Mathematics for Economists I Problems 6 **Derivatives**

Find the derivative of the given function and the domain where both the function and its derivative are defined.

1.
$$x^4 + 5x^3 - 2x^2 - 6x + 3$$
 2. $\frac{1}{3x+2}$

2.
$$\frac{1}{3x+2}$$

3.
$$\frac{x^2+3x-2}{x+1}$$

4.
$$(x^2+1) \ln x$$

5.
$$e^{4x-2}$$

6.
$$e^{x^2-x+1}$$

7.
$$5^x$$

8.
$$\ln \sqrt{2x+3}$$

9.
$$\sqrt{x^2-4}$$

10.
$$\log_{10}(x^2-1)$$

11.
$$\ln\left(\frac{4-2x}{x+2}\right)$$

12.
$$\frac{x+2}{\sqrt{x^2+1}}$$

13.
$$\frac{e^{1+2x}}{x^2+3x+4}$$

14.
$$\frac{\ln(3-x)}{x^2+4}$$

15.
$$\sqrt{x^2 + \frac{8}{x}}$$

16.
$$\frac{\sqrt{2+x}}{4x-2}$$

17.
$$\frac{1}{x}$$

18.
$$(x^2+1)^4$$

Solutions:

1.
$$4x^3 + 15x^2 - 4x - 6, x \in \mathbb{R}$$

2.
$$\frac{-3}{(3x+2)^2}$$
, $x \neq -\frac{2}{3}$

3.
$$\frac{x^2+2x+5}{(x+1)^2}$$
, $x \neq -1$

4.
$$2x \ln x + \frac{x^2+1}{x}, x \in \mathbb{R}_+$$

5.
$$4e^{4x-2}, x \in \mathbb{R}$$

6.
$$(2x-1)e^{x^2-x+1}, x \in \mathbb{R}$$

7.
$$(\ln 5)5^x$$
, $x \in \mathbb{R}$; since $5^x = e^{(\ln 5)x}$, therefore chain rule

8. $\frac{1}{2x+3}$, $x > -\frac{3}{2}$; is possible to differentiate as a superposition of three functions $(\ln z, \sqrt{y}, 2x+3)$ or to realize that $\ln \sqrt{y} = \frac{1}{2} \ln y$

9.
$$\frac{x}{\sqrt{x^2-4}}, x \in (-\infty, -2) \cup (2, +\infty)$$

10.
$$\frac{1}{\ln 10} \frac{2x}{x^2-1}$$
, $x \in (-\infty, -1) \cup (1, +\infty)$; since $\log_{10} y = \frac{\ln y}{\ln 10}$

11. $\frac{4}{x^2-4}$, $x \in (-2,2)$; is possible to differentiate as a superposition of two functions $(\ln y, \frac{4-2x}{x+2})$ or to realize that $\ln \left(\frac{4-2x}{x+2}\right) = \ln(4-2x) - \ln(x+2)$

12. $\frac{1-2x}{(x^2+1)^{\frac{3}{2}}}$, $x \in \mathbb{R}$; we differentiate this as a fraction, and the complicated fraction which results there can be expanded by $\sqrt{x^2+1}$, so we get rid of square roots in the numerator

13.
$$\frac{e^{1+2x}(2x^2+4x+5)}{(x^2+3x+4)^2}$$
, $x \in \mathbb{R}$

14.
$$\frac{-\frac{x^2+4}{3-x}-2x\ln(3-x)}{(x^2+4)^2} = \frac{x^2+4-2x(x-3)\ln(x-3)}{(x^2+4)^2(x-3)}, \ x \in (-\infty, 3)$$

15.
$$\frac{x^3-4}{x^2\sqrt{\frac{x^3+8}{x}}}, x \in (-\infty, -2) \cup (0, +\infty)$$

16.
$$\frac{-2x-9}{4(2x-1)^2\sqrt{x+2}}$$
, $x \in (-2, \frac{1}{2}) \cup (\frac{1}{2}, +\infty)$

17. $\frac{-1}{x^2}$, $x \in \mathbb{R}_- \cup \mathbb{R}_+$; there are two ways: either as a derivative of a fraction or as a derivative of x^{-1} , try both of them

18. $8x(x^2+1)^3$, $x \in \mathbb{R}$; there are two ways: either as a superposition (inner function is x^2+1 , outer function is the fourth power) or by expanding the expression and differentiate term by term (which way is faster?)