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1. Simple Linear Regression: Technical

and Historical Review

Consider n measurements of continuous variables (x i, yi) for i = 1, . . . , n. Plot them as

Carthesian coordinates on a scatterplot (Figure 1.1). The observations seem to be located

along a line; there is a perceived linear relationship between the values of x and y, but not

an exact one. The goal is to identify a line passing through the observations (see Figure 1.2)

so that the line is “optimal” in some way.

Legendre (1805) proposed to find the line by minimizing the sum of squared vertical

distances of the observed points from the fitted line (see Figure 1.3). This is called the least

squares method.∗ It can be also attributed to Gauss, who later claimed (Gauss 1821) that he

had been using the method as early as in 1795 but had not published it.

Adrien-Marie Legendre (1752 – 1833) was a French mathematician who made numerous

contributions to mathematics. Well-known and important concepts such as the Legendre poly-

nomials and Legendre transformation are named after him.

Source: https://en.wikipedia.org/wiki/Adrien-Marie_Legendre

∗ Česky Metoda nejmenších čtverců.
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Figure 1.1.: Scatterplot of two continuous variables in R2.
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1. Simple Linear Regression: Technical and Historical Review
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Figure 1.2.: Scatterplot of two continuous variables in R2 with fitted line.

The least squares method is based on the presumption that the observed values of the

variable x i are measured precisely while yi are measured with an error that shifts them away

from the line that expresses the linear relationship between the two variables. This point of

view justifies the minimization of vertical distances instead of e.g. perpendicular distances.

Johann Carl Friedrich Gauss (1777 – 1855) was a German mathematician, geodesist, and

physicist who made significant contributions to many fields in mathematics and science. Gauss

published the second and third complete proofs of the fundamental theorem of algebra, made

important contributions to number theory and developed the theories of binary and ternary

quadratic forms. He is also credited with inventing the fast Fourier transform algorithm and

was instrumental in the discovery of the dwarf planet Ceres. His work on the motion of plane-

toids disturbed by large planets led to the introduction of the Gaussian gravitational constant

and the method of least squares, which is still used in all sciences to minimize measurement

error.

Source: https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Let us show how the idea of Legendre and Gauss works. Consider a line y = a+ bx and

choose a, b so that

SS(a, b) =

n∑

i=1

(yi − a − bx i)
2 (1.1)

is minimized over all a, b ∈ R. The sum in the expression (1.1) is called the sum of squares.∗

∗ Česky Součet čtverců.
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1. Simple Linear Regression: Technical and Historical Review
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Figure 1.3.: Zoomed subset of data from Figure 1.2 with visualized vertical distances of the

points from the line (blue).

The values a, b that minimize the sum of squares are easy to find:

∂ SS(a, b)

∂ a
= 2

n∑

i=1

(yi − a− bx i)(−1),

∂ SS(a, b)

∂ b
= 2

n∑

i=1

(yi − a− bx i)(−x i).

Thus, a and b are the solutions to the system of two equations

n∑

i=1

yi − na− b

n∑

i=1

x i = 0,

n∑

i=1

x i yi − a

n∑

i=1

x i − b

n∑

i=1

x2
i = 0.

These equations are called the normal equations∗.

Introducing the notation x = 1
n

∑n
i=1 x i and y = 1

n

∑n
i=1 yi , the normal equations can

be solved as follows. From the first equation, we get

na =

n∑

i=1

yi − b

n∑

i=1

x i, hence a = y − bx .

This shows that the fitted line passes through the point (x , y). Next, substituting in the

∗ Česky Normální rovnice.
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1. Simple Linear Regression: Technical and Historical Review

second equation for the optimal intercept a, we get

b
1

n

n∑

i=1

x2
i =

1

n

n∑

i=1

x i yi − ax =
1

n

n∑

i=1

x i yi − x y + bx2

b

�
1

n

n∑

i=1

x2
i − x2

�
=

1

n

n∑

i=1

x i yi − x y

b
1

n

n∑

i=1

(x i − x)2 =
1

n

n∑

i=1

(x i − x)(yi − y)

Finally,

b =

1
n

∑n
i=1 x i yi − x y

1
n

∑n
i=1

x2
i
− x2

=

∑n
i=1(x i − x)(yi − y)
∑n

i=1(x i − x)2
.

The former version is more computationally friendly, the latter version provides an insight

into the meaning of the slope b. Indeed,

b =
dcov (x , y)

dvar (x) = rx y

√√√dvar (y)
dvar (x) ,

where dcov (x , y) is the sample covariance of the observations (x i, yi), dvar (x) is the sam-

ple variance of x i,dvar (y) is the sample variance of yi, and rx y is the sample correlation

coefficient of the observations (x i, yi).

If the observations x i have the same sample variance as yi then the slope of the line

fitted by least squares is equal to the sample correlation coefficient rx y and therefore lies in

the interval 〈−1,1〉.
This phenomenon was noticed by sir Francis Galton (Galton 1886). He investigated the

relationship of the parents’ height with the height of their grown children. The recorded

heights (in inches) are shown in Figure 1.4 and Galton’s original visualization of the data in

Figure 1.5. If we focus on the heights of sons only (to eliminate the fact that daughters are

somewhat shorter) and plot them as yi against the average height of their parents (x i) we

obtain the scatterplot shown in Figure 1.6.

Sir Francis Galton (1822 – 1911) Darwin’s cousin, prodigy child, contributor to the fields of

statistics, meteorology, psychology, genetics, co-founder and proponent of eugenics.

Source: https://en.wikipedia.org/wiki/Francis_Galton

The red line in Figure 1.6 was fitted by the method of least squares and its slope is

about 0.74.∗ As explained above, this value corresponds to the sample correlation between

the average height of the parents and the height of their son. It means that if the average

height of the parents exceeds the population mean by 10 cm the son’s height is likely to be

above average as well, but only by some 7.4 cm. So, tall parents tend to have tall sons, but

∗ Galton used a different data set and estimated the slope of the fitted line to be about 0.66.
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1. Simple Linear Regression: Technical and Historical Review

Figure 1.4.: Galton height data: original pen/paper records.

Source: http://www.medicine.mcgill.ca/epidemiology/hanley/galton/

not as tall as the parents were. Galton called this feature regression towards the mean. Even

though the term regression∗ originally referred to this very specific feature that appears only

in certain data sets, it began to be used more generally to describe methods and techniques

used for fitting lines or curves to observed data.

The least squares method can be easily extended to fit certain non-linear relationships

between the two variables. For example, if the relationship is not linear but quadratic we

could use the same idea with the function

yi = a+ bx i + cx2
i .

We could find a, b, and c by the method of least squares by minimizing

SS(a, b, c) =

n∑

i=1

(yi − a − bx i − cx2
i )

2.

The estimated parameters a, b, and c are obtained by solving a system of three linear equa-

tions.

In this introductory chapter, we approached the problem of fitting a line or a curve

through a cloud of bivariate data. We did not introduce any underlying probabilistic model

∗ Česky Regrese.
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1. Simple Linear Regression: Technical and Historical Review

Figure 1.5.: Galton height data: original visualization by the author.

Source: https://en.wikipedia.org

150

155

160

165

170

175

180

185

190

195

200

160 165 170 175 180 185

Average height of parents [cm]

H
e
ig

h
t 

o
f 

s
o

n
 [

c
m

]

Figure 1.6.: Modified Galton data with fitted least squares line (red). The slope of the line

is ≈ 0.74. The means of the two variables are plotted as blue lines.

10

https://en.wikipedia.org


1. Simple Linear Regression: Technical and Historical Review

for the data, did not formulate any assumptions and were not able to find neither an in-

terpretation for the estimates obtained by the least square method nor to investigate their

theoretical properties.
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2. Linear Regression Model

In this chapter, we formulate a general definition of the linear regression model. We explain

the meaning of the regression parameters and derive a general formula for the least squares

estimator. We introduce a lot of new technical terms, explain their meaning and investi-

gate some features of linear regression models that will be important for the developments

presented in subsequent chapters.

2.1. Definition and Assumptions

Consider a sequence of n independent random vectors (Yi, Xi), i = 1, . . . , n. The random

variable Yi is called the response∗ (also the dependent variable†, the outcome). The random

vector Xi contains p < n components Xi = (X i1, . . . , X ip)
T which are called the covariates

(also explanatory variables, predictors, regressors)‡.

Definition 2.1. The independent observations (Yi, Xi) satisfy the linear regression model if

the response Yi can be written as Yi = XT
i β + ǫi, that is,

Yi = β1X i1 + β2X i2 + · · ·+ βpX ip + ǫi,

where β = (β1, . . .βp)
T is a vector of unknown regression parameters (coefficients)§ and

the error terms¶ ǫ1, . . . ,ǫn are independent random variables such that E
�
ǫi

��Xi

�
= 0, and

var
�
ǫi

��Xi

�
= σ2

e . ∇

Note. On the covariates:

• The first covariate X i1 is usually taken as 1.

• The covariates Xi are often created by a transformation of an originally observed ran-

dom vector Zi. We suppress this in the notation.

• In certain applications, the covariates are fixed quantities rather than random vari-

ables. Because the definition of the linear model only specifies conditional moments

given the observed values of the covariates it applies to fixed covariates as well. Most

of the developments that follow in this course are not sensitive to differences between

fixed and random covariates either. The only occasion when fixed covariates need to

be treated differently than random covariates is the investigation of asymptotic prop-

erties. This will be discussed in Section ??.

∗ Česky odezva † Česky závislá proměnná ‡ Česky regresory, nezávisle proměnné, vysvětlující velǐciny, predik-

tory, kovariáty § Česky regresní koeficienty ¶ Česky chybové členy
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2. Linear Regression Model

Note. On the error terms:

• The random variables ǫi are required to have zero means and equal variances. It is

somewhat misleading to call them error terms because they include not only errors in

the measurement of the response but also the effects of any factors that influence the

mean of the response and are not included in the model. In econometrics, the error

terms are often called disturbances.

• The variance σ2
e of the error terms is called the residual variance∗.

• Sometimes, the assumptions on the error terms are strengthened to require that ǫi be

independent of Xi . Our definition does not require this.

The definition of the linear model can be reformulated in terms of conditional moments

of the response as follows:

• E
�
Yi

��Xi

�
= XT

i β = β1X i1 + β2X i2 + · · ·+ βpX ip,

• var
�
Yi

��Xi

�
= σ2

e .

Thus, the model makes assumptions about the first two conditional moments of the response:

the conditional mean must be linear in Xi through β and the conditional variance must be

constant.

The purpose of the linear regression model is not just to fit a line, curve or surface

through a cloud of data as it was presented in Chapter 1. Instead, we aim to express how the

expected value of the response Yi changes with different values of Xi and tell what influence

the individual covariates have on the expectation.

Notation. Let

Y =




Y1

Y2
...

Yn


 , X =




XT
1

XT
2
...

XT
n


 , ǫ =




ǫ1

ǫ2
...

ǫn


 .

The n by p matrix X is called the regression matrix†. It includes the observed covariate vectors

in the rows.

Now we can express the model for all the data together

Y = Xβ + ǫ

with E
�
ǫ
��X
�
= 0 and var
�
ǫ
��X
�
= σ2

e In or

• E
�
Y
��X
�
= Xβ ,

• var
�
Y
��X
�
= σ2

e In.

Note. From now on, we will often use the notation E , var for the conditional expectation

and variance given the covariates. So, we will write EYi instead of E
�
Yi

��Xi

�
and varYi

instead of var
�
Yi

��Xi

�
; similarly for Eǫi, varǫi, EY , var Y etc.

∗ Česky residuální rozptyl † Česky regresní matice
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2. Linear Regression Model

β1 + β2Z

β1

β1 + β2

Z=0
Non−G

Z=1
G

Group

Y

Figure 2.1.: Two sample problem expressed as a linear regression model EY = β1 + β2Z ,

where Z = 1(G). The regression line has no interpretation except at Z = 0 or

Z = 1.

The end of

lecture 1 (Sep

30, 2024)

Example 2.1 (Linear model for iid data). Suppose the responses Y1, . . . , Yn represent a

random sample of independent identically distributed random variables with EYi = µ and

varYi = σ
2. Then

Yi = µ+ ǫi,

where ǫi, i = 1, . . . , n are iid with zero mean and variance σ2. Thus, Yi satisfies a linear

regression model with Xi = 1, β = µ and σ2
e = σ

2. △

Example 2.2 (Simple linear regression). Suppose we observe a random sample of (Yi, Zi),

where Zi is univariate. Define the covariate vector as Xi = (1, Zi)
T. This leads to the regres-

sion matrix

X =




1 Z1

1 Z2
...

...

1 Zn


 ,

and the simple linear regression model (recall Chapter 1)

Yi = β1 + β2Zi + ǫi,

with EYi = β1 + β2Zi and varYi = σ
2
e . △

Example 2.3 (Two sample problem). In the previous example, take a special case with a

binary covariate Zi, which attains only values 0 or 1. Suppose that Zi indicates a membership

of the observation in some subgroup G, that is Zi = 1(i ∈ G).

14



2. Linear Regression Model
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Figure 2.2.: Data following a quadratic association with a fitted quadratic curve.

The simple linear regression model has the form

Yi = β1 + β21(i ∈ G) + ǫi,

that is,

EYi =

¨
β1 when i /∈ G,

β1 + β2 when i ∈ G,
varYi = σ

2
e .

This model specifies a two-sample location problem with equal variances in both groups

and possibly different expectations. The regression parameter β2 expresses the difference in

expectations between the groups.

An illustration of the two-sample location problem is provided by Figure 2.1. The re-

gression line is shown in red color but realize that it can only be interpreted at points that

actually appear in the data, that is Z = 1 (group G) or Z = 0 (group ¬G). △

Example 2.4 (Quadratic regression). Suppose we observe a random sample of (Yi , Zi),

where Zi is univariate. Define the covariate vector as Xi = (1, Zi, Z2
i )

T. This leads to the

regression matrix

X =




1 Z1 Z2
1

1 Z2 Z2
2

...
...

...

1 Zn Z2
n


 ,

and the quadratic regression model (recall Chapter 1)

Yi = β1 + β2Zi + β3Z2
i + ǫi,

with EYi = β1 + β2Zi + β3Z2
i (a quadratic function of Zi) and varYi = σ

2
e .

An illustration of the quadratic regression model is provided by Figure 2.2. △
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2. Linear Regression Model

2.2. Interpretation of Regression Coefficients

Recall how the regression coefficients are related to the expectation of the response:

E
�
Yi

��Xi = (x i1, . . . , x ip)
�
= β1 x i1 + β2 x i2 + · · ·+ βp x ip.

Thus, the regression coefficients capture and express the influence of Xi on EYi.

Suppose that X i1 = 1 ∀i ∈ {1, . . . , n}. Then the coefficient pertaining to this covariate is

called the intercept (or the absolute term∗). Obviously,

β1 = E
�
Yi

��X i2 = 0, X i3 = 0, . . . , X ip = 0
�
.

The intercept provides the expectation of the response for an observation with zero

values of all covariates (except the first).

Next, take an observation with any covariate vector x = (1, x2, . . . , xp) and denote the

j-th unit vector of dimension p by e j = (0, . . . , 0,1,0, . . . , 0)T with 1 at the j-th position

( j = 2, . . . , p). We have

E
�
Yi

��Xi = x
�
= β1 + β2 x2 + · · ·+ βp xp

and

E
�
Yi

��Xi = x + e j

�
= β1 + β2 x2 + · · ·+ β j(x j + 1) + . . .+ βp xp.

After subtracting the top equation from the bottom one, we get

β j = E
�
Yi

��Xi = x + e j

�
− E
�
Yi

��Xi = x
�
, j = 2, . . . , p.

So, β j expresses the increase in EYi after the j-th covariate is increased by one unit and

all other covariates stay the same.†

It is important to realize that these interpretations do not always make sense.

Obviously, the intercept cannot be interpreted if an observation with all covariates equal to zero

does not exist.

In quadratic regression E
�
Yi

��Zi

�
= β1 + β2Zi + β3Z2

i
, with X i2 = Zi and X i3 = Z2

i
, one cannot

increase X i2 by a single unit while keeping X i3 the same and vice versa. So, β2 and β3 cannot be

interpreted either. This is because in this model a single variable Zi affects the values of several

covariates simultaneously.

Another cautionary note applies to interpretation of the absolute value of β j . It is not true that

a covariate with a very large value of β j affects the response more strongly than a covariate

with a parameter close to zero. The strength of the influence of the covariate also depends on

the units of measurement. By rescaling all values of X i j to mX i j , the coefficient β j is made m-

times smaller because β jX i j =
β j

m ·mX i j . Thus, rescaling a measurement made in kilometers into

meters makes the regression coefficient 1000 times smaller without changing anything about

the strength of the influence of that covariate on the response.

∗ Česky absolutní člen † Of course, if β j < 0, it expresses a decrease in the expectation.
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2. Linear Regression Model

2.3. Least Squares Estimation

Definition of the least squares estimator

Consider the model

Y = Xβ + ǫ

with Eǫ = 0 and var ǫ = σ2
e In. The regression matrix X has n rows and p columns, with

p < n, and the dimension of β is p.

Definition 2.2 (Least Squares Estimator). The the least squares estimator (LSE) bβ of β

is the point in Rp that minimizes the sum of squares

SSe(β) =

n∑

i=1

(Yi − XT
i β)

2 = (Y −Xβ)T(Y −Xβ) = ‖Y −Xβ‖2.

∇

In order to make the LSE unique, we will make the following assumption.

Assumption. Let the regression matrix Xn×p be of full rank, that is, r(X) = p.

If the regression matrix did not have full rank there would exist at least one covariate

(a column of X) that can be expressed as a linear combination of other covariates. Under

such circumstances the regression coefficients are not identifiable and the LSE bβ does not

have a unique value.

Example 2.5. Consider the model EY = β1 + β2X2 + β3X3 + β4X4 and suppose that X4 =

X2+X3. Then there are infinitely many values ofβ that always generate the same expectation

for the response:

EY = β1 + β2X2 + β3X3 + β4(X2 + X3) = β = (β1,β2,β3,β4)
T

= β1 + (β2 + β4)X2 + (β3 + β4)X3 = β = (β1,β2 + β4,β3 + β4, 0)T

= β1 +
�
β2 +

β4

2

�
X2 +
�
β3 +

β4

2

�
X3 +

β4

2
(X2 + X3) β =

�
β1,β2 +

β4

2
,β3 +

β4

2
,
β4

2

�T

et cetera. When the regression coefficients β do not have a unique value the model is called

unidentifiable∗. △

Through the entire course, we will avoid regression matrices that are not of full rank.

It makes little sense to deal with them because such models cannot be used in practice. We

can always satisfy our assumption by dropping the columns that can be expressed as linear

combination of other columns and so reducing the dimension of the model and the number

of parameters p until the regression matrix has a full rank.

∗ Česky neidentifikovatelný
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2. Linear Regression Model

Note. One could raise an objection that we consider X random and hence its rank is also a

random variable. The following simple example shows that it is possible to end up with a singular

regression matrix by mere bad luck.

Suppose EYi = β1 + β2X i where X i ∈ {0,1} is an indicator of membership of the individual in

some subgroup G . The rank of the regression matrix should be equal to p = 2. Let P [X i = 1]≡
π ∈ (0,1). If π = 0 or π = 1, the covariate generates the same value for all observations and

the regression matrix is of rank 1. But even if we exclude these cases by requiring π ∈ (0,1),

we still get

P [X i = 1 ∀i ∈ {1, . . . , n}] = πn > 0

P [X i = 0 ∀i ∈ {1, . . . , n}] = (1−π)n > 0,

so for any finite sample size n there is a positive probability of r(X) = 1. The probability,

however, converges to zero fairly quickly as n increases.

If it happens in practice, it means that either the group G or the complement GC are not repre-

sented in the data at all and we cannot estimate the effect of the group on the expectation of the

response. We have no choice but to drop the indicator of the group from the model and reduce

the number of columns of the regression matrix.

Note. In the general case, express Xi = (1, X M
i
) (separate the intercept from the rest of the

covariates). Then it holds: If varX M
i
> 0 then P [r(X) = p]→ 1 as n→∞.

Derivation of the explicit form of the LSE

Let us derive the explicit form of the least squares estimator. Decompose SSe(β) into several

parts.

SSe(β) = (Y−Xβ)T(Y−Xβ) = Y TY−βT
X
TY−Y T

Xβ+βT
X
T
Xβ = Y TY−2βT

X
TY+βT

X
T
Xβ .

We will use rules for matrix differentiation. In particular, for any vector c and any symmetric

matrix A
∂ βTc

∂ β
= c and

∂ βTAβ

∂ β
= 2Aβ .

We have,
∂βT
X
TY

∂β
= XTY and

∂βT
X
T
Xβ

∂β
= 2XTXβ ,

and hence
∂ SSe(β)

∂ β
= −2XTY + 2XTXβ .

The LSE bβ solves the system of p linear equations

X
T
X bβ = XTY , (2.1)

18



2. Linear Regression Model

which is called the normal equations∗ in this context.

When X is of rank p, as we assume, XTX is a p × p matrix of rank p and therefore its

inverse exists and is unique. It follows that the normal equations have a single solution,

which is
bβ = (XTX)−1

X
TY . (2.2)

This is the explicit form of the least squares estimator in linear regression.

To show that this estimator really minimizes the least squares criterion, we calculate the

Hessian matrix:
∂

∂βT

∂ SSe(β)

∂β
=
∂

∂βT

�
−2XTY + 2XTXβ

�
= 2XTX,

which is a positive definite matrix at any argument β ∈ Rp. Thus, the function SSe(β) is

strictly convex and we have found its global minimum.

Alternative verification that bβ is the LSE

There is another way how to verify that the solution bβ to the system of normal equa-

tions (2.1) is the LSE. Take any β ∈ Rp and write

SSe(β) = ‖Y −Xβ‖2 = ‖Y −X bβ +X bβ −Xβ‖2

= ‖Y −X bβ‖2 + ‖X( bβ −β)‖2 + 2(Y −X bβ)TX( bβ −β),

where the last term is zero because

( bβ −β)TXT(Y −X bβ) = ( bβ −β)T(XTY −XTX bβ) = 0

using the fact that bβ solves the normal equations XTX bβ = XTY .

Hence, at any β ∈ Rp,

SSe(β) = ‖Y −X bβ‖2 + ‖X( bβ −β)‖2 ≥ ‖Y −X bβ‖2 = SSe(
bβ)

and equality is attained if and only if

‖X( bβ −β)‖2 = ( bβ −β)TXTX( bβ −β) = 0.

When XTX is of full rank, this is equivalent to β = bβ . Thus, bβ is the unique minimizer of

SSe(β).

Fitted values and residuals

Definition 2.3 (Fitted values, residuals).

∗ Česky normální rovnice
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2. Linear Regression Model

(a) bY ≡ X bβ are called the fitted values∗.

(b) u ≡ Y − bY = Y −X bβ are called the residuals†.

Recall the definition of the linear regression model

Y = Xβ + ǫ,

where Xβ is the conditional mean of Y given the covariates and ǫ is random noise, and

compare it with the decomposition

Y = X bβ + u,

where the fitted values X bβ = bY represent the estimated mean of Y and the residuals u rep-

resent the estimated noise. The fitted values are the “best” approximations (or predictions)

of the responses that can be calculated from the covariates alone.

We can write bY = X bβ = X(XTX)−1
X
TY = HY , where H≡ X(XTX)−1

X
T is a square n×n

matrix. The matrix H is called the hat matrix‡ . It is symmetric, r(H) = p because r(X) = p,

and it is idempotent:

HH = X(XTX)−1
X
T
X(XTX)−1

X
T = X(XTX)−1

X
T = H.

Recall that any idempotent matrix satisfies r(H) = tr (H).

Throughout the whole course, we will frequently use the following trivial identities:

HX = X, (I−H)X = 0.

The end of

lecture 2 (Oct.

4, 2024)
The main linear properties of fitted values and residuals are summarized in the following

note.

Note.

(a) bY = HY where H ≡ X(XTX)−1
X
T is a symmetric, idempotent n× n matrix of rank p.

(b) u = (I−H)Y where I−H is a symmetric, idempotent n× n matrix of rank n− p. Also,

u = (I−H)ǫ.
(c) bY , u, and bβ are all linear transformations of Y .

(d) bY and u are always orthogonal.

Parts (a) and (c) of the note are trivial or have been proven above. As for part (b),

(I −H)(I − H) = I − 2H +HH = I − H, so (I −H) is indeed idempotent. Its rank can be

calculated using r(A) = tr (A) for any idempotent A:

r(I−H) = tr (I−H) = tr (I)− tr (H) = n− r(H) = n− p. (2.3)

∗ Česky vyrovnané hodnoty † Česky residua (sing. residuum) ‡ Česky nemá český ekvivalent
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2. Linear Regression Model

Finally, using the definition of the linear model and (I−H)X= 0,

u = (I−H)Y = (I−H)(Xβ + ǫ) = (I−H)Xβ + (I−H)ǫ = (I−H)ǫ.

As for (d), it is easy to verify that

bY Tu = Y T
H(I−H)Y = Y T(H−HH)Y = 0.

Note. Any symmetric idempotent matrix is positive semi-definite. Prove this yourself.

Geometric interpretation of the LSE

From Linear Algebra:

Consider a vector space V and two subspaces U and W such that V = U ⊕W . U and W are

orthogonal iff uTw = 0 for any u ∈ U , w ∈W . Then we denote W = U⊥.

Any vector v ∈ V can be uniquely decomposed as uv + wv , where uv ∈ U and wv ∈ U⊥. This

is called orthogonal projection. Projection is a linear transformation of the vector through a

projection matrix P. The columns of P are the projections of basis vectors of V , and U is the

image of P.

A square matrix P is a projection matrix if and only if it is idempotent.

Let A = (a1, . . . , ap) be any basis of a subspace U of V . Then A(ATA)−1
A
T is a projection matrix

of V onto U .

Let M (X) be the linear subspace of Rn generated by the columns of the regression

matrix X (denote them by x j , j = 1, . . . , p):

M (X) =
§

x ∈ Rn : x =

p∑

j=1

q j x j ,q j ∈ R
ª

.

LetM (X)⊥ be the subspace orthogonal toM (X):

M (X)⊥ =
�
z ∈ Rn : zTx = 0 ∀x ∈M (X)

	
.

Then

• bY is the orthogonal projection of Y ∈ Rn to the p-dimensional subspaceM (X), with

the projection matrix H;

• u is the orthogonal projection of Y ∈ Rn to the n− p-dimensional subspaceM (X)⊥,

with the projection matrix I−H.

So, H and I −H are projection matrices to the two orthogonal subspaces, M (X) and

M (X)⊥, respectively.
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2. Linear Regression Model

2.4. Residual Sum of Squares

The residual sum of squares, denoted by SSe, is the sum of squared residuals and at the same

time the minimized value of the least squares criterion SSe(β). There are several alternative

ways how to express it.

SSe ≡ SSe(
bβ) = ‖Y −X bβ‖2 = ‖Y − bY‖2 = ‖u‖2 =

n∑

i=1

u2
i .

According to the note on p. 20, part (b), u = (I−H)Y = (I−H)ǫ. Because I−H is idempotent,

SSe can be expressed as a quadratic form in two alternative ways:

SSe = Y T(I−H)Y = ǫT(I−H)ǫ.

Another way to express residual sum of squares is this:

SSe = (Y −X bβ)T(Y −X bβ) = Y TY − Y T
X bβ − bβT

X
TY + bβT(XTX) bβ =

= Y TY − Y T
X bβ = Y TY − Y T bY .

(2.4)

2.5. Equivalence of Regression Models

Consider two different regression models for the same response Y :

Y = Xβ + ǫ, where Xn×p and βp×1,

and Y = X∗β∗ + ǫ∗, where X∗n×q and β∗q×1.

The two models are called equivalent if and only if M (X) = M (X∗), that is, the linear

subspaces generated by the columns of X and X∗, respectively, are the same. This is true if

and only if there exists a q× p matrix C such that X = X∗C. For this particular C, it follows

that Xβ = X∗Cβ and hence β∗ = Cβ and ǫ∗ = ǫ.

Because the fitted values bY in the two models are projections of the same vector Y into

the same linear subspace, they must be the same in both models. The same is true for the

residuals u and the residual sum of squares SSe.

When X∗n×q is a matrix of rank p < q then there exists a full rank matrix Xn×p that

generates an equivalent model. This is the mechanism how to avoid ever considering non-

full rank regression matrices. If a regression matrix is not of full rank we work instead with

an equivalent model, which is of full rank.

2.6. Model for iid Response

The simplest special case of a regression model describes independent and identically dis-

tributed responses. Let Y1, . . . , Yn be iid random variables with EYi = µ and varYi = σ
2
Y .
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2. Linear Regression Model

Write

Yi = µ+ (Yi −µ) ≡ X iβ + ǫi,

where X i = 1 for all i, β = µ, Eǫi = 0, and varǫi = σ
2
Y . This is a linear model. We can write

the vector containing all the responses in the form

Y = Xβ + ǫ

where X = (1, . . . , 1)T ≡ 1n, β = µ.

Notation.

• Let 1n be a column n-vector of ones; 1n = (1, . . . , 1)T.

• Let Jn = 1n1T

n
be an n× n matrix of ones.

Let us now calculate the least squares estimator and residual sum of squares. We have

bβ = (XTX)−1
X
TY = (1T

n1n)
−1(1T

nY ) =
1

n

n∑

i=1

Yi ≡ Y n.

So, the least squares estimate of the common expectation is the arithmetic average. Next,

the fitted values are bY = Y n1n and the residuals are u = Y − Y n1n. The residual sum of

squares is SSe = uTu =
∑n

i=1(Yi − Y n)
2.

2.7. Model With Centered Covariates

In order to gain further insights into the meaning of the LSE procedure, we need to center

the covariates. Consider the model

Y = Xβ + ǫ,

where the first column of X is 1n (the intercept column). Denote the rest of the regression

matrix as XR, that is, X = (1n|XR). The vector β is divided similarly into β =
�β1

βR

�
.

Each observation can be expressed as

Yi = β1 + β2X i2 + · · ·+ βpX ip + ǫi.

Let X j =
1
n

∑n
i=1

X i j for j = 2, . . . , p. Now, subtract from the value of each covariate the

respective mean (except for the intercept). We get

Yi = α+ β2(X i2 − X 2) + · · ·+ βp(X ip − X p) + ǫi,

where α = β1 + β2X 2 + · · ·+ βpX p to maintain the equality. This is the model with centered

covariates (shortly, the “centered model”). It is an equivalent model (the subspaces generated
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2. Linear Regression Model

by the columns of the regression matrix have not changed) and the parameters β2, . . . ,βp are

the same. Only the intercept parameter is different. The new intercept has the interpretation

E
�
Yi

��X i2 = X 2, . . . , X ip = X p

�
, the expected response for an individual with average value

in all covariates.

Message: If any covariate is shifted by a constant (the same number is added to/subtracted

from all values of the covariate)

Take Jn = 1n1T
n, an n × n matrix with 1 at all positions. The centered covariates can

be created by multiplication by the column centering matrix: XC = (In − n−1Jn)XR. The

centered model can be written as

Y = (1n|XC)

�
α

βR

�
+ ǫ.

Let us find the least squares estimate of (α,βR). The original model and the centered

model are equivalent, they have the same fitted values bYi. Let bβ =
� bβ1

bβR

�
be the LSE in the

original model, bβ = (XTX)−1
X
TY . Then for all i = 1, . . . , n,

bYi =
bβ1 +
bβ2X i2 + · · ·+ bβpX ip

= bα+ bβ2(X i2 − X 2) + · · ·+ bβp(X ip − X p),

where bα = bβ1 +
bβ2X 2 + · · ·+ bβpX p. Because

� bα
bβR

�
generates the same fitted values, residuals

and SSe as the LSE of the original model, it must be the unique LSE in the centered model.

Message: If any covariate is shifted by a constant (the same number is added to/subtracted

from all values of the covariate) there is no change in either the regression parameter for that

covariate or in its LSE.

Now, apply the LSE formula to the centered model. We have

� bα
bβR

�
=
�
(1n|XC)

T(1n|XC)
�−1
(1n|XC)

TY

=

�
n 1T

nXC

XTC1n X
T
CXC

�−1�∑n
i=1 Yi

XTC Y

�
=

�
1
n 0

0 (XTCXC)
−1

��∑n
i=1 Yi

XTC Y

�
=

�
Y

(XTCXC)
−1(XTC Y )

�
.

We have verified that bα = Y . The fitted values in the centered model are

bYi = Y + bβ2(X i2 − X 2) + · · ·+ bβp(X ip − X p).

Because the original model has the same fitted values, we have the following conclusion.

Conclusion: If the model includes the intercept column, the fitted value evaluated at the average

value of each of the remaining covariates is equal to the average of the responses.
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2. Linear Regression Model

We can also construct an additional way to express the residual sum of squares in a

model with intercept. In the original model, we have SSe = Y TY − Y T
X bβ , see (2.4). When

we apply this to the centered model, we get

SSe = Y TY − Y T(1n|XC)

�
Y
bβR

�
= Y TY − nY

2 − Y T
XC
bβR =

n∑

i=1

(Yi − Y )2 − Y T
XC
bβR.

The end of

lecture 3 (Oct.

7, 2024)2.8. Relationship to Sample Covariance Matrices

In this section, we still work under the assumption that 1n ∈ M (X) (the intercept is in-

cluded in the model). Denote by SX X the sample covariance matrix of the columns of

XR (the remaining columns of the regression matrix after excluding the intercept). It is

a (p − 1) × (p − 1) matrix with diagonal elements 1
n−1

∑n
i=1(X i j − X j)

2 and off-diagonal

elements 1
n−1

∑n
i=1
(X i j − X j)(X ik − X k). Obviously, SX X =

1
n−1X

T
CXC .

Now consider the sample covariance matrix∗ SX Y of the columns ofXR with the response

vector Y , a (p−1)×1 matrix with elements 1
n−1

∑n
i=1
(X i j−X j)(Yi−Y ). Because

∑n
i=1
(X i j−

X )Y = 0, we have SX Y =
1

n−1X
T
C Y .

Conclusion: If the model includes the intercept column, the LSE of the non-intercept parameters

can be expressed in terms of sample covariance matrices as follows: bβR = S
−1
X X
SX Y .

We can also express the LSE of the intercept parameter using the results of the previous

section.

bβ1 = bα−
1

n
1T

nXR
bβR = Y − 1

n
1T

nXRS
−1
X XSX Y .

2.9. Decomposition of Sums of Squares

This can be done in two ways – for non-centered or centered response. The first decompo-

sition is universally valid but less useful. The second is more useful but holds only if the

intercept is included in the model.

Decomposition of sums of squares with non-centered response

Start with the sum of squared responses

‖Y‖2 = Y TY = Y T
HY + Y T(I−H)Y .

The last term on the right-hand side can be recognized as the residual sum of squares SSe. The

left-hand side is called the non-centered total sum of squares, denoted by SS∗T . The remaining

∗ actually, it is a vector
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term, Y T
HY , is called the non-centered regression sum of squares, denoted by SS∗R. We have

SS∗R = Y T
HY = Y T

HHY = ‖HY‖2 = ‖bY‖2 = ‖X bβ‖2 = bβT
X
T
X bβ

The non-centered decomposition is

n∑

i=1

Y 2
i

︸ ︷︷ ︸
SS∗T

=

n∑

i=1

bY 2
i

︸ ︷︷ ︸
SS∗R

+

n∑

i=1

(Yi − bYi)
2

︸ ︷︷ ︸
SSe

.

Decomposition of sums of squares with centered response

Assume that the model contains the intercept, 1n ∈ M (X). Calculate the mean response

Y = 1
n

∑n
i=1

Yi and subtract the mean from all responses, that is, take

Y − 1nY = Y − 1n
1
n1T

nY = Y − 1
nJnY .

Now apply the decomposition of sums of squares to these centered responses.

The total (centered) sum of squares is

SST ≡ ‖Y − 1
nJnY‖2 =

n∑

i=1

(Yi − Y )2.

This can be decomposed as

SST = (Y − 1
nJnY )TH(Y − 1

nJnY ) + (Y − 1
nJnY )T(I−H)(Y − 1

nJnY ).

Because the model contains the intercept, H1n = 1n, hence HJn = Jn, hence (I−H)Jn = 0.

Thus, the last term on the right-hand side is still the residual sum of squares SSe.

The remaining term, (Y − 1
nJn)

T
H(Y − 1

nJn), is the (centered) regression sum of squares,

denoted by SSR. We have

SSR = (Y − 1
nJnY )TH(Y − 1

nJnY ) = ‖H(Y − 1
nJnY )‖2 = ‖HY − 1

n HJn︸︷︷︸
Jn

Y‖2

= ‖bY − 1
nJnY‖2 = ‖bY − 1nY ‖2 =

n∑

i=1

(bYi − Y )2.

The centered decomposition of sums of squares is

n∑

i=1

(Yi − Y )2

︸ ︷︷ ︸
SST

=

n∑

i=1

(bYi − Y )2

︸ ︷︷ ︸
SSR

+

n∑

i=1

(Yi − bYi)
2

︸ ︷︷ ︸
SSe

.
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This can be interpreted as follows. The total sum of squares SST captures the total

variability in the response. This is decomposed into SSR, the variability that is explained by

the regression model (using the covariates), and into SSe, which is the part of variability

that could not be explained.

Notice that we have the mean of all responses in the expression for SSR instead of the

mean of the fitted values.

2.10. Coefficient of Determination

We continue to assume that the model contains the intercept, 1n ∈ M (X), and recall the

centered decomposition of sums of squares SST = SSR+SSe derived in the previous section.

Definition 2.4 (Coefficient of determination). The quantity

R2 =
SSR

SST

= 1− SSe

SST ∇

is called the coefficient of determination∗.

If we interpret SST as the total variability of the response and SSR as the variability

explained by the covariates included in the model, we can view R2 as the fraction of the

variability of the response that was explained by the regression model.

Notes on coefficient of determination

1. Obviously, 0≤ R2 ≤ 1.

2.
p

R2 is sometimes called multiple correlation coefficient† between the random variable

Y and random vector X .

3. R2 is equal to the square of the estimated correlation coefficient between Y and bY .

Proof.

R2 =
‖bY − 1nY‖2

‖Y − 1nY‖2
=

‖bY − 1nY ‖4

‖Y − 1nY‖2‖bY − 1nY ‖2

Now express the norm in the numerator differently:

‖bY − 1nY ‖2 = (bY − Y + Y − 1nY )T(bY − 1nY )

= (bY − Y )T(bY − 1nY )︸ ︷︷ ︸
=0

+(Y − 1nY )T(bY − 1nY )

= (Y − 1nY )T(bY − 1nY )

(2.5)

∗ Česky koeficient determinace † Česky koeficient mnohonásobné korelace
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The first term on the second line is zero because

(bY − Y )T(bY − 1nY ) = (HY − Y )T(HY − 1
nJnY ) = −Y T(I−H)(H− 1

nJn)Y

and

(I−H)(H− 1
nJn) = (I−H)H− 1

n(I−H)Jn = 0

because 1n ∈M (X). So,

R2 =



 (Y − 1nY )T(bY − 1nY )q
‖Y − 1nY ‖2‖bY − 1nY‖2




2

=dcor 2
(Y , bY ).

�

4. Another variant of the coefficient of determination is so called adjusted R2 defined as

R2
a = 1− n− 1

n− p

SSe

SST

.

The motivation for this is to subtract the ratio of two unbiased estimators of var ǫi and

varYi
∗.

2.11. LSE Under Linear Restrictions

Consider the linear model Y = Xβ + ǫ with X of full rank. The least squares estimator
bβ = (XTX)−1XTY minimizes the residual sum of squares SSe(β) = ‖Y − Xβ‖2 over all

β ∈ Rp.

Now we impose an additional set of linear restrictions on the parameters: let Cβ = c,

where C is a q× p matrix with rank r(C) = q < p and c ∈ Rq. We will minimize SSe(β) over

the setB = {β ∈ Rp : Cβ = c}. Denote bβC = arg minβ∈B‖Y −Xβ‖2.

We can use the method of Lagrange multipliers to calculate bβC . Introduce the objective

function

S(β ,λ) = SSe(β) +λ
T(Cβ − c),

where λ ∈ Rq. Calculate

∂ S(β ,λ)

∂β
= −2XTY + 2XTXβ +CTλ

and set it equal to zero to find bβC . We get

X
T
X bβC = X

TY − 1

2
C
Tλ

∗ The fact that SSe/(n− p) is an unbiased estimator of σ2
e

will be established in Section ??.
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and hence

bβC = (X
T
X)−1[XTY − 1

2
C
Tλ] = bβ − 1

2
(XTX)−1

C
Tλ. (2.6)

The solution must satisfy the constraint C bβC = c, i.e.,

C bβ − 1

2
C(XTX)−1

C
Tλ= c.

Use this to identify λ: it is a solution to the system of linear equations

C bβ − c =
1

2
C(XTX)−1

C
Tλ.

Since r(X) = p and r(C) = q < p, the q × q matrix C(XTX)−1
C
T is of rank q, therefore

regular and invertible. Thus,

λ= 2[C(XTX)−1
C
T]−1(C bβ − c).

Plug this into (2.6) to obtain the result

bβC =
bβ − (XTX)−1

C
T[C(XTX)−1

C
T]−1(C bβ − c). (2.7)

However, this is only a suspicious point. We still need to show that it really minimizes

SSe(β) over β ∈B . So, take any β ∈ B and write

SSe(β) = ‖Y −Xβ‖2 = ‖Y −X bβC +X
bβC −Xβ‖2

= ‖Y −X bβC‖2 + ‖X( bβC −β)‖2 + 2(Y −X bβC )
T
X( bβC −β)

Look at the last term. From (2.7), we have

Y −X bβC = Y −X bβ +X(XTX)−1
C
T[C(XTX)−1

C
T]−1(C bβ − c)

and

(Y −X bβC)
T
X( bβC −β) = (Y −X bβ)TX︸ ︷︷ ︸

=uTX=0

( bβC −β)

+ (C bβ − c)T[C(XTX)−1
C
T]−1
C(XTX)−1

X
T
X( bβC −β)︸ ︷︷ ︸

=C( bβC−β)=c−c=0

= 0.

Thus, for any β ∈B ,

SSe(β) = SSe(
bβC ) + (
bβC −β)TXTX( bβC −β) ≥ SSe(

bβC )

and equality is attained if and only if β = bβC . Thus, bβC is the unique minimizer of SSe(β)

over β ∈B and therefore it is the restricted LSE. The end of

lecture 4 (Oct.

11, 2024)
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2. Linear Regression Model

Now evaluate the difference between SSe = SSe( bβ) and SSe( bβC ). Since bβC minimizes

SSe over a subspace of Rp, SSe ≤ SSe(
bβC ). Write

SSe( bβC ) = ‖Y −X bβC‖2 = ‖Y −X bβ +X bβ −X bβC‖2

= ‖Y −X bβ‖2 + ‖X( bβ − bβC )‖2 + 2( bβ − bβC)
T
X
T(Y −X bβ)︸ ︷︷ ︸
=XTu=0

.

Hence

SSe( bβC ) = SSe + ( bβ − bβC )
T
X
T
X( bβ − bβC ).

From (2.7) we know that

bβ − bβC = (X
T
X)−1
C
T[C(XTX)−1

C
T]−1(C bβ − c).

Plug it into the previous expression and after canceling unnecessary terms we get

SSe(
bβC) = SSe + (C

bβ − c)T[C(XTX)−1
C
T]−1(C bβ − c). (2.8)

This result will play an important role in Chapter 4.

Summary: In this section, we have derived two important results for the least squares estimator
bβC calculated under linear restrictions Cβ = c:

bβC =
bβ − (XTX)−1

C
T[C(XTX)−1

C
T]−1(C bβ − c),

SSe(
bβC ) = SSe + (C

bβ − c)T[C(XTX)−1
C
T]−1(C bβ − c).
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3. Properties of the Least Squares

Estimator

In this chapter, we start investigating probabilistic and statistical properties of the quantities

that were introduced in the previous chapter. The first two sections apply to the general

linear regression model, the third section requires the additional condition of normality of

the responses (or of the error terms).

3.1. Moment Properties of the Least Squares Estimator

Consider the regression model

Y = Xβ + ǫ

with Eǫ = 0 and varǫ = σ2
e In or, equivalently, EY = Xβ and varY = σ2

e In. Let the regres-

sion matrix Xn×p have a full rank p < n. The least squares estimator bβ can be expressed

as
bβ = (XTX)−1

X
TY .

The first lemma specifies the first and the second moment of bβ (conditionally on the

covariates).

Lemma 3.1.

(i) E bβ = β , i.e., bβ is an unbiased estimator of β .

(ii) var bβ = σ2
e (X

T
X)−1. ♦

Proof. Treating X as a matrix of constants and Y as a random vector, we get:

E bβ = E (XTX)−1
X
TY = (XTX)−1

X
TEY = (XTX)−1

X
T
Xβ = β

and

var bβ = var (XTX)−1
X
TY = (XTX)−1

X
TvarY X(XTX)−1

= σ2
e (X

T
X)−1(XTX) (XTX)−1 = σ2

e (X
T
X)−1. �

The second lemma specifies the first and the second moments of the fitted values and

residuals. Its proof is also straightforward.
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3. Properties of the Least Squares Estimator

Lemma 3.2.

(i) E bY = EY = Xβ ,

(ii) Eu = 0,

(iii) var bY = σ2
eH,

(iv) varu = σ2
e (I−H). ♦

Proof. We have bY = HY and u = (I−H)Y , where H = X(XTX)−1
X
T is the projection matrix

to the subspaceM (X). H is symmetric, idempotent, and satisfies HX= X and (I−H)X = 0.

Hence

E bY = EHY = HEY = HXβ = Xβ ,

var bY = varHY = HvarYH = σ2
eHH= σ

2
eH.

Next,

Eu = E (I−H)Y = (I−H)EY = (I−H)Xβ = 0,

varu = var (I−H)Y = (I−H)varY (I−H) = σ2
e (I−H)(I−H) = σ2

e (I−H). �

It is important to realize one substantial difference. We can write the responses in two

different ways:

Y = Xβ + ǫ,

Y = X bβ + u

In the first case, the error terms ǫ are independent and have equal variances. However, in

the second case, the residuals u do not share these properties: they are not independent

(because the matrix I−H is not diagonal) and they do not have equal variances.

Finally, we calculate the expectation of the residual sum of squares and derive an unbi-

ased estimator for the residual variance.

Lemma 3.3. ESSe = (n− p)σ2
e . ♦

Proof. Remembering the results from Section 2.4, we can write SSe = uTu = ǫT(I−H)ǫ.
By Lemma A.1 in the Appendix and using the fact that I−H is idempotent of rank n− p —

see equation (2.3) — we get

ESSe = EǫT(I−H)ǫ = 0+ tr
�
(I−H)varǫ
�

= σ2
e tr (I−H) = σ2

e r(I−H) = σ2
e (n− p). �

Definition 3.1.

bσ2
e =

SSe

n− p
≡ MSe

is called the estimated residual variance. The symbol MSe is just an alternative notation for

the expression SSe/(n− p). ∇
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3. Properties of the Least Squares Estimator

By Lemma 3.3, bσ2
e is an unbiased estimator of the residual variance.

3.2. Gauss-Markov Theorem

The Gauss-Markov theorem shows that the least squares estimator is in a certain sense op-

timal. It was originally formulated by Carl Friedrich Gauss in 1821 (Gauss 1821) under

the assumption of normality. It was extended to the general case by Andrey Andreyevich

Markov in 1912 (Markov 1912). Further extension to correlated errors of unequal variance

was provided by Aitken (1936).∗

Andrey Andreyevich Markov (1856 – 1922) was a Russian mathematician, who became

particularly famous for his pioneering work on stochastic processes (Markov property, Markov

chains, etc.).

Source: https://en.wikipedia.org/wiki/Andrey_Markov

Here we state the Gauss-Markov theorem in three different ways, after we introduce

and explain the optimality criterion needed for all three versions.

Definition 3.2. bθ is best linear unbiased estimator (BLUE) of θ based on the data vector Y

if and only if the following three conditions hold:

(i) bθ is linear, i.e., bθ = AY .

(ii) bθ is unbiased, i.e., E bθ = EAY = θ .

(iii) For any matrix B (of the same dimension as A) that satisfies EBY = θ

varBY − var bθ ≥ 0,

that is, the matrix on the left-hand side is positive semi-definite. ∇

Theorem 3.4 (Gauss-Markov, version I). Let the linear regression model specified in

Section 3.1 on page 31 be satisfied, let bβ be the LSE. Then cT bβ is the unique best linear

unbiased estimator of cTβ for any 0 6= c ∈ Rp. ♦

Proof.

• cT bβ is linear: cT bβ = cT(XTX)−1
X
TY .

• cT bβ is unbiased: E cT bβ = cTE bβ = cTβ .

• cT bβ has the smallest variance among all linear unbiased estimators:

Take another linear unbiased estimator aTY of cTβ , where a ∈ Rn. We have EaTY =

aTXβ = cTβ . Hence, aTX = cT. Now,

varaTY = σ2
e aTa,

var cT bβ = σ2
e cT(XTX)−1c = σ2

e aT
X(XTX)−1

X
Ta = σ2

e aT
Ha.

∗ we do not talk about that extension in this course
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3. Properties of the Least Squares Estimator

Finally,

varaTY − var cT bβ = σ2
e aT(I−H)a ≥ 0

because I−H is positive semi-definite. The variances of both estimators are equal if

and only if (I−H)a = 0, which is equivalent to a = Ha or aT = aT
H. It follows that

the estimator aTY can be rewritten as

aTY = aT
HY = aT

X(XTX)−1
X
TY = aT

X bβ = cT bβ . �

Theorem 3.5 (Gauss-Markov, version II). Let the linear regression model specified in

Section 3.1 on page 31 be satisfied, let bβ be the LSE and C any q× p matrix. Then C bβ is a

best linear unbiased estimator of Cβ . ♦

Proof. This is an easy corollary of the preceding theorem. C bβ is obviously a linear and

unbiased estimator of Cβ . Consider another linear unbiased estimator AY with Aq×n. To be

unbiased, it must satisfy EAY = AXβ = Cβ and hence AX= C and r(A) = r(C).

Denote D = varAY−varC bβ and prove that D ≥ 0 by taking any non-zero vector d ∈ Rq

and showing that dT
Dd ≥ 0. We have dT

Dd = vardT
AY − vardT

C bβ . Also, EdT
AY =

dT
AXβ = dT

Cβ .

Hence, dT
AY is a linear unbiased estimator of dT

Cβ and it follows from Theorem 3.4

that dT
Dd ≥ 0. �

Note. It follows from Theorem 3.5 that bβ is the BLUE of β . Just take a special case with

C = I.

Another special case of Theorem 3.5, with C = X, shows that bY is the BLUE of EY . This

produces the third version of the Gauss-Markov theorem.

Theorem 3.6 (Gauss-Markov, version III). Let the linear regression model specified in

Section 3.1 on page 31 be satisfied, let bβ be the LSE. Then bY is the best linear unbiased

estimator of EY . ♦
The end of

lecture 5 (Oct

14, 2024)

3.3. Properties of the Least Squares Estimator Under

Normality

In this section, we consider the linear regression model with the normality assumption. In

particular,

Y = Xβ + ǫ

with

ǫ ∼ Nn(0,σ2
e In) or, equivalently, Y ∼ Nn(Xβ ,σ2

e In).
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3. Properties of the Least Squares Estimator

The regression matrix Xn×p still has a full rank p < n. All the results of the previous two

sections are still valid. Under normality, we can derive additional results about distributions

of various quantities, which are summarized in the following lemma.

Lemma 3.7. Under the assumptions of the current section,

(i) bβ ∼ Np(β ,σ2
e (X

T
X)−1);

(ii) bY ∼ Nn(Xβ ,σ2
eH);

(iii) u ∼ Nn(0,σ2
e (I−H));

(iv)
SSe

σ2
e

∼ χ2
n−p;

(v) bβ and SSe are independent. ♦

Proof.

(i)–(iii) This is obvious: bβ , bY , and u are just linear transformations of Y . The first and

second moments have been provided by Lemmas 3.1 and 3.2.

(iv) As shown in Section 2.4, SSe = ǫ
T(I −H)ǫ, where ǫ ∼ Nn(0,σ2

e In). Because I−H is

idempotent of rank n− p it follows from Lemma A.2 in the Appendix that SSe/σ
2
e ∼

χ2
n−p.

(v) We have bβ = (XTX)−1
X
TY ≡ BY and σ2

e = Y T(I−H)Y ≡ YAY . By Lemma A.3 in the

Appendix it suffices to show that BA = 0. But

BA = (XTX)−1
X
T(I−H) = 0

because (I−H)X= 0. �

The linear regression model with normally distributed responses is a parametric model.

Let us derive the maximum likelihood estimators (MLE) of β and σ2
e .

We have Y ∼ Nn(Xβ ,σ2
e In) with unknown parameters θ = (βT,σ2

e )
T. The likelihood is

L(θ | Y ) = 1

(2π)n/2(σ2
e )

n/2
e
− 1

2σ2
e
(Y−Xβ)T(Y−Xβ)

and the log-likelihood

ℓ(β ,σ2
e | Y ) = −

n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

(Y −Xβ)T(Y −Xβ).

Regardless of σ2
e , to maximize this over β it is enough to minimize ‖Y − Xβ‖2 = SSe(β).

So, the least squares estimator bβ is the maximum likelihood estimator of β in the normal

linear regression model. Plug this into the log-likelihood to find the MLE of σ2
e :

ℓ( bβ ,σ2
e | Y ) = −

n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

SSe. (3.1)
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3. Properties of the Least Squares Estimator

Now,

∂ ℓ( bβ ,σ2
e | Y )

∂ σ2
e

= −n

2
· 1

σ2
e

+
1

2

SSe

(σ2
e )

2

The MLE solves the equation
n

σ2
e

=
SSe

(σ2
e )

2

and the solution is SSe/n. We have proven the following lemma.

Lemma 3.8. In the normal linear regression model, the maximum likelihood estimator of

β is the LSE bβ = (XTX)−1(XTY ) and the maximum likelihood estimator of σ2
e is SSe/n. ♦

Note. The MLE of σ2
e differs from the unbiased estimator bσ2

e of Definition 3.1 by dividing

SSe with n instead of n− 1. This difference becomes negligible as n increases.
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4. Statistical Inference in the Linear

Regression Model

4.1. Exact Inference Under Normality

In this section, we work under the assumption of normality, when the regression model can

be formulated as

Y ∼ Nn(Xβ ,σ2
e In)

and we use the results of Section 3.3, in particular, Lemma 3.7. First, we formulate the exact

distribution of the normalized linear combination of estimated regression coefficients.

Lemma 4.1. Under the assumptions of the current section, for any c 6= 0,

cT bβ − cTβÆ
bσ2

e cT(XTX)−1c
∼ tn−p.

tn−p is the Student’s t-distribution with n− p degrees of freedom. ♦

Proof. By Lemma 3.7, part (i),

cT bβ ∼ N(cTβ ,σ2
e cT(XTX)−1c)

and hence
cT bβ − cTβ

σe

p
cT(XTX)−1c

∼ N(0,1).

By Lemma 3.7, parts (iv) and (v),
SSe

σ2
e

∼ χ2
n−p and bβ and SSe are independent. It follows

that
cT bβ−cTβ

σe

p
cT(XTX)−1cr

SSe

σ2
e (n−p)

=
cT bβ − cTβÆ
bσ2

e cT(XTX)−1c
∼ tn−p.

�

We can use this lemma to perform tests and construct confidence intervals for any linear

combinations of regression coefficients. For example, if we take c = e j , we get cT bβ = bβ j and

cTβ = β j. Next, cT(XTX)−1c ≡ v j j, where v j j denotes the j-th diagonal element of (XTX)−1.
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4. Statistical Inference in the Linear Regression Model

4.1.1. Testing individual regression parameters

Consider the hypothesis H0 : β j = a against the two-sided alternative H0 : β j 6= a (usually,

we take a = 0). Based on Lemma 4.1, we reject H0 if

��� bβ j − a

���
Æ
bσ2

e v j j

≥ tn−p

�
1− α

2

�
,

where tn−p(1−α/2) is the (1−α/2)-quantile of t distribution with n−p degrees of freedom.

Note that bσ2
e v j j is the estimated variance of bβ j. This test has the exact level α.

4.1.2. Confidence intervals for individual regression parameters

Let β j be the true value of the j-th regression parameter and bβ j be the LSE of β j. By

Lemma 4.1,

P

�
−tn−p

�
1− α

2

�
≤
bβ j − β jÆ
bσ2

e v j j

≤ tn−p

�
1− α

2

�
�
= 1−α.

By a simple manipulation, we get

P

h
bβ j − tn−p

�
1− α

2

�q
bσ2

e v j j ≤ β j ≤ bβ j + tn−p

�
1− α

2

�q
bσ2

e v j j

i
= 1−α.

Thus,

bβ j ∓ tn−p

�
1− α

2

�q
bσ2

e v j j

are the boundary points of a confidence interval for β j with coverage probability exactly

1−α.

4.1.3. Tests and confidence intervals for linear combinations of

regression parameters

Choose the desired c and use Lemma 4.1 in the same way as in Sections 4.1.1 and 4.1.2.

4.1.4. Simultaneous tests of several linear combinations of regression

parameters

Consider a matrix of constants Cq×p with q ≤ p and r(C) = q. By Theorem 3.5 (Gauss-

Markov, ver. II), C bβ is a best linear unbiased estimator of Cβ even the data are not normal.

The next lemma provides the exact distribution of C bβ under normality.
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4. Statistical Inference in the Linear Regression Model

Lemma 4.2. Under the assumptions of the current section, for any Cq×p with q ≤ p and

r(C) = q,
1

qbσ2
e

(C bβ −Cβ)T
�
C(XTX)−1

C
T
�−1
(C bβ −Cβ) ∼ Fq,n−p. (4.1)

Fq,n−p is the Fisher’s F-distribution with q and n− p degrees of freedom. ♦

Proof. By Lemma 3.7, part (i),

C bβ ∼ N(Cβ ,σ2
eC(X

T
X)−1
C
T)

and hence
1

σ2
e

(C bβ −Cβ)T
�
C(XTX)−1

C
T
�−1
(C bβ −Cβ) ∼ χ2

q .

By Lemma 3.7, parts (iv) and (v),
SSe

σ2
e

∼ χ2
n−p

and bβ and SSe are independent. Hence

1
qσ2

e
(C bβ −Cβ)T
�
C(XTX)−1

C
T
�−1
(C bβ −Cβ)

SSe

(n−p)σ2
e

∼ Fq,n−p.

This proves the lemma. �

This lemma can be used to perform simultaneous tests of several linear combinations

of regression parameters. Put the desired coefficients into the q rows of the matrix C and

consider testing

H0 : Cβ = c against H1 : Cβ 6= c,

where c is a q-vector of constants (often zeros). The hypothesis is rejected when

1

qbσ2
e

(C bβ − c)T[C(XTX)−1
C
T
�−1
(C bβ − c) ≥ Fq,n−p(1−α),

where Fq,n−p(1−α) is the (1−α)-quantile of the F distribution with q and n− p degrees of

freedom. This test has the exact level α.

The test statistic can be expressed in a more convenient form if we realize that the

hypothesis H0 specifies a set of linear constraints on the regression parameters. We know

from section 2.11, equation (2.8) that the numerator of the test statistic can we written as

(C bβ − c)T[C(XTX)−1
C
T]−1(C bβ − c) = SSe(

bβC)− SSe,

where SSe(
bβC ) is the residual sum of squares under linear constraints, that is, under H0, and

SSe is the residual sum of squares without restrictions, i.e., when H0 is not assumed to hold.

This consideration allows us to summarize the previous results in the following way.
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4. Statistical Inference in the Linear Regression Model

Lemma 4.3. When the hypothesis H0 : Cβ = c is true, whereC is a q×p matrix of constants

with q ≤ p and r(C) = q, and c is a q-vector of constants, then

n− p

q

SS0
e − SSe

SSe

∼ Fq,n−p,

where SS0
e is the residual sum of squares calculated under H0 and SSe is the residual sum of

squares calculated without any restrictions.

The hypothesis is rejected if

n− p

q

SS0
e − SSe

SSe

≥ Fq,n−p(1−α).

This test has the exact level α. ♦

The lemma provides a much easier formulation of the test, which can be further ex-

tended to any submodel testing (see the next section). The numerator of the test statistic

expresses how much SSe increased under H0 relative to what it was when H0 was not as-

sumed to hold.

From Section 2.9, the numerator can be rewritten in terms of regression sums of squares

as well. In the model Y = Xβ+ǫ, we decompose the total sum of squares as SST = SSR+SSe.

Under the null hypothesis, the same total sum of squares is decomposed as SST = SS0
R+SS0

e .

The numerator

SS0
e − SSe = (SST − SS0

R)− (SST − SSR) = SSR − SS0
R

shows how much the regression sum of squares improved after removing the restriction

imposed by the null hypothesis. The end of

lecture 6 (Oct

18, 2024)
4.1.5. Submodel testing

Consider two different regression models for the same response Y (with q ≥ 1):

Y = Xβ + ǫ, with Xn×p,βp×1 Model (M)

and Y = Zγ+ ǫ∗, with Zn×(p−q),γ(p−q)×1 Model (M1)

Model M1 is called a submodel of Model M if and only ifM (Z) ⊂M (X), that is, the linear

space generated by the columns of Z is a subspace of the linear space generated by the

columns of X. The submodel explains the response through fewer covariates and fewer

parameters. Whenever the submodel M1 is true the larger model M must also be true.

BecauseM (Z) ⊂ M (X), each column of Z can be expressed as a linear combination

of the columns of X. Thus, there exists a p × (p − q) matrix A such that Z = XA. Take
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4. Statistical Inference in the Linear Regression Model

any matrix Bp×q such that (A|B) is of full rank. Then (XA|XB) is another basis ofM (X).
Therefore, Xβ can be written as

Xβ = XAγ+XBδ = Zγ+XBδ

Model M is equivalent to the model

Y = Zγ+XBδ+ ǫ

and the submodel M1 is true if and only if δ = 0. Thus, any submodel can be obtained by

linear restriction testing applied on a model that is equivalent to the larger model M .

This proves that the test specified in Lemma 4.3 can be applied to any submodel testing

problem. To be specific, let

SS0
e be the residual sum of squares under the submodel;

SSe be the residual sum of squares under the larger model;

q be the difference in the number of parameters between the larger model

and the submodel.

If the submodel holds then

n− p

q

SS0
e − SSe

SSe

∼ Fq,n−p.

The submodel is rejected in favor of the larger model if

n− p

q

SS0
e − SSe

SSe

≥ Fq,n−p(1−α).

Submodel testing is the most important tool for building regression models, that is, for

deciding which covariates should be included in the model and in what functional form.

4.1.6. Overall regression test

Let us consider a special case of submodel (or linear restriction) testing. Take C = (0|Ip−1)

and test H0 : Cβ = 0. This is equivalent to β2 = · · · = βp = 0, that is, all regression

coefficients except the intercept are zero. The number of tested parameters is q = p−1. The

submodel contains only the intercept. When this hypothesis is true, the responses have the

same expectation, which does not (linearly) depend on any of the covariates.

Recall the decomposition of centered sums of squares derived in Section 2.9. We have

SST = SSR + SSe, or explicitely

n∑

i=1

(Yi − Y )2 =

n∑

i=1

(bYi − Y )2 +

n∑

i=1

(Yi − bYi)
2.
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4. Statistical Inference in the Linear Regression Model

Under H0 (intercept only), we have bY 0
i = Y for all i, SS0

R = 0, SS0
e = SST . The test statistic

for testing this hypothesis is

n− p

p− 1

SS0
e − SSe

SSe

=
n− p

p− 1

SSR

SSe

.

This can be also expressed as

n− p

p− 1

SSR

SST − SSR

=
n− p

p− 1

R2

1− R2
,

where R2 is the coefficient of determination (see Section 2.10). The hypothesis that no

covariates affect the expectation can be rejected if this test statistic exceeds Fp−1,n−p(1−α).
The calculation of the overall regression test is traditionally visualized in the form of so

called analysis-of-variance (ANOVA) table, see Table 4.1.

4.1.7. One-way analysis of variance model

Let the observed data be (Yi , Zi) independent pairs, i = 1, . . . , n, where Yi is the response

and Zi ∈ 1,2, . . . , m classifies the subjects into one of m disjoint groups. Let the expectation

of the response in the j-th group be µ j = E
�
Yi

��Zi = j
�

, j = 1, . . . , m. Let the conditional

distribution of the response in the j-th group be N(µ j,σ
2
e ), that is, all observations have

normal distributions with potentially different means in the m groups and equal variances.

This is the classical one-way analysis of variance (ANOVA) model.

The one-way ANOVA model can be formulated as a linear regression model by

Yi =

m∑

j=1

µ j1(Zi = j) + ǫi, ǫi ∼ N(0,σ2
e )

= XT
i β + ǫi,

where Xi = e j when Zi = j and β = (µ1, . . . ,µm)
T.

Denote the group sizes by n j =
∑n

i=1 1(Zi = j). Sort the observations so that the n1

observations coming from group 1 are listed first, followed by the n2 observations belonging

Source of

variation
SS d.f. MS F

All covariates SSR p− 1 MSR =
SSR

p−1 F =
MSR

MSe

Error SSe n− p MSe =
SSe

n−p

Total SST n− 1

Table 4.1.: Analysis of variance table for the overall regression test.
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to group 2 and so on. Consider the corresponding regression matrix X. The least squares

estimator of β is
bβ = (XTX)−1(XTY ).

We have

X
T
X = diag (n1, . . . , nm) and XTY =

� n∑

i=1

Yi1(Zi = 1), . . . ,

n∑

i=1

Yi1(Zi = m)

�
.

Hence bβ = (Y 1, . . . , Y m), where Y j is the arithmetic average of the observations belonging

to the j-th group. This is also the least squares estimator of the expectation µ j in the j-th

group.

The fitted values in the one-way ANOVA model are

bYi =

m∑

j=1

Y j1(Zi = j),

the regression sum of squares is

SSR =

n∑

i=1

(bYi − Y )2 =

n∑

i=1

m∑

j=1

(Y j − Y )21(Zi = j) =

m∑

j=1

n j(Y j − Y )2.

In classical ANOVA, this is also denoted by SSA. The residual sum of squares is

SSe =

n∑

i=1

(Yi − bYi)
2 =

n∑

i=1

m∑

j=1

(Yi − Y j)
2
1(Zi = j).

Consider the hypothesis H0 : µ1 = µ2 = · · · = µm that all the groups have the same

mean. This is equivalent to H0 : β1 = β2 = · · · = βm. Under this hypothesis, the data

can be described by an intercept-only model and the test of this hypothesis is the overall

regression test constructed in the previous section (with p = m). The test statistic of the

overall regression test is

F =
n−m

m− 1

SSR

SSe

=
SSR/(m− 1)

SSe/(n−m)

The hypothesis is rejected if F ≥ Fm−1,n−m(1−α). This the classical one-way ANOVA F-test.

We have derived it as a special case of an overall regression test in a linear model.

4.1.8. Connections to maximum likelihood theory

Separate the regression parameter into β = (βT
1
,βT

2
)T, where β1 has p− q elements and β2

q elements. Consider the hypothesis H0 : β2 = 0. This corresponds to a submodel test and

also to the test of the hypothesis H0 : Cβ = 0 with C = (0|Iq)q×p.
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By Lemma 4.2 and Lemma 4.3, the test statistic for this test can be expressed as

n− p

q

SS0
e − SSe

SSe

=
1

qbσ2
e

(C bβ)T
�
C(XTX)−1

C
T
�−1
(C bβ) H0∼ Fq,n−p.

Let us now consider the likelihood ratio test of the same hypothesis. First, consider σ2
e

known. The likelihood ratio statistic is

LR= 2[ℓ( bβ)− ℓ( eβ)],

where eβ is the MLE (which is the same as the LSE) of β calculated under the submodel.

Let eY be the fitted values in the submodel. The maximum likelihood theory stipulates that

LR
D−→ χ2

q when the submodel is true.

From (3.1), the log-likelihoods of the larger model and the submodel are

ℓ( bβ) = −n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

SSe,

ℓ( eβ) = −n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

SS0
e .

Thus,

LR=
1

σ2
e

(SS0
e − SSe) =

1

σ2
e

(C bβ)T
�
C(XTX)−1

C
T
�−1
(C bβ) H0∼ χ2

q

and its distribution under H0 is exact, not only asymptotic.

With unknown σ2
e , we modify the LR test as follows:

F =

1
q LR

(n−p)bσ2
e

σ2
e
/(n− p)

H0∼ Fq,n−p.

So, the F-test for submodel testing is equivalent to the likelihood ratio test. With some more

effort we could prove that also the Wald test and Rao score test yield the same test statistic. The end of

lecture 7 (Oct

21, 2024)

4.2. Asymptotic Inference Without Normality (Random

Covariates)

In this section, we show that all the results derived in Section 4.1 under the assumption

of normality can be extended to the general case as long as certain moment conditions are

fulfilled. The results become asymptotic, though.

We assume that covariates are random and (Yi , Xi) are a random sample of independent

identically distributed vectors drawn from some (p+ 1)-variate distribution.
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4. Statistical Inference in the Linear Regression Model

Let the data satisfy the linear model

Y = Xβ + ǫ

with Eǫ = 0 and var ǫ = σ2
e In or E
�
Yi

��Xi

�
= XT

i β and var
�
Yi

��Xi

�
= σ2

e .

We assume finite second moments of the response and the covariates and linear inde-

pendence of the components of the covariate vector. We still assume that r(X) = p∗. No

additional assumptions are imposed on the distributions of Yi or ǫi.

Assumption.

(AS1) var
�
Yi

��Xi

�
= σ2

e <∞;

(AS2) EX XiX
T
i ≡ VX <∞;

(AS3) VX > 0 (full rank regular invertible matrix).

EX denotes the expectation over the marginal distribution of the covariates.

In this section, we need to distinguish three kinds of expectations. The notation we will

use is as follows.

E(Y,X)h(Y, X) =

∫
h(y, x ) f (y, x ) dµ(y, x )

is the expectation with respect to the joint distribution of (Y, X). The joint density with

respect to the measure µ is denoted by f (y, x ).

Eh(Y, X) = E
�
h(Y, X)
��X
�

is the conditional expectation given the covariates.

EXh(X) =

∫
h(x ) f (x ) dν(x )

is the expectation with respect to the marginal distribution of X . The marginal density with

respect to the measure ν is denoted by f (x ).

With this notation, we have

E(Y,X)h(Y, X) = EX

�
Eh(Y, X)
�
,

var (Y,X)h(Y, X) = EXvarh(Y, X) + var XEh(Y, X).

We know from Lemma 3.1 that the least squares estimator bβ is unbiased under these

circumstances. The LSE
bβ = (XTX)−1

X
TY .

is the unique solution to the system of normal equations XTX bβ = XTY stated in (2.1).

∗ See the note on page 18.
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4. Statistical Inference in the Linear Regression Model

We can write

X
T
X = (X1, . . . , Xn)




XT

1
...

XT
n



 =
n∑

i=1

XiX
T

i

and XTY =
∑n

i=1 XiYi . Notice that by the weak law of large numbers, 1
nX

T
X

P−→ VX . The

normal equations can be rewritten as XTY −XTX bβ = 0. Define

U(β) ≡ XTY −XTX bβ =
n∑

i=1

(XiYi − XiX
T
i β) =

n∑

i=1

Xi(Yi − XT
i β).

Take a single term from the sum and denote it by

Ui(β) ≡ Xi(Yi − XT

i β).

The LSE bβ is the single solution to the system of equations U(β) =
∑n

i=1 Ui(β) = 0. Thus,

U(β) plays the role of the score statistic, except that we do not have a parametric model and

so cannot derive the score statistic from the likelihood. This kind of an ad-hoc score statistic

is sometimes called a pseudoscore.

The next theorem shows that under the current assumptions the LSE bβ defined by this

particular pseudoscore is a consistent and asymptotically normal estimator of the true β .

Theorem 4.4 (Asymptotic properties of the LSE without normality). Under the as-

sumptions of the current section, when β denotes the true regression parameters,

(i) bβ P−→ β ( bβ is consistent);

(ii)
1p
n

U(β)
D−→ Np(0,σ2

eVX );

(iii)
p

n( bβ −β) D−→ Np(0,σ2
eV
−1
X ). ♦

Note. Rewrite point (iii) to see the approximate distribution of bβ :

p
n( bβ −β) ·∼ Np(0,σ2

eV
−1
X )

p
n( bβ −β) ·∼ Np(0,σ2

e (
1

n
X
T
X)−1)

bβ −β ·∼ Np(0,σ2
e (X

T
X)−1)

bβ ·∼ Np(β ,σ2
e (X

T
X)−1)

The exact distribution of bβ under normality is exactly the same as the approximate distribution

of bβ without assuming normality.
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Proof (of Theorem 4.4).

(i)

bβ = (XTX)−1
X
TY =

�
1

n

n∑

i=1

XiX
T

i

�−1�1
n

n∑

i=1

XiYi

�

By the weak law of large numbers and continuous transformation theorem,

1

n

n∑

i=1

XiX
T
i

P−→ EX XiX
T
i = VX ,

�
1

n

n∑

i=1

XiX
T
i

�−1
P−→ V−1

X

1

n

n∑

i=1

XiYi

P−→ E(Y,X)XiYi = EX(XiEYi) = EX(XiX
T
i β) = VXβ .

Hence, bβ P−→ V−1
X VXβ = β .

(ii) Ui(β) = Xi(Yi − XT
i β) are independent identically distributed random vectors. Calcu-

late their first and second moments at the true β , noticing that Ui(β) = Xiǫi.

E(Y,X)Ui(β) = EXEXiǫi = 0,

var (Y,X)Ui(β) = EXvarUi(β) + var X EUi(β)︸ ︷︷ ︸
=0

= EXvar (Xiǫi) = EX XiX
T

i σ
2
e = VXσ

2
e .

By the central limit theorem for iid random vectors,

1p
n

U(β) =
1p
n

n∑

i=1

Ui(β)
D−→ Np(0,σ2

eVX ).

(iii) Consider the difference between U(β) evaluated at the true β and at the LSE bβ .

U(β)−U( bβ)︸ ︷︷ ︸
=0

=

n∑

i=1

�
Xi(Yi − XT

i β)− Xi(Yi − XT

i
bβ)
�
=

n∑

i=1

�
XiX

T

i (
bβ −β)
�
.

Next,

1p
n

U(β) =

�
1

n

n∑

i=1

XiX
T
i

�p
n( bβ −β)

and
p

n( bβ −β) =
�

1

n

n∑

i=1

XiX
T
i

︸ ︷︷ ︸
P−→ VX

�−1 1p
n

U(β)

︸ ︷︷ ︸
D−→ Np(0,σ2

eVX )

.

By Slutsky’s Theorem,

p
n( bβ −β) D−→ Np(0,σ2

e V
−1
X VXV

−1
X︸ ︷︷ ︸

=V−1
X

).

�
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Note. Consistence of bβ can be proven directly, as shown in the proof of Theorem 4.4(i) but

it also follows as a direct consequence of Theorem 4.4(iii). It is easy to see that if bβ did not

converge in probability to β then
p

n( bβ −β) cannot converge in distribution.

By Lemma 3.3, bσ2
e =

SSe

n−p is an unbiased estimator of the residual variance σ2
e . Now we

need to show that this estimator is consistent.

Lemma 4.5. Under the assumptions of the current section, bσ2
e

P−→ σ2
e . ♦

Proof.

bσ2
e =

n

n− p︸ ︷︷ ︸
→1

1

n

n∑

i=1

(Yi − XT

i
bβ)2.

Further,

1

n

n∑

i=1

(Yi − XT
i
bβ)2 = 1

n

n∑

i=1

(Yi − XT
i β + XT

i β − XT
i
bβ)2

=
1

n

n∑

i=1

(Yi − XT
i β)

2 +
1

n

n∑

i=1

[XT
i (β − bβ)]2 +
�

2

n

n∑

i=1

(Yi − XT
i β)X

T
i

�
(β − bβ)

The first term converges in probability to Eǫ2
i = varǫi = σ

2
e . The second term can be written

as

(β − bβ)T︸ ︷︷ ︸
P−→0

�
1

n

n∑

i=1

XiX
T
i

︸ ︷︷ ︸
P−→VX

�
(β − bβ)︸ ︷︷ ︸

P−→0

;

therefore, it converges to zero in probability. The third term also converges to zero in prob-

ability, because bβ P−→ β and

2

n

n∑

i=1

(Yi − XT
i β)X

T
i

P−→ 2EǫiX
T
i = 0.

This completes the proof. �

Now we are ready to restate the key results from Section 4.1 in their asymptotic versions.

Let us start with the asymptotic version of Lemma 4.1.

Lemma 4.6. Under the assumptions of the current section, for any c 6= 0,

cT bβ − cTβÆ
bσ2

e cT(XTX)−1c

D−→ N(0,1).
♦
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Proof. By Theorem 4.4(iii),

p
n( bβ −β) D−→ Np(0,σ2

eV
−1
X )

p
n(cT bβ − cTβ)

D−→ N(0,σ2
e cTV−1

X c)

cT bβ − cTβÆ
σ2

e cT(nVX )
−1c

D−→ N(0,1)

Replace σ2
e by bσ2

e and VX by 1
n

∑n
i=1 XiX

T
i . By Lemma 4.5 and Slutsky’s Theorem, this does

not change the limiting distribution. �

Note. Lemma 4.1 states that the distribution of the left-hand side is exactly tn−p under nor-

mality. The limiting distribution in Lemma 4.6 is standard normal. Because the distribution

function of tn−p converges to the distribution function of the standard normal distribution

as n → ∞, Lemma 4.1 can be used as an asymptotic approximation when the responses

are not normally distributed. Thus, the methods for testing and for constructing confidence

intervals introduced in Sections 4.1.1 and 4.1.2 can be used with non-normal responses if

the sample size is large enough.

Next, we formulate an asymptotic version of Lemma 4.2.

Lemma 4.7. Under the assumptions of the current section, for any Cq×p with q ≤ p and

r(C) = q,

1

bσ2
e

(C bβ −Cβ)T
�
C(XTX)−1

C
T
�−1
(C bβ −Cβ) D−→ χ2

q as n→∞.
♦

Proof. By Theorem 4.4(iii),

p
n( bβ −β) D−→ Np(0,σ2

eV
−1
X )

p
n(C bβ −Cβ) D−→ Nq(0,σ2

eCV
−1
X C

T)

1

σ2
e

(C bβ −Cβ)T
�
C(nVX )

−1
C
T
�−1
(C bβ −Cβ) D−→ χ2

q .

Replace σ2
e by bσ2

e and VX by 1
n

∑n
i=1 XiX

T
i . By Lemma 4.5 and Slutsky’s Theorem, this does

not change the limiting distribution. �

Note. Denote the left-hand side of the expression (4.1) in Lemma 4.2 by F . Lemma 4.2

claims that F ∼ Fq,n−p under normality. It follows that qF
D−→ χ2

q (which is exactly the

claim of Lemma 4.7). Thus the claim of Lemma 4.2 can be considered as an asymptotic

approximation when the responses are not normal. The same is true for Lemma 4.3.
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When we test a submodel against a larger model and reject the submodel if

n− p

q

SS0
e − SSe

SSe

≥ Fq,n−p(1−α),

the test has the exact level α when the responses are normal and a level that converges to α

if the responses are not normal and n→∞.

All the results derived in Sections 4.1.1 – 4.1.7 under the assumption of normality hold asymp-

totically even if normality is violated, as long as the assumptions (AS1)–(AS3) given on page 45

hold. Therefore, normality of Yi or ǫi should not be considered a necessary condition for the va-

lidity of results obtained by linear regression analyses. Normality only makes asymptotic results

exact.

Note. When the number of observations is large enough, we do not care whether the re-

sponses are normal or not. How large is “large enough”, though? The answer depends on

the complexity of the model and the degree of violation of normality. In a simple linear

regression model, 25 observations may be enough for the asymptotic results to provide ac-

ceptable approximation even if the responses are strongly non-normal. In complex models

with many covariates and high-order interactions, we may need hundreds or thousands of

observations.

Note. Trusting regression results obtained on small datasets is dangerous in both situations.

If the data are not normal, asymptotics cannot be relied upon. The only possibility to proceed

with the analysis is to assume that the data are normal. However, on a small dataset we

cannot verify this assumption and therefore we cannot trust the results either.

4.3. Asymptotic Inference Without Normality (Fixed

Covariates)

In the previous section, we have shown that the results derived under the assumption of

normality can be used as asymptotic approximations when the covariates are random and

satisfy certain moment conditions. In that setup, it is particularly easy to prove the asymp-

totic results because the data form a sequence of independent and identically distributed

random vectors.

However, in certain applications such as industrial experiments the covariates cannot

be considered random because their values are pre-determined by the experimenter and set

to the desired values.∗ In this section, we will state conditions under which the claims of

the previous sections remain valid even if the covariates are constant. The proofs will be

omitted, though.

∗ Imagine evaluating the effect of temperature on the performance of a certain product. The temperature is set

by the investigator to equidistant values such as 5◦, 10◦, 15◦, 20◦ etc. These values are definitely not random.
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We assume that covariates x i are fixed vectors of constants. The observations are (Yi, x i),

i = 1, . . . , n, where Yi are independent random variables.

Suppose the data follow the linear model

Yi = x T
i β + ǫi

where Eǫi = 0 and varǫi = σ
2
e < ∞. Let the regression matrix be of full rank. The

distribution of Yi is otherwise arbitrary.

Redefine VX = limn→∞
1
n

∑n
i=1 x i x

T
i . Huber (1973) formulated the following condition

for the validity of asymptotic results.

Condition (Huber’s condition). The largest diagonal element of H = X(XTX)−1XT con-

verges to zero as n→∞.

Proposition 4.8 (Huber 1973). Under the assumptions of the current section, when β

denotes the true regression parameters,

p
n( bβ −β) D−→ Np(0,σ2

eV
−1
X )

if and only if Huber’s condition holds. ♦

Huber’s condition is sufficient to prove consistency of bβ and necessary and sufficient to

prove normality. The proof relies on Feller-Lindeberg central limit theorem and is omitted.

Arnold (1980) showed that Lemmas 4.6 and 4.7 also hold if Huber’s condition is ful-

filled. Thus, analysis of the linear regression model with fixed covariates proceeds exactly

in the same way as with random covariates.
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5.1. Predictions and Their Pitfalls

Obtaining predictions for an individual observation based on the observed values of the co-

variates is one of the common goals of regression analysis. Actually, regression analysis may

have a number of possible objectives — each of them requires somewhat different approach

to development and evaluation of the model. Among the possible objectives are, e.g.,

1. Separate the signal XT
i β from the noise ǫi.

2. Predict the expectation of a future observation with known covariates.

3. Predict the value of a future observation with known covariates.

4. Determine the functional shape of m(x ) = E
�
Y
��X = x
�
.

5. Find out which covariates affect the expectation of the response and evaluate their

influence.

6. Evaluate the influence of a single specific covariate on the expectation of the response.

7. Et cetera.

Objectives 1–3 are related to making predictions of the response. A point prediction can

be easily obtained by taking the fitted value bY , which is the best linear unbiased estimator

of the true expectation. However, one must be extremely careful not to make predictions

for covariate values that are outside the scope of the covariates that were used to build the

model. The validity of the model can be verified only for covariate values that were present

in the data. Predicting responses outside the scope of the covariates is called extrapolation.

Extrapolation represents one the most frequent abuses of regression models in practice.

Example 5.1. Consider the situation illustrated in Figure 5.1. There is one covariate X and

the true conditional expectation is E
�
Y
��X = x
�
= m(x) = x + 2 for x ≤ 3 and

m(x) =
exp{2.5x − 7.5}

1+ exp{2.5x + 7.5} + 4.5 for x ≥ 3.

The conditional expectation is linear up to x = 3, then the speed of increase slows down and

the expectation approaches the limit m(x) = 5.5 as x increases to infinity.∗ The observed

covariates range from 0 to 3. The regression model captures well the linear part of m(x)

over the interval (0,3) but it cannot recognize that the relationship changes for x > 3. If the

linear model is extrapolated to obtain predictions for x > 3, the predictions will be seriously

biased upwards. △

∗ We can call this function a logistic pipe curve.
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Prediction

True expectation
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Figure 5.1.: Incorrect extrapolation of a logistic pipe curve beyond the range of data.
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True expectation
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Figure 5.2.: Incorrect extrapolation of a sinus curve beyond the range of data.

Example 5.2. Figure 5.2 shows the results of extrapolation when the true expectation fol-

lows the function m(x) = sin x and the regression model is linear, with the covariate ob-

served within the interval (−0.5,0.5). Inside that interval, the fitted regression line approx-

imates the sinus function relatively well. Outside that interval, however, the predictions

obtained from the regression line are worthless. △

The only case when extrapolation is allowed is the situation when the true shape of the

function m(x) is known (there is some physical law that determines that shape without any

uncertainty) and we are certain that the estimate of m(x) applies to covariate values that

are beyond the scope of the data.

Example 5.3. The problem of extrapolation may be difficult to spot when multiple covari-
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DATA

PREDICTION
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Figure 5.3.: Extrapolation beyond the scope of data: two covariates X1 and X2, the prediction

is made within the range of both but outside the area where observations are

available.

ates are present in the model. Figure 5.3 shows observed values of two covariates X1 and

X2 (the response is not shown). The first covariate has values in the interval (−4.2,4), the

other covariate lies within (−3,3). We intend to make a prediction at x1 = −2 and x2 = 2.

Even though both covariates are within the ranges represented in the data, this particular

combination is out of the scope of the observed pairs and thus the prediction at this point

suffers from the extrapolation issue. △

Note. When presenting the results of regression models it is important to include detailed

description of the covariate values that were used to fit the model. Otherwise the estimated

regression parameters could be misused to obtain extrapolated predictions at covariate val-

ues which are far from the observations represented in the data.

5.2. Confidence Intervals for Conditional Expectations

Consider a vector of covariates X = x , which is in the scope of data (so that we avoid the

extrapolation mistake). We want to estimate E
�
Y
��X = x
�

for this particular covariate vector.

The point estimate is bY = x T bβ , and it is the BLUE by Gauss-Markov Theorem 3.6.

Let us construct a confidence interval for the unknown E
�
Y
��X = x
�
= x Tβ to capture

the uncertainty in the prediction appropriately. By Lemma 4.1,

U =
x T bβ − x TβÆ
bσ2

e x T(XTX)−1x
∼ tn−p

under normality. By Lemma 4.6, the same statement holds approximately for non-normal
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data. Now,

P
�
−tn−p(1−α/2) < U < tn−p(1−α/2)

�
= 1−α

and, after an easy manipulation,

P
�
x T bβ − tn−p(1−α/2)bσe

Æ
x T(XTX)−1x < x Tβ < x T bβ + tn−p(1−α/2)bσe

Æ
x T(XTX)−1x
�
= 1−α

For non-normal data, this claim holds asymptotically, as n→∞.

Thus, the confidence interval for E
�
Y
��X = x
�
= x Tβ with coverage probability 1− α

(exact or asymptotic) is

x T bβ ∓ tn−p(1−α/2)bσe

Æ
x T(XTX)−1x .

Notice that for an observation that was used to fit the model, when x = Xi for some i,

XT
i (X

T
X)−1Xi = hii, the i-th diagonal element of the projection matrix H.

5.3. Prediction Intervals for Future Responses

Consider a future observation with a known vector of covariates X = x , which is in the scope

of data. We want to construct an interval that includes the future observed response of such

an observation with a desired probability, i.e., find CL and CU such that

P [CL < Y < CU] = 1−α.

Because we want the interval to cover a realization of a random variable rather than an

unknown fixed quantity, we call the interval a prediction interval rather than a confidence

interval.

The construction of the interval must be based on the distribution of a single observation

Y and that cannot be approximated by asymptotic results. There fore we must assume in this

section that the observation follows the normal distribution, in particular

Y ∼ N(x Tβ ,σ2
e ).

Write Y as Y = x Tβ + ǫ where ǫ ∼ N(0,σ2
e ). We assume that the new observation Y

is independent of the observations Y1, . . . , Yn contained in the dataset used to estimate the

parameters. Calculate the fitted value bY = x T bβ . By Lemma 3.7, part (i),

bY ∼ N(x Tβ ,σ2
e x T(XTX)−1x )

and, by independence and normality of Y and bY ,

bY − Y ∼ N(0,σ2
e +σ

2
e x T(XTX)−1x ).
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5. Predictions

Hence,

x T bβ − Y

bσe

p
1+ x T(XTX)−1x

∼ tn−p

and the resulting prediction interval for Y with coverage probability 1−α is

x T bβ ∓ tn−p(1−α/2)bσe

Æ
1+ x T(XTX)−1x .

It differs from the interval derived in the previous section by adding 1 under the square root

and by the necessity to assume normality.
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6. Diagnostic Methods Based on

Residuals

In this section we introduce and illustrate residual-based methods for checking model as-

sumptions and assessing the validity of the model.

Lemma 3.2 assures that the i-th residual ui = Yi − bYi = Yi − XT
i
bβ has zero mean and

variance varui = σ
2
e (1− hii), where hii is the i-th diagonal element of the projection matrix

H = X(XTX)−1
X
T. Because raw residuals do not have the same variance, we will use so

called standardized residuals.

Definition 6.1.

u∗i =
ui

bσe

p
1− hii

are called standardized residuals. ∇

If the model is valid and all assumptions are fulfilled, standardized residuals have ap-

proximately zero mean and unit variance. This can be verified by plotting standardized

residuals in various ways. Common examples are:

• Scatterplots of residuals against various continuous variables, smoothed by some non-

parametric smoother to facilitate recognition of patterns.

• Boxplots of residuals for specific subgroups of observations.

• Histograms and Q-Q plots of residuals.

Scatterplot of residuals against order of observation

This type of plot puts standardized residuals on the vertical axis and observation order i on

the horizontal axis. It is useful when the ordering of observations has some real meaning,

for example, if it captures the time sequence in which the observations are recorded. If the

assumptions are satisfied, the plot shows just a random cloud of points centered around the

line y = 0. If the plot suggests some effect of order on the residuals there is a suspicion

that the observation order has some unaccounted effect on the response and the data are

not truly independent.

The top panel of Figure 6.1 shows the situation when the assumptions are fulfilled. The

data are generated from the model Yi = 1+ X i + ǫi with ǫi ∼ N(0,0.25), i = 1, . . . , 100. The

fitted model was EYi = β1+β2X i. The model is correct and there is no recognizable pattern
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Figure 6.1.: Standardized residuals against observation order. Top panel: all assumptions

are satisfied. Bottom panel: an uncaptured periodic effect. Both plots were

smoothed by lowess smoother with window over 1/4 of the data range (blue).

in the top panel. The bottom panel shows residuals from the same linear model for data

generated from the model Yi = 1+X i+sin(i/5)+ǫi . A periodic effect of the observation order

was added to the responses but the analysis ignored that and proceeded in the same way as

above. The omitted periodic effect is clearly demonstrated by the smoothed scatterplot in

the bottom panel.

Scatterplot of residuals against fitted values

This version plots fitted values bYi on the horizontal axis. It provides kind of general assess-

ment of the validity of the model. If the assumptions are satisfied, the plot shows just a

random cloud of points centered around the line y = 0. If the plot suggests some pattern

across the fitted values, there is a suspicion that the effect of some covariate on the response

is modeled inappropriately.
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Figure 6.2.: Standardized residuals against fitted values. Top panel: all assumptions are

satisfied. Bottom panel: omitted quadratic effect. Both plots were smoothed by

lowess smoother with window over 1/2 of the data range (blue).

The top panel of Figure 6.2 shows the situation when the assumptions are fulfilled. The

data are again generated from the model Yi = 1+X i+ǫi with ǫi ∼ N(0,0.25), i = 1, . . . , 100.

The fitted model was EYi = β1 + β2X i. The model is correct and there is no recognizable

pattern in the top panel. The bottom panel shows residuals from the same linear model

for data generated from the model Yi = 1+ X i + (X i − 1.5)2 + ǫi. A quadratic effect of the

covariate was added to the responses but the analysis ignored that and proceeded in the

same way as above. The omitted quadratic effect is clearly demonstrated by the smoothed

scatterplot in the bottom panel.

When the model includes several covariates, the plot of residuals against fitted values

may not reflect clearly that one of the covariates was modeled in an inappropriate way or to

determine which covariate it was. For checking more complex models it is much better to

plot the residuals against individual covariates rather than against fitted values.
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Figure 6.3.: Standardized residuals against a covariate. Top panel: all assumptions are sat-

isfied. Bottom panel: omitted quadratic effect. Smoothed by lowess smoother

with window over 1/2 of the data range (blue).

Scatterplot of residuals against continuous covariates

This plot uses values of a particular covariate on the horizontal axis. It checks whether the

covariate was included in the model in an appropriate form. If it was and other assumptions

are also satisfied, the plot shows just a random cloud of points centered around the line

y = 0. If the plot suggests some pattern depending on the covariate, there is a suspicion

that the effect of this covariate on the response is modeled inappropriately.

The top panel of Figure 6.3 shows the situation when the assumptions are fulfilled. The

data are generated from the model Yi = 1+ Zi + 0.5X i + ǫi with ǫi ∼ N(0,1), i = 1, . . . , 100.

The covariate Zi is binary, the covariate X i is continuous and correlated with Zi. The fitted

model was correct: EYi = β1 + β2Zi + β3X i. There is no recognizable pattern in the top

panel, which plots the standardized residuals against the values of X i. The bottom panel

shows residuals from the same model but for data generated from the model Yi = 1+ Zi +
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Figure 6.4.: Standardized residuals against a covariate. Top panel: all assumptions are sat-

isfied. Bottom panel: mild increase of residual variance with covariate X .

0.5X i + (X i − 1.5)2 + ǫi. A quadratic effect of the covariate X i was added to the response

but the analysis ignored that and proceeded with an incorrect model. The omitted quadratic

effect is clearly demonstrated on the smoothed scatterplot in the bottom panel.

The plot of the residuals against a covariate is able to capture an inappropriately mod-

eled effect of that covariate even if the model contains other covariates. Even better way to

determine a suitable functional format for a continuous covariate provides the plot of partial

residuals, which will be discussed later in this section.

This plot can be also used to check whether the variance is constant or whether it

changes with the values of the covariate. If the variance is constant and other assumptions

are also satisfied, the plot shows points that are about equally spread across the range of

values of the covariate. If the residuals seem more variable in some regions than in others,

there is a suspicion that the assumption of equal variance is not true.

The top panel of Figure 6.4 shows the situation when the assumptions are fulfilled. The
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Figure 6.5.: Square root of absolute standardized residuals against a covariate. Top panel:

all assumptions are satisfied. Bottom panel: mild increase of residual variance

with covariate X .

data are generated from the model Yi = 1+ Zi + 0.5X i + (X i − 1.5)2 + ǫi with ǫi ∼ N(0,1),

i = 1, . . . , 100 (as before). This time, the correct model with quadratic term was used to

perform the analysis and no assumptions are violated. We can see in the top panel, that

the points are about equally spread in the vertical direction at all values of X i. The bottom

panel shows residuals from the same model but with unequal variance depending on X i —

varǫi = (X i + 1)2/9. The variance increases with X i and the spread of the residuals seems

to slightly increase with the value of X i.

From this type of plot, it is relatively difficult to see whether the variance changes or

not, and it is not possible to seek assistance from a smoother.
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Figure 6.6.: Boxplots of standardized residuals by a factor covariate. Top panel: all assump-

tions are satisfied. Bottom panel: unequal variances of error terms and an omit-

ted effect of another covariate.

Scatterplots of square root of absolute standardized residuals against

continuous covariates

A better way to check the assumption of constant variability is to plot square root of absolute

standardized residuals against a covariate. Such a plot can be smoothed to facilitate the

interpretation. Figure 6.5 shows this type of plot for the same situations as in Figure 6.4. In

the top panel, where the assumptions are satisfied, we see some increase in a certain range

of covariate values but there is no overall trend. In the bottom panel, where there is an

actual increase in variability, we clearly see increasing trend in the absolute standardized

residuals.
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Boxplots of standardized residuals by a categorical covariate

For categorical (factor) covariates that classify the observations into disjoint subgroups, box-

plots of standardized residuals can be used to assess model assumptions. If the assumptions

are satisfied, the medians of residuals in each group (the bars inside the boxes) will be close

to zero and the height of the boxes (interquartile range) will be similar in all the subgroups

(Figure 6.6, top panel). In the bottom panel of the same figure, the heights of the boxes

visibly differ because the residual variance in Group 1 was larger than that in Group 0 and

the box for Group 1 is not centered around zero because an important covariate correlated

with group membership was omitted from the model.

Boxplots of standardized residuals by a factorized continuous covariate

Continuous covariates can be factorized in order to assess model assumptions using boxplots

of standardized residuals. In the top panel of Figure 6.7, all the model assumptions were

satisfied. In the bottom panel, the heights of the boxes somewhat increase from the left

to the right because the residual variance increased with the covariate X and the boxes are

located around a quadratic curve because the model failed to include an important quadratic

effect of this covariate.

Histograms of standardized residuals

Histograms are helpful to visualize the distribution of residuals and to detect the presence of

observations with unusually large absolute residuals. Figure 6.8 shows results of such a vi-

sualization when the residuals are normally distributed (top panel), when the residuals have

a relatively heavy tailed distribution (middle panel) and when the distribution of residuals

is skewed to the right (bottom panel).

Quantile plots of standardized residuals

Quantile plots (Q-Q plots) are generally more helpful tools to assess normality than his-

tograms. These plots contain ordered standardized residuals on the vertical axis and plot

them against theoretical expected values of corresponding order statistics calculated under

normality (on the horizontal axis). More precisely, the Q-Q plot is a scatterplot of pairs

(u∗
(i)

, zi), where u∗
(i)

is the i-th smallest standardized residual and

zi = Φ
−1
�

i
n+1

�

approximates E Z(i), the expectation of the i-th order statistic in a random sample from

N(0,1) of the size n. If the distribution or error terms is normal, the points displayed on

the Q-Q plot approximately follow a line (the top panel of Figure 6.9). If the distribution

of errors has heavier tails than the normal distribution, the Q-Q plot displays an S-shaped

curve as shown in the middle panel of Figure 6.9. When the errors come from a skewed

distribution, the Q-Q plot shows a bow-shaped curve (bottom panel of Figure 6.9).
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Figure 6.7.: Boxplots of standardized residuals by a factorized continuous covariate. Top

panel: all assumptions are satisfied. Bottom panel: omitted quadratic effect

and mildly increasing variance with X .

Assessing the correct functional form of a covariate

In linear regression, it is important to consider whether the effect of a particular continuous

covariate can be modeled in a linear way or whether a more complex functional form (e.g.,

quadratic) is required. Scatterplots of standardized residuals against the values of that co-

variate can help to assess whether the covariate was included in an appropriate way (see

Figure 6.3). A more convenient way to find the correct transformation of the covariate is to

plot so called partial residuals.

Partial residuals are differences between the observed response Yi and the fitted value
bYi from which the estimated effect of the covariate was entirely removed. E.g., if a continu-

ous covariate X i4 is included in the current model in the linear form, we obtain the partial

residuals for that covariate by

Yi − (bYi − bβ4X i4) = ui +
bβ4X i4.
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A smoothed scatterplot of partial residuals plotted against the values of the covariate of

interest directly suggests an appropriate functional form for that covariate. If the linear form

is sufficient the partial residuals seem to follow a line (see the top panel of Figure 6.10). In

the bottom panel of the same figure, the true effect of the covariate is quadratic and partial

residuals testify to that by following a parabolic function.
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Figure 6.8.: Histograms of standardized residuals. Top panel: normal distribution of errors.

Middle panel: heavy-tailed distribution of errors (t4). Bottom panel: right-

skewed distribution of errors (negative Gumbel).
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Figure 6.9.: Q-Q plots of standardized residuals. Top panel: normal distribution of errors.

Middle panel: heavy-tailed distribution of errors (t4). Bottom panel: right-

skewed distribution of errors (negative Gumbel).
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Figure 6.10.: Scatterplots of partial residuals against a covariate. Top panel: all assumptions

are satisfied. Bottom panel: omitted quadratic effect. Smoothed by lowess

smoother with window over 1/2 of the data range (blue).
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Notation

Here we list symbols that are consistently used in the same meaning throughout the whole

text (perhaps with a few exceptions). Symbols that are introduced and used locally (e.g., in

one section) are usually not listed here.

ǫ column vector of error terms

H hat matrix

hii the i-th diagonal element of the hat matrix H

1n column vector of ones of length n

Jn 1n1T
n, n× n matrix of ones

M (X) subspace generated by the columns of X

M (X)⊥ subspace orthogonal to the columns of X

R2 coefficient of determination

SSe(β) sum of squares taken as a function of β

SSe residual sum of squares (minimized over β)

SSR regression sum of squares (centered)

SST total sum of squares (centered)

u column vector of residuals

u∗i the i-th standardized residual

X regression matrix containing covariate vectors in rows

Y column vector of responses

bY column vector of fitted values
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A. Appendix

The Appendix presents some useful results that are used in this course.

Lemma A.1. Let X be any random vector of dimension n with mean µ and finite variance

matrix Σ. Let A be any n× n matrix. Then

EXT
AX = µTAµ+ tr (AΣ). ♦

Proof.

EXT
AX = E (X −µ+µ)TA(X −µ+µ)
= E tr
�
(X −µ)TA(X −µ)

�
+ E (X −µ)TAµ+ EµTA(X −µ) + EµTAµ

= tr
�
E (X −µ)(X −µ)TA

�
+ 0+ 0+µTAµ

= tr
�
(varX)A
�
+µTAµ= µTAµ+ tr (AΣ). �

Lemma A.2. Let X ∼ Nn(0,Σ). Let A be an n×n matrix such that AΣ is idempotent. Then

XT
AX = χ2

tr (AΣ)
. ♦

Lemma A.3. Let X ∼ Nn(µ,Σ). Then XT
AX and BX are independent if and only if

BΣA= 0. ♦
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