models)
❏ the data are too volatile (robust estimation approaches)
❏ the nature of Y contradicts the linear model (GLM)
❏ and many more reasons (and way more alternatives)
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Motivation

Recap: Linear regression framework

❏ for a generic random vector (Y , X⊤)⊤ ∈ Rp+1 we assume an unknown
population model Y = X⊤β + ε for an unknown vector β ∈ Rp

❏ for a random sample {(Yi , X⊤
i )⊤; i = 1, . . . , n} drawn from the joint

distribution F(Y ,X) we have data model Yi = X⊤
i β + εi

❏ the data model can be also expressed as Y |X ∼ (Xβ, σ2I), for the random
vector Y = (Y1, . . . , Yn)⊤ and X = (X1, . . . , Xn)⊤ ∈ Rn×p, rank(X) = p

❏ Moreover:
❏ β̂ = (X⊤X)−1X⊤Y and Ŷ = Xβ̂
❏ Y = HY + MY , where H = X(X⊤X)−1X⊤ = (hij )n

i,j=1 and M = (mij )n
i,j=1

❏ Y = MY = (I − H)Y = Y − Ŷ = (U1, . . . , Un)⊤

❏ SSe =
∑n

i=1(Yi − Ŷi )2 = ∥Y − Ŷ ∥2
2 = ∥U∥2

2 and MSe = SSe/(n − p)
❏ standardized residuals Vi = Ui /

√
MSe · mii , if mii > 0
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Motivation

Linear regression models

Least squares and the linear regression models based on the LS
minimization are, in general, very sensitive (non-robust) with respect to
atypical (non-normal, skewed, and heavy-tailed) data...
But it is not straightforward to say what atypical actually means...

Two common concepts are:
❏ Outlying observations

an outlying observation in some regression model Y = X⊤β + ε is an
observation for which the response expectaion (E [Y |X]) does not follow
the assumed model X⊤β, respectively, it is an observation ι ∈ {1, . . . , n}
such that E [Yι|Xι] ̸= X⊤

ι β (i.e., E [Yι|Xι] = X⊤
ι β + γ)

❏ Leverage points
a leverage point in some regression model Y = X⊤β + ε is an observation
which is, in some sense, unusual with respect to the regresor values in X .
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Motivation

Outlying observations and leverage points

❏ It is a well-known fact that a few bad leverage points or outlyiers can
result in a (very) poor fit to the bulk of the data

❏ Morever, this can be even the case when using more robust alternatives
that should avoid this drawback

❏ outlying observations and leverage points are of different nature—either of
them can appear in the data (model) but they can also appear
simultanously

❏ different strategies are proposed in the literature to deal with the outliers,
with the leverage points, or both of them simultaneously

❏ for a simple illustration, consider a problem of a simple mean and a simple
median calculated from some univariate random sample... while the
average is sensitive with respect to just one outlying observation, the
sample median is way more robust...
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Motivation

Outlying observations: mathematically
❏ for a regression (data) model Yi = X⊤

i β + εi and some observation
ι ∈ {1, . . . , n} (fixed) we deffine the following two models:

❏ Leave-one-out model

M−ι : Y−ι|X−ι ∼ (X−ιβ, σ2In−1)

where −ι denotes the observation which is omitted

❏ Outlyier model

Mι : Yι|Xι ∼ (Xιβ + j⊤
ι γι, σ2In−1)

where ι denotes the observation which is outlying and jι is a unit vector
with one on the position ι ∈ {1, . . . , n}

❏ It can be proved, that the residual sum of squares in both models are the
same (meaning that SSe−ι = SSeι). The vector β̂−ι solves the normal
equations in the model M−ι if and only if (β̂⊤

ι , γ̂)⊤
ι solves the normal

equations in Mι, where β̂−ι = β̂ι and γ̂ = Yι − X⊤
ι β̂−ι
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Motivation

Detection of outlying observations

❏ for any ι ∈ {1, . . . , n} we denote Ŷ[ι] = X⊤
ι β̂−ι which is acually a least

squares estimate of µι = E [Yι|Xι] but using only n − 1 observations for
i = 1, . . . , ι − 1, ι + 1, . . . , n

❏ the whole vector Ŷ can be estimated by using a leave-one-out model,
obtaining Ŷ[] = (Ŷ[1], . . . , Ŷ[n])

❏ It also holds that
❏ γ̂ι = Ŷι − X⊤

ι β̂−ι = Yι − Ŷ[ι] = Uι
mιι

❏ β̂−ι = β̂ι = β̂ − Uι
mιι

(X⊤X)−1Xι

❏ SSe−ι = SSeι = SSe − U2
ι

mιι
= SSe − MSe(V 2

ι )

❏ thus, the original regression model Y |X ∼ (Xβ, σ2I) can be used o detect
outlying observations in the model

❏ from the inferential point of view, it is also easy to test the null hypothesis
H0 : γι = 0 (detection of an outlier)
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ι β̂−ι = Yι − Ŷ[ι] = Uι
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Motivation

Something to keep in mind

❏ Two or more outliers next to each other can hide each other
❏ A notion of outlier is always relative to considered model—an observation

which is an outlier with respect to one model is not necessarily an outlier
with respect another model

❏ Outlier can also suggest that a particular observation is a data-error that
must be corrected

❏ If some observation is indicated to be an outlier, it should always be
explored

❏ Often, identification of outliers with respect to some model is of primary
interest (e.g., credit card transactions)
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Motivation

Cross-validation (CV)

❏ Cross-validation is a very popular and commonly used statistical
techniques (also applied in regression) which is based on the vector
Ŷ[] = (Ŷ[1], . . . , Ŷ[n])⊤ (so-called leave-one-out CV)

❏ the residual Uι = Yι − Ŷι for some observation ι ∈ {1, . . . , n} may be
considered to be too optimistic, because the value of Yι was used to train
the model—i.e., to estimate β and to obtain Ŷ = Xβ̂ (and also Ŷι)

❏ slightly less optimistic residual (sometimes also called the deleted residual)
obtained by the quantity γ̂ι = Yι − Ŷ[ι] = Uι/mιι because the value of Yι

is not estimated by using the data that does not contain Yι itself
❏ more general concepts (so-called k-fold cross-validation) are also know in

the literature and these techniques are commonly used in regression
modelling in practice
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Motivation

Leverage points
❏ considering the hat matrix H = X(X⊤X−1)X⊤ = (hij)n

i,j=1, the element hii
for some i ∈ {1, . . . , n} is called the leverage of Xi

❏ it is easy to show that
∑n

i=1 hii = tr(H) = tr(QQ⊤) = tr(Q⊤Q) = p
thus, the average leverage is h = 1

n
∑n

i=1 hii = k/n
❏ some rule-of-thumb for identifying leverage points uses the criterion

hii > 3k/n
❏ Other alternatives include

❏ DFBETAS
the analysis of the effect of a particular observation on the estimates of
some parameter βj

❏ DFFITS
the analysis of the effect of the ιth observation on the estimates of Yι

❏ COVRATIO
the analysis of the effect of a particular observation on the estimates of the
parameter vector β

❏ Cook distance
the analysis of the effect of a particular observation on the estimates of the
mean vector µ = E [Y |X]
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Motivation

How to deal with outliers and leverage points

Different techniques and methodological approaches can be used to deal
with the outlying observations, with the leverage points, for both
simultaneously...

❏ naive methods use the principle of deleting bad outiers and bad leverage
poitns... this should, however, never be done automatically—a proper
exploratory is needed

❏ more advanced methods used (iterative) re-weighted least squares where
the weights are determed by some of the criterion mentioned above

❏ robust regression alternative which are not that much sensitive to the
ouliers, leverage points, or both simultaneously can be used instead (e.g.,
the median regression)
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Motivation

Summary

❏ Outlying observations
❏ unusual observations with respect to the observed values of the response
❏ outliers may have serious consequences with respect to the final fit
❏ different recommendations are used to detect and classify outliers
❏ various alternatives are proposed to incorporate outliers into the model

❏ Leverage points
❏ unusual observations with respect to the values of the covariates
❏ leverage points may also have serious impact on the final fit
❏ different tools are used to explore leverage points
❏ modifications of the regression framework are used to bad leverage points
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