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Resumé I nærværende projekt behandles Haarmålet, som er et translations-
invariant ikke-trivielt Radonmål på en lokalkompakt gruppe. Hovedmålet i dette
projekt er at vise at enhver lokalkompakt gruppe besidder et venstre såvel som
højre Haarmål og at disse er entydige op til multiplikation af en positiv konstant.
For at nå dette resultat, bevises Carathéodorys sætning, som sammen med
basale topologiske resultater anvendes til at vise Riesz’ repræsentationssætning
for positive lineære funktionaler på Cc(X), mængden af kontinuerte funktioner
med kompakt støtte, hvor X er et lokalkompakt Hausdorff topologisk rum.
Dette resultat anvendes så til at vise eksistensen og entydigheden af Haarmålet.
Der gives to beviser for eksistensen af Haarmålet; et bevis i det generelle tilfælde,
og ét i tilfældet hvor den betragtede gruppe er abelsk og kompakt.

Ydermere diskuteres sammenhængen mellem venstre og højre Haarmål ved
hjælp af den modulære funktion, og der gives eksempler på lokalkompakte grup-
per og deres venstre og højre Haarmål.

Til sidst, som anvendelse af den teori, der bliver opbygget i løbet af pro-
jektet, udnyttes eksistensen af Haarmålet på kompakte grupper til at vise en
generalisering af Peter-Weyls sætning om unitære repræsentationer af en kom-
pakt gruppe.

Kommentarer vedrørende den litteratur, som er anvendt i dette Bachelor-
projekt, kan findes på s.51

Abstract In the present thesis the Haar measure is discussed, which is a
translation invariant nonzero Radon measure on a locally compact group. The
main goal of this thesis is to show that every locally compact group posseses
a left, as well as a right Haar measure and that they are unique up to mul-
tiplication by a positive constant. The first chapter contains a proof of the
Carathéodory theorem. This theorem is used together with basic basic topolog-
ical results to show the Riesz representation theorem for positive, linear func-
tionals on Cc(X), the space of compactly supported continuous functions on X,
where X is a locally compact Hausdorff topological space. This result is then
used to prove the existence and uniqueness of the Haar measure. Two proofs are
presented of the existence of the Haar measure; one proof in the general case,
and one in the case where the considered group is compact and abelian.

Furthermore, this thesis contains a discussion about the connection between
the left and the right Haar measure using the modular function, as well as
examples of locally compact groups and their left and right Haar measures.

Last, as an application of the theory developed in this thesis, the existence
of the Haar measure on compact groups is used to show a generalization of the
Peter-Weyl theorem about unitary representations of locally comapact groups.

For comments on the litterature used in this thesis, see p.51
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Chapter 1

The Carathéodory theorem

In this chapter we shall present a standard way of constructing measures on a
set X, given that we want the measure to take certain values on a collection of
subsets E ⊆ P (X), where P (X) is the power set of X. This can, for example,
be used to construct the Lebesgue measure on R. The same procedure will be
used to construct the measure in the Riesz representation theorem, and this is
why we prove the following proposition and theorem.

We will need the notion of an outer measure, defined as follows:

Definition 1.1. Let X be a set. An outer measure on X is a map
µ∗ : P (X)→ [0,∞] which satisfies

1. µ∗(∅) = 0.

2. If A ⊆ B ⊆ X then µ∗(A) ≤ µ∗(B).

3. If {An}n∈N ⊆ P (X) then µ∗ (
⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An).

We commence by proving a proposition that we can use for constructing an
outer measure, provided that we know some of the values it should take:

Proposition 1.2. Let X be a set and E ⊆ P (X). Let ρ : E → [0,∞]. Assume
∅, X ∈ E and that ρ(∅) = 0. Define µ∗ : P (X)→ [0,∞] by

µ∗(A) = inf

{ ∞∑
n=1

ρ(En) | En ∈ E , A ⊆
∞⋃
n=1

En

}
.

Then µ∗ is an outer measure.

Proof. First of all, note that µ∗ is well-defined. Indeed, let A ⊆ X. Since X ∈ E ,
the set {

∑∞
n=1 ρ(En) | En ∈ E , A ⊆

⋃∞
n=1En} is nonempty since A is covered by

the family En = X ∈ E , for all n ∈ N. Moreover, it is clear that µ∗(A) ≥ 0
since ρ(E) ≥ 0 for each E ∈ E .

Now, we prove that µ∗ is an outer measure:
1. It is clear that µ∗(∅) = 0 since ∅ is covered by the family En = ∅ ∈ E for

n ∈ N, and by assumption ρ(∅) = 0.
2. Let A ⊆ B ⊆ X. Let {En}n∈N ⊆ E be a family that covers B. Then

A ⊆ B ⊆
⋃∞
n=1En and hence{ ∞∑

n=1

ρ(En) | En ∈ E , B ⊆
∞⋃
n=1

En

}
⊆

{ ∞∑
n=1

ρ(En) | En ∈ E , A ⊆
∞⋃
n=1

En

}
.
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We conclude that µ∗(A) ≤ µ∗(B).
3. Let {An}n∈N ⊆ P (X). Let ε > 0. For each n ∈ N, we can choose a family

{En,k}∞k=1 ⊆ E such that An ⊆
⋃∞
k=1En,k and

∑∞
k=1 ρ(En,k) ≤ µ∗(An) + 2−nε.

It is clear that
⋃∞
n=1An ⊆

⋃∞
n,k=1En,k and hence

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n,k=1

ρ(En,k) ≤
∞∑
n=1

(µ∗(An) + 2−nε) =

∞∑
n=1

µ∗(An) + ε.

Since ε > 0 was arbitrary, we conclude that µ∗ (
⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An).
Hence µ∗ is an outer measure and the proof is complete.

We are now ready for some more definitions:

Definition 1.3. Let X be a set and µ∗ : P (X) → [0,∞] be an outer measure.
A set A ⊆ X is called µ∗-measurable if the following holds for every E ⊆ X:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

Here, Ac is the complement of A in X.

It is easy to see that a set A is µ∗-measurable if and only if µ∗(E) ≥ µ∗(E ∩
A) + µ∗(E ∩Ac) for all E ⊆ X such that µ∗(E) <∞.

Definition 1.4. Let X be a set equipped with a σ-algebra E. Let µ : E → [0,∞]
be a measure. A subset A ⊆ X is called a µ-null-set if there is a B ∈ E such
that A ⊆ B and µ(B) = 0. A measure µ on X is called complete, if every
µ-null-set is measurable.

In fact, in the Riesz representation theorem, which is the main reason for
which we prove the next theorem, we will not use the fact that the measure is
actually complete, but nevertheless, this is a nice feature of the Carathéodory
theorem, so we will include it anyways. Let us now turn to the main theorem
of this chapter:

Theorem 1.5 (Carathéodory). Let µ∗ be an outer measure on a set X. Let
M be the set of µ∗-measurable sets and denote by µ the restriction of µ∗ toM.
ThenM is a σ-algebra and µ is a complete measure.

Proof. We will go through the following steps in order to complete the proof:

1. M is an algebra.

2. For all A,B ∈M with A ∩B = ∅ we have µ∗(A ∪B) = µ∗(A) + µ∗(B).

3. M is a σ-algebra.

4. µ is a measure.

5. µ is complete.

1. Let E ⊆ X. Since µ∗(∅) = 0 we obtain the equality µ∗(E) = µ∗(E∩X)+
µ∗(E∩Xc). Hence X ∈M. It follows directly from the definition that Ac ∈M
whenever A ∈M. Now, let A,B ∈M. Then for E ⊆ X,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
= µ∗(E ∩A ∩B) + µ∗(E ∩Ac ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩Bc)
≥ µ∗((E ∩A ∩B) ∪ (E ∩Ac ∩B) ∪ (E ∩A ∩Bc)) + µ∗(E ∩ (A ∪B)c).
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It is not hard to see that (E∩A∩B)∪(E∩Ac∩B)∪(E∩A∩Bc) = E∩(A∪B),
and hence

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

As previously remarked, we conclude that A∪B ∈M. HenceM is an algebra.
2. Assume A, B ∈ M and that A ∩ B = ∅. Since A is µ∗-measurable it

follows that

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac) = µ∗(A) + µ∗(B).

3. Let {Ai}i∈N ⊆ M. First assume that all the sets are pairwise disjoint,
i.e., Ai ∩Aj = ∅ for i 6= j.

Now, for n ∈ N, define Bn :=
⋃n
i=1Ai, and set B :=

⋃∞
i=1Ai. Let E ⊆ X.

Then, by assumption, for all n > 1,

µ∗(E∩Bn) = µ∗(E∩Bn∩An)+µ∗(E∩Bn∩Acn) = µ∗(E∩An)+µ∗(E∩Bn−1).

Thus it follows inductively that for n ∈ N,

µ∗(E ∩Bn) =

n∑
i=1

µ∗(E ∩Ai)

Since M is an algebra, we know that Bn ∈ M. Furthermore, since Bn ⊆ B
we have that E ∩ Bc ⊆ E ∩ Bcn and since µ∗ is an outer measure, we get that
µ∗(E ∩Bc) ≤ µ∗(E ∩Bcn). Therefore

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bcn) ≥
n∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc).

This holds for every n ∈ N, and hence

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc)

≥ µ∗
( ∞⋃
i=1

E ∩Ai

)
+ µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E).

First of all, we note that all the inequalities above are in fact equalities, and
hence in particular we have that

µ∗

( ∞⋃
i=1

E ∩Ai

)
=

∞∑
i=1

µ∗(E ∩Ai). (1.1)

Furthermore, we see that
⋃∞
i=1Ai = B ∈ M. HenceM is stable under count-

able, pairwise disjoint unions. In the general case, when {Ai}i∈N ⊆ M is not
necessarily consisting of pairwise disjoint sets, consider the family {Ci}i∈N where
C1 := A1 and Ci := Ai\

(⋃i−1
j=1Aj

)
. Using thatM is an algebra, we conclude

that {Ci}i∈N ⊆M. Since the Ci’s are pairwise disjoint and
⋃∞
i=1Ai =

⋃∞
i=1 Ci,

we conclude that
⋃∞
i=1Ai ∈M.
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4. First note that since ∅ ∈ M, it follows that µ(∅) = µ∗(∅) = 0 by as-
sumption. Now we show that µ is σ-additive. Let {Ai}i∈N and assume that
Ai∩Aj = ∅ for i 6= j. It follows from the preceeding, using the equality (1.1) with
E =

⋃∞
i=1Ai that:

µ∗

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ∗(Ai),

and hence µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

5. First, let B ⊆ X and assume µ∗(B) = 0. Then for an arbitrary E ⊆ X,

µ∗(E) ≤ µ∗(E ∩B) + µ∗(E ∩Bc) = µ∗(E ∩Bc) ≤ µ∗(E),

using that µ∗ is an outer measure. So B ∈M.
Now, for A ∈ M assume that µ(A) = µ∗(A) = 0 and that B ⊆ A. Then

µ∗(B) = 0 by monotonicity of µ∗ and therefore B ∈ M, and we conclude that
µ is complete.

By now it should be clear how Proposition 1.2 and Theorem 1.5 work to-
gether in order to construct a measure. We have some idea of what values our
measure should take on the collection E . Therefore, we define ρ with these val-
ues and by Proposition 1.2 we construct an outer measure µ∗ which by Theorem
1.5 we restrict to the set of µ∗-measurable sets in order to get a measure. If the
values of ρ are chosen reasonably, then our measure µ is actually an extension
of ρ, and our goal is reached. As already mentioned, we shall use this strategy
later on, in Chapter 3.



Chapter 2

Topology

Our main topic, the Haar measure is defined on a locally compact group. “Locally
compact” is a topological notion, and we need to know something about topology
in order to get any further.

The reader is assumed to know some basic topology, and hopefully, much of
the following will be repetition of well-known facts. We will skip the notion of
a basis and subbasis, etc., together with the defition of the product topology,
which can be looked up in any book about topology (e.g. [1] Chapter 4).

Throughout this thesis, the notion neighbourhood of x is used for an open
set U such that x ∈ U ; in the litterature a neighbourhood is not always open.
We will also encounter the notion of a compact neighbourhood, and it will be
precisely defined later.

Definition 2.1. Let X be a topological space. Then

1. X is called T1 if every one-point set is closed.

2. X is called Hausdorff if for every x 6= y in X there exist disjoint, open
sets U and V such that x ∈ U and y ∈ V .

3. X is called normal if X is T1 and if for every disjoint closed sets A,B ⊆
X there exist disjoint, open sets U and V such that A ⊆ U and B ⊆ V .

We need the following notion of an open cover in order to formulate the next
definition. Let Y ⊆ X. An open cover of Y is a family of open sets {Uα}α∈A
such that Y ⊆

⋃
α∈A Uα. An open cover is called finite if the index set A is

finite. A subcover of the open cover {Uα}α∈A is simply an open cover {Uβ}β∈B
of Y such that B ⊆ A.

Definition 2.2. K ⊆ X is called compact if every open cover of K contains
a finite subcover.

Definition 2.3. Let {Fα}α∈A be a family of subsets of X. We say that the
family has the finite intersection property if

⋂
β∈B Fβ 6= ∅ whenever B is

finite.

It is time to refresh some basic properties of compact spaces. The proofs of
the following propositions should be well-known, and will be omitted.
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Proposition 2.4. A topological space X is compact if and only if every family
of closed subsets of X has the finite intersection property.

Proposition 2.5. Let X be compact. Then every closed subspace of X is com-
pact.

Proposition 2.6. Every compact Hausdorff space is normal.

Now we turn our attention to locally compact topological spaces. This kind
of topological spaces will be of main interest to us. Recall that the Haar measure
is defined on a locally compact group.

Definition 2.7. For x ∈ X we call C ⊆ X a compact neighbourhood of x if
C is compact and there exists a neighbourhood U of x such that U ⊆ C.

Definition 2.8. A topological space X is called locally compact if every point
has a compact neighbourhood.

Definition 2.9. A subspace Y ⊆ X of a topological space is called precompact
if its closure Ȳ is compact.

Proposition 2.10. Let X be a locally compact Hausdorff space and let x ∈ X.
Then every neighbourhood U of x contains a compact neighbourhood N of x.

Proof. First, assume U is precompact. Since x /∈ ∂U(:= Ū\U), by Proposition
2.6 there exist disjoint open sets V and W in the subspace topology of Ū such
that x ∈ V and ∂U ⊆W .

Since V ⊆ U , we conclude that V is open in X. Furthermore, clearly
V̄ ⊆ Ū\W and since ∂U ⊆W , we conclude that V̄ ⊆ U\W . V̄ is a closed hence
compact subset of Ū , and letting N = V̄ , we are done.

Now, let U be an arbitrary open set. Since X is locally compact, there
exists a compact neighbourhood F of x. Let F ◦ denote the interior of F , which
is clearly a neighbourhood of x. Then U ∩ F ◦ is a precompact neighbourhood
of x, so by the preceeding argument, it contains a compact neigbourhood of x
which is clearly contained in U .

To proceed, we need a nontrivial but nevertheless well-known result due to
Urysohn, which we will state without proof. The proof can be found in [1]
(Lemma 4.15).

Lemma 2.11. Let X be a normal space. If A and B are disjoint, closed sets
in X, there exists a continuous function f : X → [0, 1] such that f(x) = 0 for
each x ∈ A and f(x) = 1 for each x ∈ B.

We shall reformulate Urysohn’s Lemma so it fits the case where our space is
locally compact and Hausdorff. For this, we need a proposition.

Proposition 2.12. Let X be a locally compact Hausdorff space and let K ⊆
U ⊆ X where K is compact and U is open. Then there exists a precompact V
such that K ⊆ V ⊆ V̄ ⊆ U .

Proof. For every x ∈ K, choose, using Proposition 2.10, a compact neighbour-
hood Nx of x such that Nx ⊆ U . It is clear that the interior N◦x is a neigh-
bourhood of x. Hence {N◦x}x∈K is an open cover of K, and since K is compact,
there is a finite subcover {N◦xi}

n
i=1 of K. Letting V =

⋃n
i=1N

◦
xi we see that

K ⊆ V , and since V̄ =
⋃n
i=1Nxi and Nxi ⊆ U for all i, we conclude that V̄ is

compact and V̄ ⊆ U .
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Lemma 2.13 (Urysohn, the locally compact version). Let X be a locally com-
pact Hausdorff space and let K ⊆ U ⊆ X where K is compact and U is
open. Then there exist a compact subset C ⊆ U and a continuous function
f : X → [0, 1] such that f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ Cc.

Proof. By Proposition 2.12 there exist a precompact open set V such that
K ⊆ V ⊆ V̄ ⊆ U . Let C := V̄ Since C is compact and Hausdorff, we know that
C is normal. Hence, by Urysohn’s lemma, there exists a continuous function
f̃ : C → [0, 1] such that f̃(x) = 1 for x ∈ K and f̃(x) = 0 for x ∈ ∂V . Extend
f̃ to f : X → [0, 1] by letting f(x) = 0 for x ∈ Cc.

It remains to show that f is continuous. Let E ⊆ [0, 1] be a closed set. If
0 /∈ E, then f−1(E) = f̃−1(E) which is closed by continuity of f . If 0 ∈ E then
f−1(E) = f−1(E\{0}) ∪ f−1({0}) = f̃−1(E\{0}) ∪ V c which is a union of two
closed sets, and we are done.

Now we are ready to prove the Riesz representation theorem, but in order
to reach our main goal, the existence of the Haar measure, we will need a deep
topological result later, namely Tychonoff’s theorem. Again, we shall omit the
proof, which can be found in [1] (Theorem 4.43).

Theorem 2.14 (Tychonoff). Let {Xα}α∈A be any family of compact topological
spaces and let X =

∏
α∈AXα equipped with the product topology. Then X is

compact.



Chapter 3

Radon Measures

3.1 The Riesz representation theorem
The Riesz representation theorem is actually a collection of thereoms that share
the common name. This chapter is devoted to one of these theorems which is
about integration on locally compact spaces. In order to understand the content
of this theorem, we will start out with some definitions:

Definition 3.1. Let X be a locally compact Hausdorff space. For a function
f : X → C, we define the support of f as the set

supp f := {x ∈ A | f(x) 6= 0} = f−1(C\{0})

We let Cc(X) denote the set of continuous, complex-valued functions on X
with compact support.

Definition 3.2. A linear functional I : Cc(X)→ C is called positive if I(f) ≥
0 whenever f ≥ 0.

It is clear that integration with respect to some measure on X gives rise to
a positive linear functional, and the Riesz representation theorem states that
every positive linear functional on Cc(X) arises in this way, that is, if I is a
positive linear functional, then I(f) =

∫
f dµ for some measure µ on X. But it

actually gives us more than that; the measure µ has some really nice regularity
properties, namely, it is a Radon measure.

Definition 3.3. Let X be a locally compact Hausdorff space. A Radon mea-
sure µ on X is a Borel measure with the following properties:

1. µ(K) <∞ for all compact K ⊆ X.

2. (Outer regularity) For each Borel set E,

µ(E) = inf{µ(U) | U open,E ⊆ U}.

3. (Inner regularity) For each open set U ,

µ(U) = sup{µ(K) | K compact,K ⊆ U}.
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To ease the notation, we need the following definition:

Definition 3.4. Let X be a locally compact Hausdorff space and let U ⊆ X be
open. We call f ∈ Cc(X) subordinate to U , and we write f ≺ U , if 0 ≤ f ≤ 1
and supp(f) ⊆ U .

The next lemma is a handy reformulation of Urysohn’s lemma, that we will
use over and over in the following chapters.

Lemma 3.5 (Urysohn). Let X be a locally compact Hausdorff space and let
K ⊆ U ⊆ X where K is compact and U is open. Then there exists f ∈ Cc(X)
such that f ≺ U and f ≥ 1K .

Proof. It follows directly from Urysohn’s lemma in the locally compact version
(Lemma 2.13).

Proposition 3.6. Let X be a locally compact Hausdorff space and let K ⊆ X
be a compact subset. Then for every finite open cover {Ui}ni=1 of K, there exist
g1, g2, . . . , gn ∈ Cc(X) such that gi ≺ Ui for i = 1, 2, . . . , n and

∑n
i=1 gi(x) = 1

for all x ∈ K.

Proof. For each x ∈ K choose a compact neighbourhood Nx such that Nx ⊆ Ui
for some i. This can be obtained by using Proposition 2.10 since the Ui’s cover
K.

Clearly {N◦x}x∈K is an open cover ofK and hence it contains a finite subcover
{N◦xj}

m
j=1. Hence K ⊆

⋃m
j=1Nxj .

Let Ai := {j ∈ {1, 2, . . . ,m} | Nxj ⊆ Ui} and set Fi :=
⋃
j∈Ai Nxj , which is

compact. Then Fi ⊆ Ui. For each i, by Urysohn’s lemma (Lemma 3.5) there
exists hi ∈ Cc(X) such that hi ≺ Ui and hi ≥ 1Fi . Clearly

∑n
i=1 hi ≥ 1K .

Let U := {x ∈ X|
∑n
i=1 hi(x) > 0}. Since the hi’s are continuous, U is open.

By Urysohn’s lemma again, there is an f ∈ Cc(X) such that f ≺ U and f ≥ 1K .
Let hn+1 := 1 − f ∈ Cc(X). Then

∑n+1
i=1 hi(x) > 0 for all x ∈ X. For

i = 1, 2, . . . , n we then define

gi =
hi∑n+1
j=1 hj

.

Clearly gi ∈ Cc(X) with supp(gi) = supp(hi). Furthermore, gi ≺ Ui and for
x ∈ K, we have that f(x) = 1 (note that f ≺ U), so hn+1(x) = 0 and hence

n∑
i=1

gi(x) =

∑n
i=1 hi(x)∑n+1
i=1 hi(x)

= 1.

The proof is complete.

Using these results, we are now ready to prove the main theorem of this
chapter.

Theorem 3.7 (Riesz Representation Theorem). Let X be a locally compact
Hausdorff space and let I be a positive linear functional on Cc(X). Then there
is a unique Radon measure µ on X such that I(f) =

∫
f dµ, for all f ∈ Cc(X).

Moreover, µ satisfies:

µ(U) = sup{I(f) | f ∈ Cc(X), f ≺ U}, (3.1)
µ(K) = inf{I(f) | f ∈ Cc(X), f ≥ 1K}, (3.2)

for all open U ⊆ X and compact K ⊆ X.
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Proof. We begin by proving uniqueness. Assume µ is a Radon measure such
that I(f) =

∫
f dµ for all Cc(f). First, let U ⊆ X be open. We want to show

that U satisfies (3.1). Whenever f ≺ U , clearly I(f) =
∫
f dµ ≤ µ(U).

Now, using inner regularity of µ on U , for each ε > 0 we can choose a compact
K contained in U such that µ(K) ≥ µ(U) − ε. By Urysohn’s lemma (Lemma
3.5), there exists f ∈ Cc(X) such that f ≺ U and f ≥ 1K . By monotonicity of
integrals, we get that I(f) ≥ µ(K) ≥ µ(U)− ε. Hence (3.1) holds, and µ(U) is
uniquely determined by I. Since µ is outer regular, for each Borel set E, µ(E)
is uniquely determined by µ(U) for open U and hence determined by I, and we
conclude that µ is unique.

We now prove existence. Let U ⊆ X be an open set and let E ⊆ X be
arbitrary. We first define

ρ(U) = sup{I(f) | f ∈ Cc(X), f ≺ U}.

Note that ρ(∅) = 0. Furthermore, since I is positive and f ≺ U implies that
f ≥ 0, we get that ρ(U) ≥ 0 for each open U . Then we define

µ∗(E) = inf{ρ(U) | E ⊆ U, U open}.

Note that if U ⊆ V ⊆ X are open sets, then clearly ρ(U) ≤ ρ(V ). Hence
µ∗(U) = ρ(U) for each open U ⊆ X.

Last, define µ to be the restriction of µ∗ to the Borel sets. In particular,
µ(U) = ρ(U) for every open U .

The proof will proceed as follows:

1. µ∗ is an outer measure.

2. Every open set in X is µ∗-measurable.

3. µ is a Borel measure.

4. µ is a Radon measure that satisfies (3.1) and (3.2).

5. I(f) =
∫
f dµ for all f ∈ Cc(X).

1. First, we show that for any sequence {Ui}i∈N of open sets, ρ (
⋃∞
i=1 Ui) ≤∑∞

i=1 ρ(Ui). Let U :=
⋃∞
i=1 Ui and let f ∈ Cc(X) such that f ≺ U . Let

K := supp(f). Since K ⊆ U , we get that {Ui}i∈N is an open cover of K and
hence K ⊆

⋃n
i=1 Ui for some n ∈ N.

By Proposition 3.6, there exist functions g1, g2, . . . , gn ∈ Cc(X) such that
gi ≺ Ui for each 1 ≤ i ≤ n and

∑n
i=1 gi(x) = 1 for all x ∈ K. Clearly then

f =
∑n
i=1 fgi. Moreover, fgi ≺ U . By linearity of I and the definition of ρ on

open sets, we get

I(f) =

n∑
i=1

I(fgi) ≤
n∑
i=1

ρ(Ui) ≤
∞∑
i=1

ρ(Ui).

Since f was chosen arbitrary such that f ≺ U , we conclude that ρ (
⋃∞
i=1 Ui) ≤∑∞

i=1 ρ(Ui).
Now it follows that for an arbitrary E ⊆ X

µ∗(E) = inf

{ ∞∑
i=1

ρ(Ui) | E ⊆
∞⋃
i=1

Ui, Ui open

}
.
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Indeed, µ∗(E) ≤ inf {
∑∞
i=1 ρ(Ui) | E ⊆

⋃∞
i=1 Ui, Ui open} by the preceeding,

and the other inequality follows from the fact that U =
⋃∞
i=1 Ui where U1 = U

and Ui = ∅ for i ≥ 2.
By Proposition 1.2, since ρ maps into the non-negative real numbers and

ρ(∅) = 0, we conclude from the equality just proven that µ∗ is an outer measure.
2. Let U ⊆ X be open. Recall from Chapter 1 that it is enough to show

that
µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c),

for every E ⊆ X with µ∗(E) <∞.
First, we consider a special case, namely the one where E ⊆ X is open.

Then E ∩ U is open. Let ε > 0. By the definition of ρ there is an f ≺ E ∩ U
such that I(f) > ρ(E ∩U)− ε. Since supp(f) is compact, hence closed, the set
V := E\(supp(f)) is open, and there is g ≺ V with I(g) > ρ(V ) − ε. Then
clearly f + g ≺ E, so by linearity of I and the fact that V covers E ∩ U c,

µ∗(E) = ρ(E) ≥ I(f) + I(g)

> ρ(E ∩ U) + ρ(V )− 2ε

≥ µ∗(E ∩ U) + µ∗(E ∩ U c)− 2ε.

Since ε was arbitrary, we conclude that µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c).
Now to the general case. Let ε > 0, E ⊆ X and assume µ∗(E) < ∞. By

definition of µ∗, we can find an open V containing E such that ρ(V ) < µ∗(E)+ε.
Using the special case discussed above, together with the facts that µ∗ is an outer
measure and that E ⊆ V , it follows that

µ∗(E) + ε > ρ(V ) = µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)
≥ µ∗(E ∩ U) + µ∗(E ∩ U c).

This holds for every ε > 0 and hence µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c) holds.
3. By Carathéodory’s theorem, we conclude that the restriction of µ∗ to any

σ-algebra consisting of µ∗-measurable sets is a measure. In particular, we get
that µ is a Borel measure.

4. It is clear from the definition of ρ and µ∗ that µ is outer regular and
satisfies (3.1). Next we show that µ satisfies (3.2). Let K ⊆ X be a compact
set, and let f ∈ Cc(X) satisfy f ≥ 1K . Let ε > 0 and set:

U := {x ∈ X|f(x) > 1− ε}.

Since f is continuous, U is open, and clearly K ⊆ U .
For every g ≺ U we have that g ≤ (1 − ε)−1f , and since I is positive and

linear, we deduce that I(g) ≤ (1 − ε)−1I(f). It follows by monotonicity of µ
together with the definition that µ(K) ≤ µ(U) = ρ(U) ≤ (1 − ε)−1I(f). Since
this holds for every ε > 0, we conclude that µ(K) ≤ I(f). Hence

µ(K) ≤ inf{I(f) | f ∈ Cc(X), f ≥ 1K}.

To show the other inequality, let ε > 0 and choose, using outer regularity of
K, an open U such that K ⊆ U and µ(U) ≤ µ(K) + ε.

By Urysohn’s lemma there is an f ∈ Cc(X) such that f ≥ 1K and f ≺ U .
Therefore, I(f) ≤ µ(U) ≤ µ(K) + ε. Since ε > 0 is arbitrary, we conclude that
µ(K) ≥ inf{I(f) | f ∈ Cc(X), f ≥ 1K}, and hence equality (3.2) holds.
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Now we show that µ(K) < ∞ for every compact K. For this, choose an
f ∈ Cc(X) such that f ≥ 1K , which is clearly possible by Urysohn’s lemma.
Then µ(K) ≤ I(f) <∞.

What is left to prove is inner regularity of µ on open sets. Let U be an open
set. If K ⊆ U then µ(K) ≤ µ(U), so µ(U) ≥ sup{µ(K)|K compact,K ⊆ U}.

On the other hand, let ε > 0. By definition of µ, we can choose a f ≺ U
such that I(f) > µ(U)− ε. Set K := supp(f), which is compact. If g ∈ Cc(X)
such that g ≥ 1K ≥ f , then I(g) ≥ I(f) > µ(U)− ε. But then µ(K) > µ(U)− ε
by (3.2), and since ε > 0 was arbitrary, we see that

µ(U) ≤ sup{µ(K) | K compact,K ⊆ U}.

We therefore conclude that µ is inner regular on open sets, and hence µ is a
Radon measure satisfying (3.1) and (3.2).

5. It is enough to prove that I(f) =
∫
f dµ for every f ∈ Cc(X) such

that 0 ≤ f ≤ 1, because every function in Cc(X) can be written as a linear
combination of such functions. Let n ∈ N and set Ki := {x ∈ X | f(x) ≥ i/n}
for 1 ≤ i ≤ n. Let K0 := supp(f). We see that Kn ⊆ Kn−1 ⊆ · · · ⊆ K0.

Furthermore, define f1, f2, . . . , fn as

fi = min

{
max

{
f − i− 1

n
, 0

}
,

1

n

}
,

where 1 ≤ i ≤ n.
We note that fi(x) = 0 if x /∈ Ki−1, 0 ≤ fi(x) = f(x)− (i− 1)/n ≤ 1/n for

x ∈ Ki−1\Ki and fi(x) = 1/n if x ∈ Ki.
We claim that f =

∑n
i=1 fi. Indeed, if x /∈ K0 =

⋃n
i=1Ki, then f(x) = 0 =∑n

i=1 fi(x). If x ∈ Kj−1\Kj , then 0 ≤ f(x)− (j − 1)/n ≤ 1/n, so

n∑
i=1

fi(x) = fj(x) +

j−1∑
i=1

1

n
= f(x)− j − 1

n
+
j − 1

n
= f(x).

Since this holds for all 1 ≤ j ≤ n, we are done.
It is clear that the fi’s are continuous. Since 1/n ≥ f ≥ 0 and fi(x) = 0

for x /∈ Ki−1, we know that supp(fi) ⊆ Ki−1 ⊆ supp(f) so fi ∈ Cc(X), and it
follows that fi ≤ n−11Ki−1 . Moreover, since fi(x) = 1/n for x ∈ Ki we conclude
that n−11Ki ≤ fi ≤ n−11Ki−1

. Hence

1

n
µ(Ki) ≤

∫
fi dµ ≤ 1

n
µ(Ki−1).

Furthermore, if U is an open set such that Ki−1 ⊆ U then nfi ≺ U so
I(fi) ≤ n−1µ(U). By outer regularity of µ on Ki−1 we conclude that I(fi) ≤
n−1µ(Ki−1). Moreover, from (3.2) we get that I(fi) ≥ n−1µ(Ki), hence

1

n
µ(Ki) ≤ I(fi) ≤

1

n
µ(Ki−1).

Since both I and the integral are linear and since f =
∑n
i=1 fi, we get that

1

n

n∑
i=1

µ(Ki) ≤
∫
f dµ ≤ 1

n

n−1∑
i=0

µ(Ki)
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and, respectively,
1

n

n∑
i=1

µ(Ki) ≤ I(f) ≤ 1

n

n−1∑
i=0

µ(Ki).

In other words, we have that∣∣∣∣I(f)−
∫
f dµ

∣∣∣∣ ≤ 1

n

(
n−1∑
i=0

µ(Ki)−
n∑
i=1

µ(Ki)

)

=
1

n
(µ(K0)− µ(Kn)) ≤ 1

n
µ(K0)

Since K0 is compact, we have already proved that µ(K0) <∞ and since n was
chosen arbitrarily, we get that

I(f) =

∫
f dµ.

This completes the proof.

3.2 Properties of Radon measures
The Lebesgue measure is a well-known example of a Radon measure. Another
example is the counting measure on a discrete group. We shall present a way
of constructing new Radon measures once we already know some. In order to
do this, we need to use the notion of lower semi-continuous functions, which we
recall below.

Definition 3.8. Let X be a topological space. A function f : X → R is called
lower semi-continuous if f−1((a,∞)) is open for every a ∈ R.

Note that every lower semi-continuous function is Borel measurable since
the intervals (a,∞) generate the Borel σ-algebra on R.

It follows straight from the definition that for every open set U , the char-
acteristic function 1U is lower semi-continuous. Furthermore, if the functions
f, g : X → [0,∞) are lower semi-continuous, then so is fg. This fact will be
used in the proof of Proposition 3.10.

We will also need the following result:

Proposition 3.9. Let X be a locally compact space with a Radon measure µ,
and let f : X → [0,∞) be a lower semi-continuous function. Then∫

f dµ = sup

{∫
g dµ | g ∈ Cc(X), 0 ≤ g ≤ f

}
.

Proof. It is clear that
∫
f dµ ≥ sup

{∫
g dµ | g ∈ Cc(X), 0 ≤ g ≤ f

}
. In order

to show the other inequality, let a ∈ R such that a <
∫
f dµ. We want to find

a g ∈ Cc(X) such that 0 ≤ g ≤ f and
∫
g dµ > a.

For j, n ∈ N define Un,j = f−1((j2−n,∞)). By assumption, Un,j is open for
every n, j ∈ N. Now define the function

sn = 2−n
22n∑
j=1

1Un,j .
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We immediately see that

sn(x) =

 j2−n x ∈ Un,j\Un,j+1, 1 ≤ j < 22n,
2n x ∈ Un,22n ,
0 otherwise.

Using the fact that Un−1,j = Un,2j for n > 1 and j ∈ N, we see that the sequence
(sn(x))n∈N is increasing for every x ∈ X. Furthermore (sn)n∈N converges to f .
Indeed, if x ∈ f−1((2−n,∞)) then 0 ≤ f − sn ≤ 2−n and the result follows.

By the monotone convergence theorem, we conclude that
∫
sn dµ →

∫
f dµ

as n→∞. Hence we can fix an m ∈ N such that

2−m
22m∑
j=1

µ(Um,j) =

∫
sm dµ > a.

Choose a constant b ∈ R such that 2−m
∑22m

j=1 µ(Um,j) > b > a. By inner
regularity of µ on the open sets Um,j , for each 1 ≤ j ≤ 22m we can find a
compact set Kj ⊆ Um,j such that µ(Kj) > µ(Um,j)− (b− a)2−m. Then

2−m
22m∑
j=1

µ(Kj) > 2−m
22m∑
j=1

(
µ(Um,j)−

b− a
2m

)
> a.

Now, for 1 ≤ j ≤ 22m, by Urysohn’s lemma we can choose gj ∈ Cc(X) such
that gj ≥ 1Kj and gj ≺ Um,j . Then the function g := 2−m

∑22m

j=1 gj belongs to
Cc(X), and clearly satisfies g ≤ sm ≤ f and

∫
g dµ ≥ 2−m

22m∑
j=1

µ(Kj) > a.

This completes the proof.

Proposition 3.10. Let µ be a Radon measure on a locally compact Hausdorff
space X and let ϕ : X → (0,∞) be a continuous function. Then the measure
defined by ν(E) =

∫
E
ϕdµ, for all Borel sets E ⊆ X, is a Radon measure.

Proof. First we show outer regularity of ν. Let E ⊆ X be a Borel set. If
ν(E) =∞, there is nothing to prove, so assume ν(E) <∞. Let ε > 0. We want
to find an open U ⊇ E such that ν(U\E) < ε.

For every n ∈ N, define the set Wn := ϕ−1((1/n, n)), which is open by
continuity of ϕ. Using the definition of ν, we see that for a fixed n ∈ N,
whenever F ⊆Wn is a Borel set then

1

n
µ(F ) ≤ ν(F ) ≤ nµ(F ).

By the first inequality, we get that µ(E ∩Wn) ≤ nν(E ∩Wn) <∞. Hence, by
outer regularity of µ, for every n ∈ N we can find an open Un ⊆ X such that
µ(Un\(E ∩Wn)) < ε/(2n · n).

Set U :=
⋃∞
n=1 Un ∩Wn, which is an open set. Since

⋃∞
n=1Wn = X, we

have that E =
⋃∞
n=1(E ∩Wn), and since E ∩Wn ⊆ Un ∩Wn for all n ∈ N, we
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conclude that E ⊆ U . Furthermore, since E ∩Wn ⊆ E for all n ∈ N, we obtain
that

U\E =

∞⋃
n=1

(Un ∩Wn)\E ⊆
∞⋃
n=1

(Un ∩Wn)\(E ∩Wn).

Clearly (Un ∩Wn)\(E ∩Wn) ⊆Wn for all n ∈ N and hence

ν(U\E) ≤
∞∑
n=1

ν ((Un ∩Wn)\(E ∩Wn)))

≤
∞∑
n=1

nµ((Un ∩Wn)\(E ∩Wn))

≤
∞∑
n=1

nµ(Un\(E ∩Wn))

<

∞∑
n=1

n
ε

2n · n
= ε,

and we conclude that ν is outer regular.
The linear functional f 7→

∫
fϕdµ is clearly positive and hence there is a

Radon measure ν′ such that
∫
fϕdµ =

∫
f dν′ for all f ∈ Cc(X). We will show

that ν = ν′. For this, since both ν and ν′ are outer regular, it is enough to
show that ν(U) = ν′(U) for every open U ⊆ X. Therefore, let U ⊆ X be open.
Using that 1U is lower semi-continuous, by Proposition 3.9 we have that

ν′(U) =

∫
1U dν′ = sup

{∫
g dν′|g ∈ Cc(X), 0 ≤ g ≤ 1U

}
= sup

{∫
gϕdµ|g ∈ Cc(X), 0 ≤ g ≤ 1U

}
Since 1Uϕ is lower semi continuous, by the same Proposition, we get

ν(U) =

∫
1Uϕdµ = sup

{∫
hdµ|h ∈ Cc(X), 0 ≤ h ≤ 1Uϕ

}
.

We show that the two suprema are equal. Clearly

sup

{∫
gϕdµ|g ∈ Cc(X), 0 ≤ g ≤ 1U

}
≤ sup

{∫
hdµ|h ∈ Cc(X), 0 ≤ h ≤ 1Uϕ

}
,

since gϕ ∈ Cc(X) and 0 ≤ gϕ ≤ 1Uϕ whenever g ∈ Cc(X) and 0 ≤ g ≤ 1U .
To see the other inequality, let h ∈ Cc(X) such that 0 ≤ h ≤ 1Uϕ. Define,

for n ∈ N, the function hn ∈ Cc(X) by

hn(x) =
h(x)

1/n+ ϕ(x)
.

This is well-defined and continuous, since the denominator is strictly positive
and has compact support, since h has this property. Clearly 0 ≤ hn(x) ≤ 1U (x)
and hn(x)ϕ(x) is an increasing sequence converging to h(x) as n tends to infinity.
Hence by the monotone convergence theorem∫

hdµ = lim
n→∞

∫
hnϕdµ ≤ sup

{∫
gϕdµ|g ∈ Cc(X), 0 ≤ g ≤ 1U

}
.
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Since h was arbitrary, the other inequality is proven.
This proves that ν(U) = ν′(U) for every open set U , and we conclude that

ν = ν′, so ν is a Radon measure.

This way of constructing new Radon measure from already known ones will
be important to us, especially in Chapters 6 and 7, where we look at examples
of locally compact groups and their Haar measure.

Next, we shall prove a density theorem that states that if µ is a Radon
measure on a locally compact Hausdorff space X, then Cc(X) is p-norm dense
in Lp(G,µ), the space of p-integrable functions on G, for every 1 ≤ p <∞. This
will be needed in Chapter 8.

Lemma 3.11. If µ is a Radon measure on a locally compact Hausdorff space
X, then µ is inner regular on all σ-finite Borel sets.

Proof. First, let E be a Borel set and suppose µ(E) < ∞. Let ε > 0. Using
outer regularity of µ on E, choose and open set U ⊇ E such that µ(U\E) < ε.
Clearly U must have finite measure, and using inner regularity of µ on U , we
can find a compact F ⊆ U such that µ(F ) > µ(U)− ε.

Since µ(U) < µ(E) + ε, we can choose an open set V ⊇ U\E such that
µ(V ) < ε. Let K = F\V . Then K is compact and K ⊆ E, and

µ(K) = µ(F )− µ(V ) > µ(E)− ε− µ(V ) > µ(E)− 2ε.

This entails that µ is inner regular on every E such that µ(E) <∞.
Now, assume that E is a σ-finite Borel set with µ(E) = ∞. Then there

is an increasing sequence (Ei)
∞
i=1 of Borel sets of finite measure such that E =⋃∞

i=1Ei. Since µ(Ei)→∞, as i→∞, we conclude that for every n ∈ N there is
an i ∈ N such that µ(Ei) > n. Since µ is inner regular on Ei by the preceeding,
there is a compact K ⊆ Ei ⊆ E such that µ(K) > n, and we conclude that µ is
inner regular on E.

Theorem 3.12. If µ is a Radon measure on a locally compact Hausdorff space
X, then Cc(X) is p-norm dense in Lp(X,µ).

Proof. We know that the simple functions on X which are p-integrable are dense
in Lp(X,µ). Therefore, since every simple function is a linear combination
of indicator functions, we only need to show that for every Borel set E such
that µ(E) < ∞, the indicator function 1E can be approximated in p-norm by
functions from Cc(X).

Let E ⊆ X be a Borel set with µ(E) < ∞ and let ε > 0. Then by Lemma
3.11 and outer regularity of µ on E, there is a compact set K ⊆ E and an open
set U ⊇ E such that µ(U\K) < ε. By Urysohn’s lemma, there is an f ∈ Cc(X)
such that 1K ≤ f ≤ 1U . From this it follows that

‖1E − f‖p ≤ µ(U\K)1/p < ε1/p,

and the proof is complete.



Chapter 4

Topological groups

In the preceeding chapters, we have considered topological spaces equipped with
the Borel σ-algebra and have seen how sometimes a Borel measure interacts with
the topology, e.g., by the regularity properties of the Radon measure. In this
chapter, we shall discuss the notion of a topological group, which is a topological
space carrying, in addition, a group structure compactible with the topology.
More precisely,

Definition 4.1. A topological group is a group G together with a topology on
the set G such that the maps

G×G→ G (x, y) 7→ xy (multiplication)

G→ G x 7→ x−1 (inversion)

are both continuous.

4.1 Basic properties
The following notation will come in handy, when we consider some basic prop-
erties of topological groups.

Definition 4.2. Let G be a group. We denote the neutral element of G by eG
or simply by e when no confusion can occur. For A,B ⊆ G and g ∈ G we define

gA : = {ga|a ∈ A},
Ag : = {ag|a ∈ A},
A−1 : = {a−1|a ∈ A},
AB : = {ab|a ∈ A, b ∈ B}.

If A = A−1 for a set A ⊆ G, we call A symmetric.

Proposition 4.3 (Basic properties of topological groups). Let G be a topological
group

1. For any g ∈ G, the maps x 7→ gx, x 7→ xg, and x 7→ x−1 are homeomor-
phisms of G.
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2. If U ⊆ G is open, respectively, closed, then the sets xU , Ux and U−1 are
open, respectively, closed.

3. Every neighbourhood U of e contains a symmetric neighbourhood V of e.

4. For every neighbourhood U of e there exists a neighbourhood V of e such
that V V ⊆ U .

5. For every neighbourhood U of e there is a symmetric neighbourhood V of
e such that V V ⊆ U .

6. If H is a subgroup of G, then the closure H is a subgroup as well. If H is
normal, then so is H.

7. Every open subgroup of G is closed.

8. If A,B ⊆ G are compact subsets of G, then AB is compact.

Proof. 1. It follows directly from the continuity of multiplication and inversion
in G that the maps are continuous with the continuous inverses: y 7→ g−1y,
y 7→ yg−1 and y 7→ y−1.

2. Follows from 1.
3. Since U−1 is open and contains e, the set U ∩U−1 is a clearly symmetric

neighbourhood of e.
4. Let U1 × U2 ⊆ G×G be the pre-image of U under the map (x, y) 7→ xy.

By continuity of multiplication, U1 × U2 is open and clearly containing (e, e).
By definition of the product topology, there are open sets V1, V2 ⊆ G such

that (e, e) ∈ V1 × V2 ⊆ U1 × U2. Let V := V1 ∩ V2, which is open. Then
V V ⊆ V1V2 ⊆ U1U2 = U .

5. Choose, using part 4 of this proposition, a neighbourhood V of e such
that V V ⊆ U . Then choose, using part 3, a symmetric neighbourhood W of e
such that W ⊆ V . Then WW ⊆ V V ⊆ U and we are done.

6. Obviously e ∈ H̄. From continuity of multiplication and inversion, it
follows that H is stable under the two operations. Now assume H is normal.
Let g ∈ G. Then H = gHg−1 ⊆ gHg−1. Since gHg−1 is closed, H ⊆ gHg−1.
By this last inclusion, we also get that g−1Hg ⊆ H. Since g was arbitrary, it
follows that H = gHg−1 for all g and hence H is normal.

7. The sets gH are all open by 2. Hence
⋃
g∈G\H gH is open. Since the

cosets of H form a partition of G, we see that Hc =
⋃
g∈G\H gH, so H must be

closed.
8. Since A × B is compact and multiplication is continuous, we conclude

that the image AB is compact.

4.2 Continuous functions on topological groups
Here we pay particular attention to continuous functions with compact support,
which we have already encountered, because of properties that we need later.

Definition 4.4. Let G be a topological group and let f be a function on G.
Then we define the left, respectively, right translate Ly and Ry of f through
y as follows:

Lyf(x) = f(y−1x),

Preimages of sets by
 multiplications need 
not be (Cart.) products
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Ryf(x) = f(xy).

Note that for all y, z ∈ G and f ∈ C(G), we have Lyzf = LyLzf and
Ryzf = RyRzf .

Definition 4.5. Let G be a topological group. We say that f ∈ C(G) is left
uniformly continuous if for every ε > 0, there is a neighbourhood V of e such
that ‖Lyf − f‖ < ε whenever y ∈ V .

Similarly, we define the notion of a right uniformly continous function
by replacing Ly with Ry above.

Proposition 4.6. Let G be a topological group and f ∈ Cc(G). Then f is both
left and right uniformly continuous.

Proof. We shall only prove the left uniform continuity, as the right version is
proved similarly. Let ε > 0. Let K := supp(f). For each x ∈ K there is a neigh-
bourhood Ux of e such that |f(zx)− f(x)| < ε/2 whenever z ∈ Ux. This follows
directly from continuity of f . For every x, choose a symmetric neighbourhood
Vx of e such that VxVx ⊆ Ux, which is possible by Proposition 4.3.5. Clearly
{Vxx}x∈K cover K and since K is compact, there are x1, x2, . . . , xn such that
K ⊆

⋃n
i=1 Vxixi. Set V :=

⋂n
i=1 Vxi .

Now we will show that V is the desired neighbourhood. It is clear that V
is a symmetric neighbourhood of e. First, assume x ∈ K and y ∈ V . Then
xx−1i ∈ Vxi ⊆ Uxi for some 1 ≤ i ≤ n, and hence y−1xx−1i ∈ V Vxi ⊆ VxiVxi ⊆
Uxi . Therefore, we have that

|f(y−1x)− f(x)| = |f(y−1xx−1i xi)− f(xx−1i xi)|
≤ |f(y−1xx−1i xi)− f(xi)|+ |f(xi)− f(xx−1i xi)|
≤ ε/2 + ε/2 = ε.

Now, assume x /∈ K. If y−1x /∈ K, then the ineqality is trivial.
Otherwise, if y−1x ∈ K, then y−1xx−1i ∈ Vxi for some i. Therefore xx−1i =

yy−1xx−1i ∈ Uxi and hence

|f(y−1x)− f(x)| ≤ |f(y−1x)− f(xi)|+ |f(xi)− f(x)|
= |f(y−1xx−1i xi)− f(xi)|+ |f(xi)− f(xx−1i xi)| < ε.

The proof is complete.

Corollary 4.7. For every f ∈ Cc(G) and ε > 0, there is a neighbourhood V of
e such that |f(x)− f(y)| < ε whenever y−1x ∈ V or yx−1 ∈ V .

Proof. Let ε > 0. Since f is left and right uniformly continuous, there is a
neighbourhood U1 of e such that for all x ∈ G and z ∈ U1, |Lzf(x)− f(x)| < ε
and a neighbourhood U2 of e such that z ∈ U2 implies |Rzf(x)− f(x)| < ε. Let
U := U1 ∩ U2. Then, if y−1x ∈ U , that is, x = yu for some u ∈ U , we deduce
that |f(x) − f(y)| = |f(yu) − f(y)| = |Ruf(y) − f(y)| < ε. Similarly, we have
that if yx−1 = u ∈ U , then |f(x)− f(y)| = |Luf(y)− f(y)| < ε.

Corollary 4.8. For every f ∈ Cc(G) and ε > 0 there is a symmetric neigh-
bourhood V of e such that supx∈G |f(xy)− f(yx)| < ε for all y ∈ V .
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Proof. Since f is both left and right uniformly continuous, the conclusion follows
from the fact that

|f(xy)− f(yx)| ≤ |f(xy)− f(x)|+ |f(yx)− f(x)|
= |Ryf(x)− f(x)|+ |Ly−1f(x)− f(x)|,

for every x, y ∈ G, and that every neighbourhood of e contains a symmetric
neighbourhood.

4.3 The Hausdorff assumption
When dealing with the Haar measure, we always assume that the topological
group in question is equipped with a Hausdorff topology. But in fact this is not
much of a restriction due to the following proposition.

Proposition 4.9. Let G be a topological group. Then we have the following:

1. If G is T1, then G is Hausdorff.

2. Let H := {e}. Then H is a normal subgroup and G/H equipped with the
quotient topology, is a Hausdorff topological group.

Proof. 1. Assume that G is T1. Let x 6= y. By assumption U = G\{xy−1} is a
neighbourhood of e. Then by Proposition 4.3.5 there is a symmetric neighbour-
hood V of e such that V V ⊆ U that is xy−1 /∈ V V .

We claim that V x and V y are disjoint neighbourhoods of x and y. They are
clearly open by Proposition 4.3.2. Furthermore, if z = vx = wy for v, w ∈ V ,
then xy−1 = v−1zz−1w = v−1w ∈ V −1V = V V . Since this cannot be the case,
V x and V y are disjoint. Hence G is Hausdorff.

2. By Proposition 4.3.6 H is a normal subgroup. It is easy to check that
multiplication and inversion are continuous on G/H. We see that {eG/H} is
closed in the quotient topology since H is closed. Hence every other one-point
set is closed as well, using that gH is closed for every g ∈ G, and henceG/H is T1
and by the first part of this proposition, we conclude that G/H is Hausdorff.

In the following let G be a fixed topological group and let H := {e}. As we
shall see now, every Borel measurable function f : G → C is constant on the
cosets of the H, and as long as we consider measurable functions on G, we can
restrict ourselves to the Hausdorff group G/H without losing much information.

Lemma 4.10. For all x ∈ H, we have that {x} = H.

Proof. Clearly e ∈ x−1{x}, and since this set is closed by Proposition 4.3.1,
we conclude that H ⊆ x−1{x}. On the other hand, since x ∈ H, we have
that {x} ⊆ H and since H is a subgroup, x−1 ∈ H and hence x−1{x} ⊆ H.
Therefore, it follows that {x} = xH = H.

In the following, set E := {
⋃
x∈A xH | A ⊆ G}.

Lemma 4.11. E is a σ-algebra.

Proof. It is easy to see that G ∈ E and that E is stable under (countable)
unions, and since the cosets xH for x ∈ G form a partition of G, we have that(⋃

x∈A xH
)c

=
⋃
x∈Ac xH ∈ E .
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Lemma 4.12. The Borel sets are contained in E.

Proof. Let B(G) denote the σ-algebra consisting of the Borel sets on G. It is
enough to show that every closed set is contained in E , since the closed sets
generate B(G). Therefore, let A ⊆ G be closed. We now show that A =⋃
x∈A xH. It is trivial that A ⊆

⋃
x∈A xH. Hence, let g ∈

⋃
x∈A xH, that

is g ∈ xH for some x ∈ A, or equivalently, x−1g ∈ H and by Lemma 4.10
H = {x−1g}. Since x−1A is a closed set containing e, we have that x−1g ∈
{x−1g} = H ⊆ x−1A, so g ∈ A.

We thereby conclude that A =
⋃
x∈A xH ∈ E , and hence B(G) ⊆ E .

Proposition 4.13. Every Borel measurable function f : G→ C is constant on
the cosets H

Proof. Let x ∈ G and let z = f(x). By Lemma 4.12 f is also E-measurable, so
f−1({z}) ∈ E , that is f−1({z}) =

⋃
y∈A yH, for some A ⊆ G.

Since x ∈ f−1({z}) there is some y ∈ A such that x ∈ yH. Hence yH = xH
and we get that xH ⊆ f−1({z}), that is, f(xH) ⊆ {z}.

4.4 Locally compact groups
Definition 4.14. A locally compact group is a topological group whose topol-
ogy is locally compact and Hausdorff.

We shall now define the Haar measure and discuss some important properties
of it.

Definition 4.15. Let G be a toplogical group. A Borel measure µ is called left,
respectively, right invariant if

µ(xE) = µ(E), respectively, µ(Ex) = µ(E).

for all measurable sets E and x ∈ G.

Definition 4.16. Let G be a locally compact group. Then a left respectively
right Haar measure on G is a nonzero, left-, respectively, right-invariant
Radon measure on G.

Definition 4.17. Let X be a locally compact Hausdorff space. We define

C+
c (X) := {f ∈ Cc(X)|f ≥ 0, ‖f‖ > 0}.

Proposition 4.18. Let G be a locally compact group.

1. A Radon measure µ on G is a left Haar measure if and only if the measure
µ̃ defined by µ̃(E) = µ(E−1), for all Borel sets E ⊆ G, is a right Haar
measure on G.

2. A non-zero Radon measure µ on G is a left Haar measure if and only if∫
f dµ =

∫
Lyf dµ for all f ∈ C+

c (G) and y ∈ G.

3. If µ is a left Haar measure on G then µ(U) > 0 for all nonempty open
U ⊆ G. Furthermore,

∫
f dµ > 0 for all f ∈ C+

c (G).
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4. If µ is a left Haar measure on G, then µ(G) < ∞ if and only if G is
compact.

Proof. 1. Assume that µ is a left Haar measure. Then it is easy to see that
µ̃ is a nonzero Radon measure. Let E ⊆ G be a Borel set. That µ̃ is right
invariant simply follows from the fact that (Ex)−1 = x−1E−1 for all x ∈ G.
Hence µ̃(Ex) = µ(x−1E−1) = µ(E−1) = µ̃(E), whenever x ∈ G. The other
implication follows similarly.

2. First assume that µ is a left Haar measure and let y ∈ G. Note that
Ly1E = 1yE . Hence, for every simple function s =

∑n
i=1 ci1Ei with ci ≥ 0 we

have that ∫
sdµ =

n∑
i=1

ciµ(Ei) =

n∑
i=1

ciµ(yEi) =

∫
Lysdµ.

Since
∫
f dµ = sup{

∫
sdµ | s simple, f ≥ s}, for all f ∈ C+

c (G), it follows that∫
f dµ =

∫
Lyf dµ.

On the other hand, if
∫
f dµ =

∫
Lyf dµ for all f ∈ C+

c (G) and y ∈ G then
the equation must hold for all f ∈ Cc(G), beacuse such functions are linear
combinations of functions in C+

c (G). Since the integral is a positive linear
functional on Cc(G), by applying the Riesz representation theorem, we deduce
from the equation (3.1) that

µ(U) = sup

{∫
f dµ|f ≺ U

}
= sup

{∫
Lyf dµ|f ≺ U

}
= sup

{∫
f dµ|f ≺ yU

}
= µ(yU),

by using that f ≺ U precisely when Lyf ≺ yU . Hence µ is a left Haar measure.
3. Since µ is nonzero, G must have nonzero measure. By inner regularity of

µ on the open set G, there must be a compact set K such that µ(K) > 0. Now,
let U be an arbitrary nonempty, open set. Then there exist x1, x2, . . . , xn ∈ G
such that K ⊆

⋃n
i=1 xiU . Since µ(xiU) = µ(U) for all 1 ≤ i ≤ n, and µ(K) ≤∑n

i=1 µ(xiU), we conclude that µ(U) > 0.
For f ∈ C+

c (G), let U := {x ∈ G | f(x) > ‖f‖/2}. Clearly, U is open and
nonempty, since ‖f‖ > 0, so

∫
f dµ ≥ ‖f‖µ(U)/2 > 0.

4. Assume G is compact with Haar measure µ. Since µ is a Radon measure,
µ(G) < ∞. Now, assume that µ is a Haar measure on G and µ(G) < ∞.
Since G is locally compact, there is a compact neighbourhood N of e. Since N
contains an open set, µ(xN) = µ(N) > 0 for all x ∈ G. If there were a sequence
(xn)n∈N ⊆ G such that xnN ∩ xmN = ∅ for n 6= m, then µ (

⋃∞
n=1 xnN) =∑∞

n=1 µ(xnN) =
∑∞
n=1 µ(N) =∞.

Hence there must exist finitely many x1, x2, . . . , xn ∈ G such that xiN ∩
xjN = ∅ for i 6= j and xiN ∩ xN 6= ∅ for all x 6= x1, x2, . . . , xn. Since xiN is
compact for every i, the union K =

⋃n
i=1 xiN is compact, as well.

We claim thatG = KK−1. Indeed, for every x ∈ G we have thatK∩xK 6= ∅.
That is, for every x ∈ G, there are h, k ∈ K such that k = xh, which is the
same as x = kh−1 ∈ KK−1.

Since K is compact, so is KK−1 by the continuity of inversion and Propo-
sition 4.3 8. Hence G is compact.

Note that because of Proposition 4.18.1, it follows easily that there are right
Haar measure analogues of Proposition 4.18.2-4.



Chapter 5

The Haar measure

We are now ready to prove what we consider as our main goal, namely the
existence and uniqueness of the left, respectively, right Haar measure on every
locally compact group G. The existence will be proven by constructing a posi-
tive linear functional I on Cc(G), which is also left translation invariant in the
sense that I(Lyf) = I(f), for every f ∈ Cc(G) and y ∈ G. Using the Riesz
representation theorem and Proposition 4.18.2, we can prove the existence of a
left Haar measure, and by the same proposition (4.18.1), we immediately get
the existence of a right Haar measure. The construction of this functional is
most of all technical, but we need some good ideas, especially when we want to
show that our functional is additive.

5.1 The Existence of Haar measure
In the following, we let G be a locally compact group.

Definition 5.1. For f, ϕ ∈ C+
c (G) we define

Cf,ϕ :=


n∑
j=1

cj

∣∣∣∣∣∣n ∈ N, c1, c2, . . . , cn > 0, x1, x2, . . . , xn ∈ G, f ≤
n∑
j=1

cjLxjϕ

 ,

and
(f : ϕ) = inf Cf,ϕ.

Lemma 5.2. Let f, ϕ ∈ C+
c (G). There exist x1, x2, . . . , xn ∈ G such that

f ≤ 2‖f‖ · ‖ϕ‖−1
∑n
j=1 Lxjϕ.

Proof. U := {x ∈ G | ϕ(x) > ‖ϕ‖/2} is open and nonempty since ‖ϕ‖ > 0.
Hence {xU}x∈G is an open covering of the support of f and hence there exist
x1, x2, . . . , xn ∈ G such that {xjU}nj=1 covers supp f .

For y ∈ U and x ∈ G, we have that f(x) ≤ 2‖f‖ · ‖ϕ‖−1ϕ(y) by using that
f(x), ϕ(y) ≥ 0. For x ∈ xjU we have that that x−1j x ∈ U so

f(x) ≤ 2‖f‖ · ‖ϕ‖−1Lxjϕ(x).

Hence f ≤ 2‖f‖ · ‖ϕ‖−1
∑n
j=1 Lxjϕ.
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It follows from this lemma that Cf,ϕ is nonempty for every f, ϕ ∈ C+
c (G),

and hence (f : ϕ) ∈ R is well-defined. Furthermore, it is clear that (f : ϕ) ≥ 0.
The map f 7→ (f : ϕ) will be a very rough estimate of the linear functional

that we are looking for. Of course, it is only defined for functions in C+
c (G) but

since every function in Cc(G) is a linear combination of positive functions, this
will suffice.

We next show that the map has the following properties.

Proposition 5.3. Let f, g, ϕ ∈ C+
c (G) and c > 0. Then

1. (f : ϕ) = (Lxf : ϕ) for all x ∈ G,

2. (f + g : ϕ) ≤ (f : ϕ) + (g : ϕ),

3. (cf : ϕ) = c(f : ϕ),

4. If f ≤ g, then (f : ϕ) ≤ (g : ϕ),

5. (f : ϕ) ≥ ||f || · ||ϕ||−1,

6. (f : ϕ) ≤ (f : g)(g : ϕ).

Proof. 1. Using that LxLy = Lxy for all x, y ∈ G, it follows that if

f ≤
n∑
j=1

cjLxjϕ, then Lxf ≤
∑
j=1

cjLxjxϕ.

We conclude that Cf,ϕ ⊆ CLxf,ϕ. To show the other inclusion, note that if
Lxf ≤

∑n
j=1 cjLxjϕ, then f ≤

∑
j=1 cjLxjx−1ϕ, for every x ∈ G.

2. To prove this, note that f ≤
∑n
j=1 cjLxjϕ and g ≤

∑m
j=1 djLyjϕ implies

that (f + g : ϕ) ≤
∑n
j=1 cj +

∑m
j=1 dj , which entails the desired conclusion.

3. Here we have that f ≤
∑n
j=1 cjLxjϕ if and only if cf ≤

∑n
j=1 ccjLxjϕ,

which gives the conclusion.
4. Assume f ≤ g. Let

∑n
j=1 cj ∈ Cg,ϕ. Then f ≤ g ≤

∑n
j=1 cjLxjϕ for

some xj ’s. Hence Cg,ϕ ⊆ Cf,ϕ, and we are done.
5. Let

∑n
j=1 cj ∈ Cf,ϕ. Then there are x1, . . . , xn ∈ G such that f(x) ≤∑n

j=1 cjLxjϕ(x) ≤
∑n
j=1 cj‖ϕ‖, for all x ∈ G, using that all the cj ’s are pos-

itive. Hence, by definition of the supremum norm, we conclude that ‖f‖ ≤∑n
j=1 cj‖ϕ‖, and we obtain the desired conclusion.
6. Assume that f ≤

∑n
i=1 ciLxig and g ≤

∑m
j=1 djLyjϕ. Then

f ≤
n∑
i=1

m∑
j=1

cidjLxiyjϕ,

so
∑n
i=1

∑m
j=1 cidj ∈ Cf,ϕ. Since all the ci’s and dj ’s are positive, we have that

(f : ϕ) ≤
∑n
i=1

∑m
j=1 cidj ≤ (

∑n
i=1 ci)

(∑m
j=1 dj

)
, and since this holds for any

set of ci’s and dj ’s, the conclusion follows.

Definition 5.4. Let f0 ∈ C+
c (G) be fixed. For ϕ ∈ C+

c (G) define the map
Iϕ : C+

c (G)→ (0,∞) by

Iϕ(f) =
(f : ϕ)

(f0 : ϕ)
.
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From now on we will consider Iϕ instead of the map f 7→ (f : ϕ). The reason
is the following inequalities, which we will need.

Lemma 5.5. For every f, ϕ ∈ Cc(G), we have that

(f0 : f)−1 ≤ Iϕ(f) ≤ (f : f0).

Proof. Follows from Proposition 5.3.6.

Proposition 5.6. The functional Iϕ is sublinear and left translation-invariant.

Proof. Follows from Proposition 5.3.

This is almost what we are looking for. The functionals are not linear, but
the following proposition will show that if the support of ϕ is small enough,
then Iϕ is approximately linear.

Lemma 5.7. For f, g ∈ C+
c (G) and ε > 0 there is a neighborhood V of e such

that if supp(ϕ) ⊆ V then Iϕ(f) + Iϕ(g) ≤ Iϕ(f + g) + ε.

Proof. By Urysohn’s lemma (Lemma 3.5) there exists an h0 ∈ C+
c (G) such that

h0(x) = 1 for all x ∈ supp(f + g).
Let δ > 0 and set h := f + g + δh0. Set

h1(x) :=

f/h ifx ∈ supp(f),

0 otherwise.

h2(x) :=

g/h ifx ∈ supp(g),

0 otherwise.

It is clear that these functions are well-defined and that h1, h2 ∈ C+
c (G). By

Corollary 4.7, there is some neighbourhood V of e such that |h1(x)−h1(y)| < δ
and |h2(x)− h2(y)| < δ for all y−1x ∈ V .

Let ϕ ∈ C+
c (G) satisfying supp(ϕ) ⊆ V . Choose

∑n
j=1 cj ∈ Ch,ϕ and cor-

responding xj ’s. Then for x ∈ G such that x−1j x ∈ supp(ϕ) we have that
|h1(x)− h1(xj)| < δ.

Therefore, for all x ∈ G,

f(x) = h(x)h1(x) ≤
n∑
j=1

cjLxjϕ(x)h1(x) ≤
n∑
j=1

cjLxjϕ(x) (h1(xj) + δ) ,

and, respectively,

g(x) = h(x)h2(x) ≤
n∑
j=1

cjLxjϕ(x)h2(x) ≤
n∑
j=1

cjLxjϕ(x) (h2(xj) + δ) .

Hence

(f : ϕ) ≤
n∑
j=1

cj(h1(x) + δ), and (g : ϕ) ≤
n∑
j=1

cj(h2(x) + δ).
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From the definition we see that h1 + h2 ≤ 1, and hence

(f : ϕ) + (g : ϕ) ≤
n∑
j=1

cj(h1(xj) + h2(xj) + 2δ) ≤
n∑
j=1

cj(1 + 2δ).

Again, since
∑n
j=1 cj ∈ Ch,ϕ is arbitrary, we conclude that

(f : ϕ) + (g : ϕ) ≤ (h : ϕ)(1 + 2δ)

This entails that

Iϕ(f) + Iϕ(g) ≤ Iϕ(h)(1 + 2δ) ≤ (1 + 2δ)(Iϕ(f + g) + δIϕ(h0)),

using that I is sublinear.
Hence, for a given ε > 0, since δ > 0 was arbitrary, we can choose δ small

enough to ensure that

2δ(f + g : f0) + δ(1 + 2δ(h0 : f0)) < ε,

then by Lemma 5.5 we conclude that

Iϕ(f) + Iϕ(g) ≤ (1 + 2δ)(Iϕ(f + g) + δIϕ(h0)) ≤ (1 + 2δ)(Iϕ(f + g) + δ(h0 : f0))

≤ Iϕ(f + g) + 2δ(f + g : f0) + δ(1 + 2δ)(h0 : f0) < Iϕ(f + g) + ε.

This completes the proof.

We are now ready to take the last step.

Theorem 5.8. Every locally compact group G possesses a left Haar measure.

Proof. Define the interval Xf := [(f0 : f)−1, (f : f0)], for each f ∈ C+
c (G).

Define X :=
∏
f∈C+

c (G)Xf . By Lemma 5.5 Iϕ ∈ X, for all ϕ ∈ C+
c (G). By

Tychonoff’s theorem (Theorem 2.14), X is compact.
For each neighbourhood V of e, let

KV := {Iϕ ∈ X|ϕ ∈ C+
c (G), suppϕ ⊆ V }.

We show that {KV }V has the finite intersection property. Let V1, V2, . . . , Vn
be given neighbourhoods of e. Clearly e ∈

⋂n
i=1 Vi, so the open set

⋂n
i=1 Vi is

non-empty. Hence, by Urysohn’s lemma there is a function ϕ ∈ C+
c (G), such

that suppϕ ⊆
⋂n
i=1 Vi. We see that ϕ ∈ K⋂n

i=1 Vi
. Clearly K⋂n

i=1 Vi
⊆
⋂n
i=1KVi

and this entails that the latter set is non-empty.
Since {KV }V is a family of closed subsets that has the finite intersection

property, we conclude that
⋂
V KV is non-empty. Choose an I ∈

⋂
V KV .

For each neighbourhood V of e we have that I ∈ KV . Using the definition
of KV together with the definition of the product topology, we deduce that
for each f1, f2, . . . , fn ∈ C+

c (G) and ε > 0, there exists ϕ ∈ C+
c (G) such that

suppϕ ⊆ V and |I(fi)− Iϕ(fi)| < ε, for i = 1, 2, . . . , n.
In the following, let ε > 0, and f, g ∈ C+

c (G) be fixed. For each x ∈ G there
is ϕ ∈ C+

c (G) such that |I(f) − Iϕ(f)| < ε/2 and |I(Lxf) − Iϕ(Lxf)| < ε/2.
Using Lemma 5.6 we get that

|I(f)− I(Lxf)| ≤ |I(f)− Iϕ(f)|+ |Iϕ(Lxf)− I(Lxf)| < ε.
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From this. it follows that I(f) = I(Lxf), for all x ∈ G.
Easily, in a similar way, we get that I(cf) = cI(f), for each constant c > 0.
By Lemma 5.7 there is a neighbourhood V of e such that

|Iϕ(f + g)− Iϕ(f)− Iϕ(g)| < ε/3,

whenever suppϕ ⊆ V . Moreover, we can choose a ϕ ∈ C+
c (G) such that

suppϕ ⊆ V and |I(f+g)−Iϕ(f+g)| < ε/3 and |Iϕ(f)+Iϕ(g)−I(f)−I(g)| < ε/3.
By using the triangle inequality, it now easily follows that

|I(f + g)− I(f)− I(g)| < ε.

Since ε > 0 was arbitrary, we conclude that I(f + g) = I(f) + I(g).
Since f, g ∈ C+

c (G) were arbitrarily chosen, we conclude that I is left trans-
lation invariant and linear.

We now extend I to Cc(G). First of all, we set I(0) := 0. For f ∈ Cc(G)
real-valued, define I(f) = I(f+) − I(f−) and for f ∈ Cc(G) arbitrary, define
I(f) = I(Re f) + iI(Im f). Then I is clearly a positive linear functional on
Cc(G) and hence, by the Riesz representation theorem, we conclude that there
is a unique Radon measure µ such that I(f) =

∫
f dµ, for all f ∈ Cc(G).

Definition of I, we have that
∫
f dµ = I(f) ≥ (f0 : f)−1 > 0 for all

f ∈ C+
c (G) and hence µ must be non-zero. Since

∫
f dµ = I(f) = I(Lxf) =∫

Lxf dµ for all x ∈ G and f ∈ C+
c (G), we conclude by Proposition 4.18.2 that

µ is a left Haar measure.

Corollary 5.9. Every locally compact group possesses a right Haar measure.

Proof. It follows from Proposition 4.18.1 and what we have just proven.

5.2 Uniqueness of the Haar measure
The following theorem shows that, in a certain sense, the (left, respectively,
right) Haar measure on any locally compact group is unique.

Theorem 5.10. Let µ and ν be left Haar measures on G. Then there is a
constant c > 0 such that µ = cν.

Proof. Let f, g ∈ C+
c (G) be given. First, we prove that∫

f dµ∫
f dν

=

∫
g dµ∫
g dν

.

Let V0 be a fixed symmetric compact neighbourhood of e and let

A = supp(f)V0 ∪ V0 supp(f),

B = supp(g)V0 ∪ V0 supp(g).

For y ∈ V0, consider the functions fy : x 7→ f(xy)− f(yx) and gy : x 7→ g(xy)−
g(yx). It is clear that fy, gy ∈ Cc(G) with supp(fy) ⊆ A and supp(gy) ⊆ B for
every y ∈ V0.

Let ε > 0. By Corollary 4.8 there is a symmetric neighbourhood V1 of e
such that |fy(x)| < ε and |gy(x)| < ε for all y ∈ V1. Let V := V0 ∩ V1 which is
a symmetric neighbourhood of e.
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Now, pick h̃ ∈ C+
c (G) with supp(h̃) ⊆ V and let h(x) = h̃(x) + h̃(x−1),

for all x ∈ G. Then h ∈ Cc(G), h(x) = h(x−1) for all x ∈ G, and since V is
symmetric, supp(h) ⊆ V .

Since f, g and h are all compactly supported, hence supported on sets of finite
measure, Tonelli’s theorem applies in the following calculations. Therefore,(∫

hdν

)(∫
f dµ

)
=

∫ ∫
h(y)f(x) dµ(x) dν(y)

=

∫ ∫
h(y)f(yx) dµ(x) dν(y).

Furthermore, using properties of h together with Tonelli’s theorem, we get(∫
hdµ

)(∫
f dν

)
=

∫ ∫
h(x)f(y) dµ(x) dν(y)

=

∫ ∫
h(y−1x)f(y) dµ(x) dν(y)

=

∫
h(x−1y)f(y) dν(y) dµ(x)

=

∫ ∫
h(y)f(xy) dν(y)µ(x)

=

∫ ∫
h(y)f(xy) dµ(x)ν(y).

Combining these equalities, we deduce that∣∣∣∣(∫ hdµ

)(∫
f dν

)
−
(∫

hdν

)(∫
f dµ

)∣∣∣∣
=

∣∣∣∣∫ ∫ h(y)f(xy) dµ(x)ν(y)−
∫ ∫

h(y)f(yx) dµ(x) dν(y)

∣∣∣∣
=

∣∣∣∣∫ ∫ h(y)(f(xy)− f(yx)) dµ(x) dν(y)

∣∣∣∣ ≤ εµ(A)

∫
hdν.

The last inequality is due to the fact that |h(y)(f(xy)− f(yx))| < εh(y) for all
x, y ∈ G, since h is supported in V .

Dividing by the strictly positive number
(∫
hdν

) (∫
f dν

)
, we get that∣∣∣∣∫ hdµ∫

hdν
−
∫
f dµ∫
f dν

∣∣∣∣ ≤ εµ(A)∫
f dν

,

Upon replacing f by g, and doing exactly the same calculations, we see that∣∣∣∣(∫ hdµ

)(∫
g dν

)
−
(∫

hdν

)(∫
g dµ

)∣∣∣∣ ≤ εµ(B)

∫
hdν.

Dividing by
(∫
hdν

) (∫
g dν

)
we obtain∣∣∣∣∫ hdµ∫

hdν
−
∫
g dµ∫
g dν

∣∣∣∣ ≤ εµ(B)∫
g dν

.



The Haar measure 31

Now we can combine these inequalities to obtain∣∣∣∣∫ f dµ∫
f dν

−
∫
g dµ∫
g dν

∣∣∣∣ ≤ ∣∣∣∣∫ f dµ∫
f dν

−
∫
hdµ∫
hdν

∣∣∣∣+

∣∣∣∣∫ hdµ∫
hdν

−
∫
g dµ∫
g dν

∣∣∣∣
≤ εµ(A)∫

f dν
+
εµ(B)∫
g dν

.

Since ε > 0 was arbitrary, we conclude that∫
f dµ∫
f dν

=

∫
g dµ∫
g dν

.

Since this holds for any f, g ∈ C+
c (G), we conclude that∫
f dµ = c

∫
f dν

for any f ∈ C+
c (G), where c =

∫
g dµ/

∫
g dν > 0 independent of the choice of

g ∈ C+
c (G). It now clearly follows that

∫
f dµ = c

∫
f dν for every Cc(G), and

by the uniqueness part of the Riesz representation theorem we conclude that
µ = cν.

Note that uniqueness of the left Haar measures also implies uniqueness of
the right Haar measures, because of Proposition 4.18.1.

5.3 An alternative proof of the existence of Haar
measure on a compact abelian group

In this section we shall present a proof of the existence of the Haar measure in
the special case where G is compact and abelian. In this case, the Haar measure
is, of course, both left and right translation invariant.

This proof is based on a fixed point theorem by Markov and Kakutani. To
understand this proof properly, one needs to know something about topological
vector spaces, in particular locally convex spaces and the weak∗-topology (see,
e.g., [2]).

In order to prove the Markov-Kakutani theorem, we need a lemma involving
affine maps.

Definition 5.11. Let X and Y be vector spaces and let C be a convex subset
of X. A map T : C → Y is called affine if

T (tx+ (1− t)y) = tTx+ (1− t)Ty

for all x, y ∈ C and 0 ≤ t ≤ 1.

Lemma 5.12. Let T : C → C be a continuous affine map on a compact, convex
subset C of a locally convex space X. Then T has a fixed point.

Proof. We define the sequence (xn)∞n=0 recursively by

xn =
1

n

n−1∑
i=0

T ix0,
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where x0 ∈ C is arbitrarily chosen. Since C is convex and T maps into C, it
follows that xn ∈ C, for all n ≥ 0. Further, since C is compact, there is a subnet
(xnα)α∈A of our sequence that converges to some point, say x ∈ C. We will
show that Tx = x.

Since the continuous linear functionals seperate points inX (see [5], corollary
to Theorem 3.4), it is enough to show that ϕ(Tx) = ϕ(x) for each continuous
linear functional ϕ on X.

We see, that for a continuous linear functional ϕ, for all n ≥ 0,

|ϕ(Txn − xn)| =
∣∣∣∣ϕ( 1

n
Tnx0 −

1

n
x0

)∣∣∣∣ ≤ 2

n
sup
y∈C
|ϕ(y)|.

The last number is finite, since C is compact, and hence |ϕ(Txn − xn)| → 0 as
n→∞.

In particular, ϕ(Tx− x) = limα ϕ(Txnα − xnα) = 0, and we are done.

Theorem 5.13 (Markov-Kakutani). Let C be a compact convex subset of a
locally convex space. Let F be a family of continuous affine maps of C into
itself. Assume furthermore that TSx = STx, for all T, S ∈ F and x ∈ C. Then
F has a common fixed point, i.e., there is an x ∈ C such that Tx = x, for all
T ∈ F .

Proof. For each finite subset F ⊆ F , define fF = {x ∈ C | Tx = x, ∀T ∈ F}.
We immediately observe that fF is closed, hence compact. Indeed, if (xα)α∈A is
a net in fF such that xα → x ∈ C, then for each T ∈ F , since T is continuous,
we have that limα Txα = limα xα = x, hence Tx = x.

Next, we show that fF is non-empty by induction after |F |. First, we note
that each of the maps T ∈ F has a fixed point by Lemma 5.12. Hence f{T} 6= ∅
for all T ∈ F .

Now assume that fF is non-empty whenever |F | = n. Let S ∈ F . We want
to show that fF∪{S} is non-empty. Since all the T ’s are affine, we have that if
x, y ∈ fF then

T (tx+ (1− t)y) = tTx+ (1− t)Ty = tx+ (1− t)y,

for all T ∈ F , and hence tx+ (1− t)y ∈ fF and we conclude that fF is convex.
Furthermore, if x ∈ F , then for each S ∈ F we have that TSx = STx = Sx

for every T ∈ F , so Sx ∈ fF . In other words the restriction of S to fF can be
viewed as a map S�fF : fF → fF . Since fF is non-empty by assumption and,
moreover, convex and compact, by Lemma 5.12 the map S�fF : fF → fF has a
fixed point, that is, Sx = x for some x ∈ fF . Hence x ∈ fF∪{S} and therefore
the latter set is non-empty.

Clearly, we have that fF1
∩ fF2

= fF1∪F2
6= ∅, and from this it follows that

the family of closed sets fF has the finite intersection property. Since C is
compact, there is an x ∈

⋂
F fF . Clearly, x has the property that Tx = x for

all T ∈ F , and hence x is a common fixed point.

Theorem 5.14. Every compact abelian group G possesses a Haar measure.

Proof. Our goal is to find a probability measure on G, which is also a Haar
measure.
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Note that if I is a positive linear functional on Cc(G) then by the Riesz
representation theorem there is a Radon measure µ such that I(f) =

∫
f dµ for

all f ∈ Cc(G). It is easy to see that ‖I‖ =
∫

1G dµ = µ(G) <∞. In particular,
I ∈ Cc(G)∗, where Cc(G)∗ denotes the set of bounded linear functionals on
Cc(G).

LetM be the set of positive linear functionals on Cc(G) of norm 1. We see
that M ⊆ Cc(G)∗ is closed in the weak∗-topology. Indeed, if (Iα)α∈A is a net
in M converging to I ∈ Cc(G)∗ then clearly I is positive and hence there is a
Radon measure µ such that I(f) =

∫
f dµ for all f ∈ Cc(G). Then

‖I‖ = µ(G) = lim
α
Iα(1G) = lim

α
1 = 1,

and we conclude that I ∈M.
Hence, by the Banach-Alaoglu theorem (see [1], Theorem 5.18),M is com-

pact. Furthermore, M is convex. Indeed, if I1, I2 ∈ M are given by I1(f) =∫
f dµ1 and I2(f) =

∫
f dµ2, then ‖tI1 +(1− t)I2‖ = tµ1(G)+(1− t)µ2(G) = 1.

Now, for y ∈ G, consider the operator Ty onM defined by

TyI(f) = I(Lyf),

for all f ∈ Cc(G). It is clear that Ty is weak∗-continuous. Moreover, it is easy
to see that TyI ∈M for all I ∈M and y ∈ G.

We see that TyTz = TzTy for all y, z ∈ G, since G is abelian. And clearly
Ty is affine, so by the Markov-Kakutani theorem, we conclude that there is a
functional I given by I(f) =

∫
f dµ, f ∈ Cc(G), for some Radon probability

measure µ such that for Ty(I) = I, for all y ∈ G. In other words,
∫
f dµ =∫

Lyf dµ for all y ∈ G. Hence by 4.18.2, µ is a left Haar measure and therefore
also a right Haar measure on G.
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The modular function

Having established the existence and uniqueness of the left, respectively, right
Haar measure, we shall next examine the relationship between the them.

If µ is a left Haar measure on some locally compact group G, then for every
x ∈ G, the measure µx defined by µx(E) = µ(Ex), for every Borel set E, is
clearly also a left Haar measure. Therefore, by the uniqueness (Theorem 5.10)
there is a positive number ∆(x) such that µx = ∆(x)µ.

We see that the map ∆ : G → (0,∞) is independent of the choice of µ.
Indeed, if ν is another left Haar measure, the uniqueness theorem gives us a
constant c > 0 such that ν = cµ, and hence we get that for all Borel sets
E ⊆ X,

νx(E) = ν(Ex) = cµ(Ex) = ∆(x)cµ(E) = ∆(x)ν(E).

The map ∆ will be called the modular function on G. To study some basic
properties of ∆, we need a lemma.

Lemma 6.1. Let µ be a Radon measure on a locally compact group G and let
f ∈ Cc(G). Then the maps x 7→

∫
Lxf dµ and, respectively, x 7→

∫
Rxf dµ are

continuous.

Proof. First, define K := supp f and fix a compact neighbourhood V of e. By
Proposition 4.3.8, the set V K is compact and since µ is a Radon measure,
µ(V K) <∞.

Let (xα)α∈A be a net in G converging to x. We want to show that

lim
α

∫
Lxαf dµ =

∫
Lxf dµ.

First, assume that x = e. Then, given ε > 0, since f is left uniformly
continuous, there is a neighbourhood U of e such that ‖Lyf − f‖ < ε/µ(V K)
for all y ∈ U . By replacing U with U ∩ V , we may even assume that U ⊆ V .
Then clearly supp(Lyf − f) ⊆ V K for all y ∈ U . This ensures that there is an
α0 such that if α ≥ α0, then xα ∈ U , that is∣∣∣∣∫ Lxαf dµ−

∫
f dµ

∣∣∣∣ ≤ ‖Lxαf − f‖ · µ(V K) < ε.

Hence limα

∫
Lxαf dµ =

∫
Lef dµ.
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In general, if limα xα = x ∈ G then limα xαx
−1 = e. Combining this with

the fact that Lxf ∈ Cc(G), we conclude by the previous arguments that

lim
α

∫
Lxαf dµ = lim

α

∫
Lxαx−1Lxf dµ =

∫
Lxf dµ,

and we are done.
The continuity of the map x 7→

∫
Rxf dµ is proven in exactly the same

way.

Proposition 6.2. The modular function on a locally compact group G is a
continuous group homomorphism into the multiplicative group ((0,∞), ·).

Proof. Let x, y ∈ G. It is clear that µxy = (µx)y and hence ∆(xy) = ∆(x)∆(y).
To establish continuity, we observe that∫

Rxf dµ =

∫
f dµx−1 = ∆(x−1)

∫
f dµ.

By Lemma 6.1, we get that the map x 7→ ∆(x−1)
∫
f dµ is continuous. Since

the inversion map x 7→ x−1 is continuous and
∫
f dµ is independent of x, we

conclude that x 7→ ∆(x) is continuous, as wanted.

An important feature of the modular function is that it can determine when
the Haar measure is both left and right translation invariant, using the following
definition:

Definition 6.3. A locally compact group G is called unimodular if ∆ is the
constant function 1.

It is clear that G is unimodular if and only if the left Haar measure µ on
G is also right translation invariant, because (in the “only if”-case) µ(Ex) =
µx(E) = µ(E), for all Borel sets E.

Note that abelian groups are unimodular. Now let us look at some not
entirely trivial examples:

Proposition 6.4. If G is compact, then G is unimodular

Proof. By Proposition 4.18.4, we infer that 0 < µ(G) < ∞. If µ is a left Haar
measure on µ, then µ(G) = µ(Gx) = ∆(x)µ(G) for all x ∈ G, and hence clearly
∆(x) = 1 for all x ∈ G.

Proposition 6.5. Let [G,G] denote the commutater subgroup of G, that is, the
subgroup consisting of elements on the form [x, y] = xyx−1y−1, where x, y ∈ G.
If G/[G,G] is finite, then G is unimodular

Proof. It is easy to see that [G,G] is a normal subgroup of G, and furthermore,
it is clear that ∆(xyx−1y−1) = 1 for all x, y ∈ G. Hence [G,G] ⊆ ker ∆. From
this, we conclude that ∆(G) ' G/ ker ∆ ⊆ G/[G,G], but the latter set is finite
by assumption, and hence ∆(G) is finite. Since the only finite subgroup of
(0,∞) is {1}, we deduce that ∆(G) = {1}.

We will conclude this chapter with a proposition which shows a connection
between a left Haar measure µ and its right translation-invariant version µ̃ from
Proposition 4.18.1.
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Proposition 6.6. Let G be a locally compact group. For every x ∈ G we have
that dµ̃(x) = ∆(x−1) dµ(x).

Proof. Define δ : x 7→ ∆(x−1) for all x ∈ G, which is of course a continuous
homomorphism from G to (0,∞).

It is enough to prove that
∫
f dµ̃ =

∫
f(x)∆(x−1) dµ(x) for every

f ∈ Cc(G), because by Proposition 3.10, the measure δ dµ is a Radon measure
and by the uniqueness part in Riesz representation theorem, we can conclude
that dµ̃(x) = ∆(x−1) dµ(x).

Let f ∈ Cc(G) and y ∈ G. Then fδ ∈ Cc(G), and as in the proof of
Proposition 6.2, we have that∫

Ry(fδ) dµ = δ(y)

∫
f dµ,

and hence ∫
Ryf(x)δ(x) dµ(x) = δ(y−1)

∫
f(xy)δ(xy) dµ(x)

= δ(y−1)

∫
Ry(fδ) dµ =

∫
fδ dµ.

By Proposition 4.18.2, we obtain that δ(x) dµ(x) is a right Haar measure, and by
uniqueness, we conclude that there is a positive c such that

∫
fδ dµ = c

∫
f dµ̃,

for all f ∈ Cc(G).
Now we show that c = 1. Let ε > 0. Since δ is continuous and δ(e) = 1, we

can find a neighbourhood V of e such that |δ(x) − 1| < ε for x ∈ V . We may
even assume that V is symmetric.

As we have seen in the proof of the uniqueness of the Haar measure, we can
find h ∈ C+

c (G) such that h(x) = h(x−1) and supph ⊆ V . Then, by defition of
µ̃, we get that ∫

h(x) dµ̃(x) =

∫
h(x−1) dµ(x) =

∫
h(x) dµ(x),

and hence, we obtain∣∣∣∣(c− 1)

∫
hdµ

∣∣∣∣ =

∣∣∣∣c∫ hdµ̃−
∫
hdµ̃

∣∣∣∣ =

∣∣∣∣∫ hδ dµ−
∫
hdµ

∣∣∣∣ ≤ ε∫ hdµ.

Since ε was arbitrary, we conclude that c = 1.
Hence, for every f ∈ Cc(G) we get that∫

fδ dµ =

∫
f dµ̃.

This completes the proof.
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Examples

In this chapter we shall consider examples of locally compact groups and their
Haar measures.

Example. The Lebesgue measure on the additive group Rn is a standard ex-
ample of a left and right Haar measure. It is well-known that this measure is
translation invariant, and we shall not discuss this any further.

Example. A group equipped with the discrete topology is clearly a locally
compact Hausdorff group.

On such a discrete group G, the counting measure τ is a left and right Haar
measure and hence every Haar measure on G is on the form cτ for some c > 0.
In this case, clearly every singleton {x} has strictly positive measure, namely
µ({x}) = c. What is more curious, is the following fact:

Proposition 7.1. Let G be a locally compact group and let µ be a left or right
Haar measure on G. If µ({e}) > 0 then µ({x}) > 0 for all x ∈ G and G is a
discrete group.

Proof. The first statement follows from translation-invariance of µ.
Now let x ∈ G and let U be a precompact open neighbourhood of x, which

exists by Proposition 2.12. Note that by additivity of µ, every infinite set has
infinite measure. Since every compact set has finite measure, the open set U
must have finite measure and hence be finite. For an x ∈ U , since G is assumed
to be Hausdorff, there is a neighbourhood V of x such that V ∩U = {x}. Hence
{x} is open, so all the singletons are open in G and hence G is discrete.

In order to provide more examples, we need to refresh a theorem about the
Lebesgue integral on Rn. This theorem is an elementary measure theoretical
result, and we will not spend time on it here. The proof can be found in [1],
Theorem 2.47 a.

Theorem 7.2. Let U be an open subset of Rn and h : U → Rn be a C1-
diffeomorphism with Jacobi-matrix Dh(x). If f ∈ L1(h(U),m) then:∫

h(U)

f(x) dx =

∫
U

f(h(x))|detDh(x)|dx

where dx is the Lebesgue measure on Rn.
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Using this result, we are able to prove a proposition that enables us to
provide the aforementioned examples. In the following, by GLn(R) we denote
the invertible n× n-matrices with real entries.

Proposition 7.3. Let G be a locally compact group which is homeomorphic
to an open subset U ⊆ Rn in such a way that if we identify G with U , left
translation is an affine map in the sense that xy = Axy+bx, where Ax ∈ GLn(R)
and bx ∈ Rn. Then |detAx|−1 dx is a left Haar measure on G.

Proof. First note that Axy = AxAy, for all x, y ∈ G. Indeed, for x, y, z ∈ G we
have that

AxAyz +Axby + bx = Ax(Ayz + by) + bx = x(yz) = (xy)z = Axyz + bxy,

and hence
(AxAy −Axy)z = bxy −Axby − bx.

This means that the linear map AxAy−Axy is constant on the open set U ⊆ Rn
and hence clearly equal to the zero matrix. In other words, AxAy = Axy and
the claim is proven.

For x ∈ G, let hx : U → Rn be the function defined by

hx(y) = xy = Axy + bx,

for y ∈ G. Clearly, hx(U) = U , for all x ∈ G. Furthermore, we see that h is a
diffeomorphism with Jacobi-matrix Dhx(y) = Ax.

Now to the proof of the statement. By Proposition 3.10 and 4.18.2, it is
enough to show that for all y ∈ G and f ∈ Cc(G),∫

U

f(yx)|detAx|−1 dx =

∫
U

f(x)|detAx|−1 dx.

By Theorem 7.2 and the fact that hy−1(U) = U , it follows that∫
U

f(yx)|detAx|−1 dx =

∫
U

f(yhy−1(x))|detAhy−1 (x)|
−1|detDhy−1(x)|dx

=

∫
U

f(yy−1x)|detAy−1x|−1|detAy−1 |dx

=

∫
U

f(x)|detAy−1 detAx|−1|detAy−1 |dx

=

∫
U

f(x)|detAx|−1 dx.

This completes the proof.

There is, of course, a similar statement, concerning right translation being
an affine map, that is, yx = Axy + bx. Then |detAx|−1 dx is a right Haar
measure, and we shall use this in the following examples. The proof is similar.

Now we are finally ready to provide those examples:

Example. A very simple example is the multiplicative group ((0,∞), ·). Since
(0,∞) is an open subset of R, we can easily apply Proposition 7.3 to find the
Haar measure. Since the group is abelian, the measure is both left and right
invariant. We see that for all x, y ∈ R, xy = Axy where Ax := (x) ∈ GL1(R).
Since detAx = x > 0 for all x, we conclude that x−1 dx is the Haar measure on
(0,∞).
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Example. Now we turn our attention to another example, namely the topo-
logical group

G =


1 x y

0 1 z
0 0 1

 | x, y, z ∈ Rn
 ,

equipped with matrix multiplication.
It is clear, that G is actually a group, since every matrix in G is invertible

and the product of two such matrices are given by:1 x y
0 1 z
0 0 1

1 u v
0 1 w
0 0 1

 =

1 x+ u xw + y + v
0 1 z + w
0 0 1

 ∈ G.
Using the topology inherited from R9 we get a locally compact group. Fur-

thermore, we can identify G with R3 by the homeomorphism1 x y
0 1 z
0 0 1

 7→
xy
z

 .

Using this identification, we see that left translation is given byxy
z

 ∗
uv
w

 =

 x+ u
xw + y + v
z + w

 = A(x,y,z)

uv
w

+ b(x,y,z)

where b(x,y,z) := (x, y, z) and

A(x,y,z) :=

1 0 0
0 1 x
0 0 1

 .

By Proposition 7.3, we get that 1 · d(x, y, z) = dx dy dz is a left Haar measure
on G.

This time, the group is not abelian, so this measure may not necessarily be
a right Haar measure. But as a matter of fact, it turns out to be. Using the
fact that right translation is given byxy

z

 ∗
uv
w

 =

1 0 0
w 1 0
0 0 1

xy
z

+

uv
w

 ,

we get, by the right translation version of Proposition 7.3 that 1 · d(u, v, w) =
dudv dw is also a right Haar measure. In particular, G is unimodular.

Example. Now, consider the group

G =

{(
x y
0 1

)
| x > 0, y ∈ R

}
.

Again, G is clearly a group and multiplication is given by(
x y
0 1

)(
u v
0 1

)
=

(
xu xv + y
0 1

)
.
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Again, the group is not abelian, and this time the left Haar measure is different
from the right invariant one.

By identifying G with (0,∞)× R via the homeomorphism(
x y
0 1

)
7→
(
x
y

)
,

we see that (
x
y

)
∗
(
u
v

)
=

(
xu

xv + y

)
.

This means that left translation is given as in Proposition 7.3 with

A(x,y) :=

(
x 0
0 x

)
and b(x,y) := (0, y). Hence x−2 dx dy is a left Haar measure.

Similarly, right translation is given by the matrix

A(u,v) :=

(
u 0
v 1

)
and b(u,v) := (0, 0), so u−1 dudv is a right Haar measure on G, which is different
from the left invariant one above. Hence the group is not unimodular.

Example. Now we want to use Proposition 7.3 on the group of invertible ma-
trices, GLn(R).

For a real-valued matrix X ∈Mn(R) we write Xi for the i’th column in X,
that is, X = (X1X2 . . . Xn), and we identify Mn(R) with Rn2

by the map

X 7→


X1

X2

...
Xn

 ∈ Rn
2

.

Using this identification, the group G = GLn(R) is a locally compact group
identified with an open subset of Rn2

, by the continuity of the determinant
map.

We see that left translation is given as

XY = (XY1XY2 . . . XYn) ,

for X,Y ∈ GLn(R), where Y = (Y1, Y2, . . . , Yn). By our identification map of
Mn(R) and Rn2

we see that left translation is a linear map given by XY = AXY
where

AX :=


X

X
. . .

X


is a n2×n2-matrix. Proposition 7.3 states that |detAX |−1 dX is a left Haar mea-
sure where dX is the lebesgue measure on Rn2

. It is easy to see that detAX =
(detX)n using the definition of the determinant, and hence |detX|−n dX is a
left Haar measure on GLn(R).

In a similar way, we see that the measure is also a right Haar measure.



Chapter 8

Unitary representations of
compact groups

This last chapter is an application of the results we have established in the
preceeding ones. We shall discuss unitary representations of compact groups
and use the existence of the Haar measure on such groups to prove certain
results, concerning these representations.

First, we will need some notation. For a Hilbert space H, we denote the
inner product on H by 〈·, ·〉H or just 〈·, ·〉, if no confusion can occur. By B(H)
we denote the set of bounded linear operators on H. The identity operator on
H, will be called IH . For a subset A ⊆ B(H) we denote the commutant of A by
A′. By U(H) we denote the set of unitary operators. Recall that an operator
U on H is unitary if by definition 〈Uξ, Uη〉 = 〈ξ, η〉, for all ξ, η ∈ H.

Definition 8.1. Let G be a topological group. A unitary representation of
G on a Hilbert space H is a group homomorphism π : G → U(H) which is
continuous with respect to the strong operator topology on U(H).

Definition 8.2. Let π : G → U(H) be a unitary representation. A subspace
V ⊆ H is called invariant under π if π(G)V ⊆ V .

Definition 8.3. Let π : G → U(H) be a unitary representation. A unitary
representation π0 : G → U(V ) is called a subrepresentation of π on V , if
π0(g) = π(g)�V , for all g ∈ G.

It follows directly from the definitions that V is invariant under π if and
only if there is a subrepresentation of π on the Hilbert space V . It is clear that
a subrepresentation of a unitary representation π is uniquely determined by the
invariant subspace V , and hence we speak of the subrepresentation of π on V .

Definition 8.4. A unitary representation π of a topological group G on a Hilbert
space H is said to be irreducible if the commutant π(G)′ = CIH .

We shall later see why this is called irreducible, but first we will state the
main result that we want to prove in this chapter. It is a generalization of the
Peter-Weyl theorem.
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Theorem 8.5. Let π be a unitary representation of a compact group G on a
Hilbert space H. Then we can write

H =
⊕
i∈I

Vi,

where {Vi}i∈I is a family of finite dimensional, invariant subspaces for π such
that the subrepresentation of π on Vi is irreducible for every i ∈ I.

Now we shall discuss the notion of unitary representations a little further.
The first question one should ask before proving anything about them is, if
such things even exist! Of course, for any topological group G and Hilbert
space H we can construct a trivial example, namely π : G → U(H) defined by
π(g) = IH , g ∈ G. But, as a matter of fact, we can use existence of the Haar
measure on locally compact groups to construct non-trivial examples of unitary
representations.

Definition 8.6. Let G be a locally compact group with left Haar measure µ.
The left regular representation on H = L2(G,µ) is the map π : G→ B(H)
defined by π(g)(ξ) = Lgξ for all g ∈ G and ξ ∈ L2(G,µ) (see Definition 4.4).

It would be adequate to show that π is actually a unitary representation of
G on L2(G,µ). This will be settled in the following proposition:

Proposition 8.7. With G, H and π as above, we have the following

1. π(g) ∈ U(H) for all g ∈ G,

2. The map π is a homomorphism, and

3. π is continuous with respect to the strong operator topology.

Proof. In the following we denote the 2-norm on L2(G,µ) by ‖·‖2.
1. Let ξ, η ∈ H. Then by definition of the inner product on L2(G,µ) and by

4.18.2 we have

〈Lgξ, Lgη〉 =

∫
Lgξ(x)Lgη(x) dµ(x)

=

∫
Lg(ξ · η̄)(x) dµ =

∫
ξ(x)η(x) dµ(x)

= 〈ξ, η〉 .

2. It is clear that π(gh) = Lgh = LgLh = π(g)π(h) for all g, h ∈ G.
3.We want to prove that the map g 7→ Lgξ is continuous, for every ξ ∈ H.

We begin by assuming that ξ ∈ Cc(G). This part of the proof will be some-
what similar to the proof of Lemma 6.1. Let K := supp(ξ) and fix a compact
neighbourhood V of e. Note that V K is compact and hence µ(V K) <∞. The
function ξ is left uniformly continuous, so we can choose a neighbourhood U og
e in G such that |Lgξ(x)− ξ(x)| <

√
ε/µ(V K) whenever g ∈ U and x ∈ G (cf.

Proposition 4.6). We can assume that U ⊆ V . Then, for all g ∈ U ,

‖Lgξ − ξ‖22 =

∫
|Lgξ(x)− ξ(x)|2 dµ(x) < ε

µ(V K)

µ(V K)
= ε,
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where we used that the map G 3 x 7→ |Lgξ(x)− ξ(x)|2 is supported in V K for
all g ∈ U .

By replacing ξ with Lhξ for h ∈ G, it now follows that for every g, h ∈ G
there is a neighbourhood U of e such that if gh−1 ∈ U , then

‖Lgξ − Lhξ‖2 = ‖Lgh−1(Lhξ)− Lhξ‖2 < ε.

This entails that the map g 7→ Lgξ is continous.
Now, let ξ ∈ L2(G,µ), and let (gα)α∈A be a net in G that converges to g ∈ G.

Let ε > 0. Since Cc(G) is 2-norm dense in L2(G,µ) by Theorem 3.12, we can
choose a η ∈ Cc(G) such that ‖ξ−η‖ < ε/3. Obviously, then ‖Lhξ−Lhη‖ < ε/3
for every h ∈ G. By continuity of the map g 7→ Lgη, we can choose an α0 such
that if α ≥ α0, then ‖Lgαη − Lgη‖ < ε/3. By this, we get

‖Lgαξ − Lgξ‖2 = ‖Lgαξ − Lgαη + Lgαη − Lgη + Lgη − Lgξ‖2
≤ ‖Lgαξ − Lgαη‖2 + ‖Lgαη − Lgη‖2 + ‖Lgη − Lgξ‖2 < ε,

which completes the proof.

After this example of a unitary representation of a compact group, we will
begin to examine properties of unitary representations in general.

Proposition 8.8. A unitary representation π is irreducible if and only if the
only closed invariant subspaces under π are the trivial subspaces {0} and V .

Proof. Let π be a unitary representation of G on H. For a closed subspace
V ⊆ H, let PV denote the projection onto V . First note that V is invariant
under π(G) if and only if PV commutes with π(g) for all g ∈ G. Indeed, if
V is invariant, then for g ∈ G, we have π(g)PV (H) = π(g)V ⊆ V . Hence
PV π(g)PV = π(g)PV . Similarly, PV π(g−1)PV = π(g−1)PV and it follows that
for ξ, η ∈ H

〈π(g)PV ξ, η〉 = 〈PV π(g)PV ξ, η〉 = 〈ξ, (PV π(g)PV )∗η〉
=
〈
ξ, PV π(g−1)PV η

〉
=
〈
ξ, π(g−1)PV η

〉
= 〈PV π(g)ξ, η〉 .

We thereby conclude that π(g)PV = PV π(g), for all g ∈ G.
On the other hand, if PV π(g) = π(g)PV for all g ∈ G, then π(g)V =

π(g)PV (H) = PV π(g)(H) ⊆ V for all g ∈ G, and the assertion is proven.
Now we turn to the proof of the proposition. Assume that π is irreducible.

Then by definition π(G)′ = {A ∈ B(H)|π(g)A = Aπ(g),∀g ∈ G} = CIH , so,
in particular, the only projections that commute with π(g) for all g ∈ G are
the trivial ones, namely the projection 0 onto {0} and the identity IH onto H.
From the argument above, it follows that the only closed invariant subspaces
under π are the trivial ones.

Assume now that if π(G)V ⊆ V then either V = {0} or V = H. Then again
by the above assertion, we get that the only projections in π(G)′ are 0 and IH .
It is well-known that the commutant of a self-adjoint set is a von Neumann-
algebra and that a von Neuman algebra is the closed span of the projections in
it. Hence

π(G)′ = span{0, IH} = CIH .

This completes the proof.
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Proposition 8.9. Let π : G→ U(H) be a unitary representation. Furthermore,
let E ∈ B(H) be a finite dimensional projection. Then the map G→ B(H) given
by

g 7→ π(g)Eπ(g−1),

for g ∈ G, is continuous, when B(H) is equipped with the norm topology.

Proof. Since π(g)Eπ(g−1) = π(g)E(π(g)E)∗ for all g ∈ G, it suffices to show
that the map defined by g 7→ π(g)E for g ∈ G is norm continuous.

Let e1, e2, . . . , en be an orthonormal basis for E(H). Let g, h ∈ G and ξ ∈ H
with ‖ξ‖ ≤ 1. Then Eξ =

∑n
i=1 λiei for some λ1, λ2, . . . , λn ∈ C. We get that

‖(π(g)E − π(h))ξ‖ =

∥∥∥∥∥
n∑
i=1

λi(π(g)− π(h))ei

∥∥∥∥∥
≤

n∑
i=1

|λi| · ‖(π(g)− π(h))ei‖

≤

(
n∑
i=1

|λi|2
)1/2( n∑

i=1

‖(π(g)− π(h))ei‖2
)1/2

≤

(
n∑
i=1

‖(π(g)− π(h))ei‖2
)1/2

,

where we used that (
∑n
i=1 |λi|)

1/2
= ‖Eξ‖ ≤ ‖ξ‖ ≤ 1. Hence

‖(π(g)E − π(h))‖ ≤

(
n∑
i=1

‖(π(g)− π(h))ei‖2
)1/2

.

Since the map g 7→ π(g) is continous in the strong operator topology, we con-
clude that this last expression can be made arbitrarily small when g and h are
close, and hence π(g)E is norm continuous.

Now we will discuss the theory of vector-valued integration, which we will
need in order to prove Theorem 8.5.

Definition 8.10. Let (X,µ) be a measure space and let H be a Hilbert space.
By L1(X,B(H)) we denote the set of functions f : X → B(H) satisfying the
following two contitions:

1. For all ξ, η ∈ H, the function defined by

x 7→ 〈f(x)ξ , η〉 ,

for x ∈ X, is measurable.

2. The function defined by x 7→ ‖f(x)‖, for x ∈ X, belongs to L1(X,µ).

Note that it follows straight from the second condition and the Cauchy-
Schwarz inequality that the functions x 7→ 〈f(x)ξ, η〉 belong to L1(X,µ) for all
ξ, η ∈ H.

The next proposition shows that whenever f ∈ L1(X,B(H)), we can give a
meaningful definition of the integral

∫
f(x) dµ(x).
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Proposition 8.11. For each f ∈ L1(X,B(H)), there is a unique element∫
f(x) dµ(x) ∈ B(H) which satisfies that〈(∫

f(x) dµ(x)

)
ξ, η

〉
=

∫
〈f(x)ξ, η〉 dµ(x),

for all ξ, η ∈ H. Moreover,∥∥∥∥∫ f(x) dµ(x)

∥∥∥∥ ≤ ∫ ‖f(x)‖ dµ(x).

Proof. Consider the map F : H×H → C defined by F (ξ, η) =
∫
〈f(x)ξ, η〉 dµ(x),

ξ, η ∈ H. This is well-defined since the function integrated belongs to L1(X,µ)
for every ξ, η ∈ H by assumption. Furthermore, F is clearly linear in the first
variable and conjugate linear in the second. Moreover, for all ξ, η ∈ H,

|F (ξ, η)| ≤
∫
|〈f(x)ξ, η〉| dµ(x) ≤ ‖ξ‖‖η‖

∫
‖f(x)‖ dµ(x).

Hence, by assumption again, F is bounded with ‖F‖ ≤
∫
‖f(x)‖ dµ(x). By

a theorem due to Riesz (also called the Riesz representation theorem (see [4],
Theorem 1.2)), there is a unique operator T ∈ B(H) such that F (ξ, η) = 〈Tξ, η〉,
for all ξ, η ∈ H. Obviously, the operator

∫
f dµ(x) := T satisfies the desired

properties.

Having defined the vector-valued integral properly, we shall examine some
of its basic properties.

Proposition 8.12. Consider L1(X,B(H)) defined as above. Then

1. The vector-valued integral is linear in the sense that if f, g ∈ L1(X,B(H))
and A,B ∈ B(H), then (AfB + g) ∈ L1(X,B(H)) and∫

Af(x)B + g(x) dµ(x) = A

(∫
f(x) dµ(x)

)
B +

∫
g(x)µ(x).

2. If E ⊆ X is measurable of finite measure, then 1E ·IH ∈ L1(X,B(H)) and∫
1E(x) dµ(x) = µ(E)IH .

3. If f ∈ L1(X,B(H)) and f(x) ≥ 0 for all x ∈ X, then
∫
f(x) dµ(x) ≥ 0.

Proof. 1. Let f, g ∈ L1(X,B(H)) and A,B ∈ B(H) be given. Since

‖Af(x)B + g(x)‖ ≤ ‖A‖‖f(x)‖‖B‖+ ‖g(x)‖,

for x ∈ X, it follows that (AfB + g) ∈ L1(X,B(H)), and for ξ, η ∈ H,〈(∫
Af(x)B + g(x) dµ(x)

)
ξ, η

〉
=

∫
〈(Af(x)B + g(x))ξ, η〉µ(x)

=

∫
〈f(x)(Bξ), A∗η〉 dµ(x) +

∫
〈g(x)ξ, η〉 dµ(x)

=

〈(∫
f(x) dµ(x)

)
Bξ,A∗η

〉
+

〈(∫
g(x) dµ(x)

)
ξ, η

〉
=

〈(
A

∫
f(x) dµ(x)B +

∫
g(x) dµ(x)

)
ξ, η

〉
,
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and the desired conclusion follows.
2. It is clear that 〈1E(x)IHξ, η〉 = 1E(x) 〈ξ, η〉 for all ξ, η ∈ H and the right

hand side is clearly measurable.
Furthermore, ‖1E(x)IH‖ = 1E(x)‖IH‖, so∫

‖1E(x)IH‖ dµ(x) = µ(E) <∞,

and hence 1EIH ∈ L1(X,B(H)). Since∫
〈1E(x)IHξ, η〉 dµ(x) = µ(E) 〈ξ, η〉 ,

for all ξ, η ∈ H, we conclude that
∫

1E(x)IH dµ(x) = µ(E)IH .
3. Assume that f(x) ≥ 0 for all x ∈ X. By definition of positive op-

erators, this means that 〈f(x)ξ, η〉 ≥ 0 for all ξ, η ∈ H and x ∈ X. Hence〈(∫
f(x) dµ(x)

)
ξ, η
〉

=
∫
〈f(x)ξ, η〉 dµ(x) ≥ 0 for all ξ, η ∈ H and therefore∫

f(x) dµ(x) ≥ 0.

For a subset A ⊆ B(H), we let L1(X,A) denote the set of functions
f ∈ L1(X,B(H)) such that f(X) ∈ A. The following proposition is a nice
application of the double commutant theorem, and even though we shall not
use it, it is proven here for completeness.

Proposition 8.13. IfM⊆ B(H) is a von Neumann algebra, then the operator∫
f(x) dµ(x) belongs toM whenever f ∈ L1(X,M).

Proof. Let f ∈ L1(X,M) be given and let A ∈M′. Then by Proposition 8.12.1
we have that

A

∫
f(x) dµ(x) =

∫
Af(x) dµ(x) =

∫
f(x)A dµ(x) =

∫
f(x) dµ(x)A,

so
∫
f(x) dµ(x) ∈ M′′ =M by the double commutant theorem (see [4], Theo-

rem 18.6).

We will now consider certain topological spaces and examine vector-valued
integration with respect to a Borel measure.

Lemma 8.14. Let X be a compact Hausdorff space and let µ be a finite Borel
measure on X. Let A ⊆ B(H) be a C∗-algebra. If f : X → A is a continuous
function when A is equipped with the norm topology, then f ∈ L1(X,A) and∫
f(x) dµ(x) ∈ A.
Moreover, if f is positive and nonzero, that is, f(x) ≥ 0 for all x ∈ X and

there is an x0 ∈ X such that f(x0) 6= 0 , and if µ(U) > 0 for all non-empty
open sets U , then

∫
f(x) dµ(x) is positive and nonzero.

Proof. The functions X 3 x 7→ 〈f(x)ξ, η〉 are continuous for all ξ, η ∈ H, since
f is continuous. The function X 3 x 7→ ‖f(x)‖ is continuous as well. Since X
is compact with µ(X) <∞, every continuous function from X to C is bounded
hence integrable and therefore f ∈ L1(X,A).

We now prove that
∫
f dµ ∈ A. Let ε > 0. Since f(X) is compact in the

norm-topology, we can find a finite number of operators (Ti)
n
i=1 ⊆ f(X), such

that the balls
B(Ti, ε) := {S ∈ f(X)| ‖Ti − S‖ < ε},
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cover f(X). Hence the sets (f−1(B(Ti, ε)))
n
i=1 cover X, and we can find a

finite partition (Ei)
n
i=1 of X, consisting of measurable sets, such that Ei ⊆

f−1(B(Ti, ε)), for i = 1, 2, . . . , n.
ChooseAi ∈ f(Ei) ⊆ B(Ti, ε) for each i = 1, 2, . . . , n, and set g =

∑n
i=1 1EiAi.

We see that for every x ∈ Ei we have that ‖f(x)− g(x)‖ = ‖f(x)−Ai‖ < ε.
Since the sets Ei have finite measure for every i, by Proposition 8.12 it

follows that
∫
g dµ =

∑n
i=1 µ(Ei)Ai ∈ A. Furthermore, by Proposition 8.11,∥∥∥∥∫ f dµ−

∫
g dµ

∥∥∥∥ ≤ ∫ ‖f − g‖ dµ < εµ(X).

Since A is norm-closed, µ(X) < ∞, and ε > 0 was arbitrary, we conclude that∫
f dµ ∈ A.
Now assume that f is positive and non-zero and that µ(U) > 0 for all open

sets U . Then by Proposition 8.12.3, the integral
∫
f dµ ≥ 0.

Let x0 ∈ X such that f(x0) 6= 0. Since f(x0) ≥ 0, there must be a ξ ∈ H
such that 〈f(x0)ξ, ξ〉 6= 0. Since 〈f(x)ξ, ξ〉 is a nonzero, nonnegative continuous
function, the integral

∫
〈f(x)ξ, ξ〉 dµ > 0. Hence〈(∫
f dµ

)
ξ, ξ

〉
=

∫
〈f(x)ξ, ξ〉 dµ > 0,

and we conclude that
∫
f dµ is nonzero.

The requirement that µ(U) > 0, for all open U , in the last proposition is
in particular satisfied for the Haar measure of a compact group. We shall now
begin to combine the theory we developed in this chapter with our knowledge
of the Haar measure.

Proposition 8.15. Let G be a compact group with Haar measure µ. Let
π : G → U(H) be a unitary representation. Let E ∈ B(H) be a finite di-
mensional nonzero projection. Set

A :=

∫
π(g)Eπ(g−1) dµ(g).

Then we have the following:

1. The operator A is compact.

2. Furthermore, A ≥ 0 and A 6= 0.

3. Lastly, A ∈ π(G)′.

Proof. Let K(H) denote the compact operators on H, and let f : G→ B(H) be
defined by g 7→ π(g)Eπ(g−1), for g ∈ G. We see that π(g)Eπ(g−1) is a finite
rank operator for every g ∈ G since E is finite dimensional. Hence f(g) ∈ K(H)
for every g ∈ G. By Proposition 8.9 the map f is norm-continuous and hence by
Lemma 8.14 we conclude that f ∈ L1(G,K(H)) and that A =

∫
f dµ ∈ K(H).

We note that for all g ∈ G, we have that f(g)2 = f(g)∗ = f(g), so f(g) is a
projection and in particular f(g) ≥ 0 for all g ∈ G. Furthermore, f(e) = E 6= 0
and using that µ is a Haar measure, by the last part of Lemma 8.14, we get
that A ≥ 0 and A 6= 0.
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To show that A ∈ π(G)′, we prove that for all g ∈ G,

π(g)Aπ(g−1) = A.

Using Proposition 8.12.1, it follows that

π(g)Aπ(g−1) =

∫
π(g)π(h)Eπ(h−1)π(g−1) dµ(h) =

∫
π(gh)Eπ((gh)−1) dµ(h).

Let ξ, η ∈ H. Using Proposition 4.18.2 on the Haar measure µ, we get that for
all g ∈ G

〈
π(g)Aπ(g−1)ξ, η

〉
=

〈(∫
π(gh)Eπ((gh)−1) dµ(h)

)
ξ, η

〉
=

∫ 〈
π(gh)Eπ((gh)−1)ξ, η

〉
dµ(h)

=

∫ 〈
π(h)Eπ(h−1)ξ, η

〉
dµ(h)

=

〈(∫
π(h)Eπ(h−1) dµ(h)

)
ξ, η

〉
= 〈Aξ, η〉 .

We conclude that A = π(g)Aπ(g−1) for all g ∈ G and hence that A ∈ π(G)′.

Proposition 8.16. Let π : G → U(H) be a unitary representation on H 6=
{0}. Furthermore, assume that G is compact. Then there is a nonzero, finite-
dimensional subspace V ⊆ H which is invariant under π.

Proof. Let µ be the Haar measure on G, and let E ∈ B(H) be an arbitrary,
1-dimensional projection. Set

A :=

∫
π(g)Eπ(g−1) dµ(g).

Then, by Proposition 8.15, A is a positive, compact operator, which is nonzero,
and A ∈ π(G)′. Pick a nonzero eigenvector λ for A and let V be the eigenspace
corresponding to λ. This is possible by the spectral theorem for compact opera-
tors (see [3] Theorem 5.2.2). The same theorem gives that V is finite dimensional
and, of course, V 6= {0}.

We see that if ξ ∈ V and g ∈ G, then Aξ = λξ and hence

Aπ(g)ξ = π(g)Aξ = π(g)λξ = λπ(g)ξ,

which implies that π(g)ξ is an eigenvector for A with eigenvalue λ and we
conclude that π(g)ξ ∈ V . In other words, π(g)V ⊆ V for all g ∈ G, and V is
invariant under π. The proof is complete.

As a corollary, we immediately obtain that if π : G→ U(H) is an irreducible
unitary representation of a compact group G, then H is finite dimensional.

Lemma 8.17. Let G be a compact group and let H be a nonzero, finite dimen-
sional Hilbert space. Assume that π : G → U(H) is a unitary representation.
Then there is a nonzero subspace V ⊆ H such that the subrepresentation of π
on V is irreducible.
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Proof. We prove this by strong induction after dim(H). Let π : G→ U(H) be a
unitary representation and assume that dim(H) = 1. Then π itself is irreducible.
Indeed, all the subspaces of H are {0} and H and hence by Proposition 8.8 the
desired follows.

Let n > 1 and assume that all unitary representations π′ : G 7→ U(H ′), where
dim(H ′) < n, have an irreducible subrepresentation on a subspace V ⊆ H ′ such
that V 6= {0}. Consider a Hilbert space H with dim(H) = n and a unitary
representation π : G → U(H). If π is irreducible, we are done. If not, by
Proposition 8.8 there is a nonzero subspace H ′ ⊆ H such that H ′ 6= H and H ′
is invariant under π. Then the map π0 : G→ U(H ′) defined as π0(g) = π(g)�V is
a subrepresentation of π. Since 0 < dim(H ′) < dim(H) = n, by our assumption,
there is a irreducible subrepresentation π1 of π0 on a subspace V ⊆ H ′ ⊆ H
such that V 6= {0}. It is clear that π1 is also a subrepresentation of π, and the
proof is complete.

Corollary 8.18. Let G be a compact group and let π : G → U(H) be a uni-
tary representation on a Hilbert space H 6= {0}. Then there is an irreducible
subrepresentation of π on a nonzero, finite dimensional subspace V ⊆ H.

Proof. It follows directly from Proposition 8.16 and Lemma 8.17.

It turns out that this corollary will be the key to prove the theorem stated
in the beginning of this chapter. We will conclude this chapter and thus the
whole thesis with a presentation of this proof.

Proof of Theorem 8.5. Let G be a compact group and let π be a unitary rep-
resentation of G on a Hilbert space H. Let P be the collection of all fami-
lies {Vi}i∈I , where Vi ⊆ H is a nonzero finite-dimensional subspace, such that
Vi ⊥ Vj whenever i 6= j and the subrepresentation of π on Vi is irreducible for
every i ∈ I.

We note that it follows from Corollary 8.18 that P is non-empty. Indeed,
there is a finite dimensional subspace V ⊆ H such that the subrepresentation
of π on V is irreducible. Hence {V } ∈ P.

The collection P is partially ordered under the inclusion order “⊆”. We
want to use Zorn’s lemma in order to conclude that P contains a maximal
element. Therefore, let T be a totally ordered subset of P. We want to show
that T0 =

⋃
T∈T T is an upper bound for T in P, that is, T0 ∈ P and T ⊆ T0

for all T ∈ T . The last assertion is clear. To see that T0 ∈ P, we note that T0
clearly consists of nonzero, finite dimensional subspaces of H. What remains is
to show that the subspaces are pairwise orthogonal. Let V1, V2 ∈ T0. Since T
is totally ordered, there is a T ∈ T such that V1, V2 ∈ T , and since T ∈ P, we
conclude that V1 ⊥ V2.

Hence every totally ordered subset of P has an upper bound, and, by Zorn’s
lemma, there exists a maximal element {Vi}i∈I in P.

We now claim that
H =

⊕
i∈I

Vi.

Assume by contradiction that this is not the case. Then the orthogonal com-
plement

F :=

(⊕
i∈I

Vi

)⊥
,
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is a nonzero subspace of H.
We check that F is invariant under π. Let g ∈ G and ξ ∈ F . We have to

show that 〈π(g)ξ, η〉 = 0 for every η ∈
⊕

i∈I Vi. Since Vi is invariant under π
for every i ∈ I, we conclude that π(g−1)η ∈

⊕
i∈I Vi. Hence

〈π(g)ξ, η〉 =
〈
ξ, π(g−1)η

〉
= 0.

The last equality follows from the definition of ξ being in F .
Since F is invariant under π, we can consider the subrepresentation π0 of π

on F . By Corollary 8.18, there is a nonzero, finite-dimensional subspace V ⊆ F
such that the subrepresentation π1 of π0 to V is irreducible. Note that the
subrepresentation of π on V is π1 as well. Since V ⊆ F , we conclude that
V ⊥ Vi for every i ∈ I. Hence {Vi}i∈I ∪ {V } satisfies every requirement for
being an element of P, but since {Vi}i∈I ( {Vi}i∈I ∪ {V } this contradicts the
fact that {Vi}i∈I is a maximal element of P.



Litterature

The material for this thesis is mainly collected from [1]. Almost all the major
proofs in Chapters 1-7 are from this book, in particular the main theorem about
existence and uniqueness of the Haar measure can be found in [1]. The ideas
of some of the details, though, stem from [3], e.g. the proof of Proposition 7.1.
Moreover, the proof of uniqueness of the Haar measure in the compact abelian
case is from [2].

Chapter 8 is based on notes by the supervisor of this thesis. The main result
discussed in this chapter can be found in [3] as well, but the approach is different
therein.
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