
Lecture 8

QE continued
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topics

HW: QE for VectQ

completeness of ACFp from the QE for ACF

definable sets in ACF, strong minimality

algebraic geometry, Chevalley’s theorem

combinatorial pregeometries

theory RCF and QE

the Tarski-Seidenberg thm

o-minimality

definable sets and cell decomposition
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HW

The task: establish the QE for VectQ

Atomic flas in x , y can be put into the form

∑

i

qixi = 0 or
∑

i

qixi = y .

Hence a primitive fla ψ(x , y) with one ∃y quantifier asserts that a system
of equations as above, and of inequations of the form

∑

i

qixi 6= 0 or
∑

i

qixi 6= y

has a solution for y .
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direct elimination

Case 1: the system ψ(x , y) contains some equation
∑

i

qixi = y .

Substitute everywhere
∑

i qixi for y : the resulting system ψ′(x) is
equivalent to ∃yψ(x , y).

Case 2: otherwise let ψ′(x) be the system of (in)equations in ψ in x only:
∑

i

qixi = 0 and
∑

i

qixi 6= 0 .

If it is solvable we may take for y any vector except those finitely many
ruled out by the inequations

∑

i

qixi 6= y

in the system. Hence again to ∃yψ(x , y) is equivalent to ψ′(x).
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model-th. criterion
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QE ⇒ completeness

Let ϕ be a sentence.

By QE, ACF ⊢ ϕ ≡ α, where α is a q-free sentence: involves only closed
terms built from 0 and 1, i.e. their evaluation is done inside the prime field
Fp or Q, resp.
Assume char = p (the case char = 0 is analogous) and let A and B be
two ACFp fields. Then we have:

A |= ϕ⇔ A |= α⇔

Fp |= α⇔

B |= α⇔ B |= ϕ

So:
A ≡ B .
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definable sets in ACF

Each fla ϕ(x , y ) is equivalent to a Boolean combination of atomic flas

t(x , y ) = s(x , y)

and that is equivalent in fields to

p(x , y) = 0

where p ∈ Z[x , y ].
Hence for any ACF A and any parameters a ∈ Am, ϕ(x , a) defines a subset
of An (n = the nb. of x-vars) that is a Boolean combination of sets
defined by polynomial equations over A:

p(x , a) = 0 .
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alg.geometry terminology

Subsets of A defined by polynomial equations over A:

p(x , a) = 0

are in algebraic geometry called Zariski closed.

Their Boolean combinations are called constructible sets.

Corollary of QE for ACF

Definable sets in any ACF are exactly constructible sets.
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Chevalley

Theorem (Chevalley)

The image of a constructible set in a polynomial map is constructible.

Prf.:
F : x ∈ An → y ∈ Aℓ

If U ⊆ An is constructible then it is definable by some fla ϕ(x) (with
parameters from A).
Using this definition we can define F (U) by

∃x (ϕ(x) ∧ F (x) = y) .

Hence F (U) is definable and thus also constructible.

�

Note that this thm is equivalent to QE: projections are special poly maps.
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minimality

Definition: minimality

A structure D is minimal iff all definable subsets of D are finite or cofinite.
A theory T is strongly minimal iff all its models are minimal.

Theorem

ACF is strongly minimal.

Prf.:
A polynomial p(x) in 1 variable has no roots (if p is a non-zero constant),
a finite nb. of roots, or all elements are roots (if p is the zero poly). Hence
atomic flas define finite or cofinite sets.
The class of finite or cofinite sets is closed under Boolean operations. By
QE then all definable subsets of the field are finite or cofinite (we claim
nothing about definable subsets of Cartesian powers).

�
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a closure operation

Definition: acl

Let A be a structure and U ⊆ A. The model-theoretic algebraic closure of
U, denoted by acl(U), is the set of all b ∈ A such that there is a formula
ψ(x , y ) and parameters a ∈ An satisfying:

A |= ψ(b, a),

there are finitely many c ∈ A s.t. A |= ψ(c , a).

Fact

In ACF this notion coincides with the algebraic notion:
b ∈ acl(U) iff b is in the alg.closure of the subfield of A generated by U.
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properties

Fact

In any structure A the closure operation acl satisfies the following
properties:

U ⊆ acl(U) = acl(acl(U)),

U ⊆ V ⇒ acl(U) ⊆ acl(V ),

(finite character) b ∈ acl(U) iff ∃U0 ⊆fin U b ∈ acl(U0).

If A is strongly minimal (i.e. its elementary diagram is) then also:

(exchange property) If a ∈ U and b ∈ acl(U) \ acl(U \ {a}) then
a ∈ acl((U \ {a}) ∪ {b}).
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pregeometries

Any set X 6= ∅ together with an operation

cl : P(X ) → P(X )

satisfying the properties from the previous slide is called a pregeometry (or
a matroid). Using cl we can define a number of geometric notions:

U ⊆ X is independent iff for all u ∈ U, u /∈ acl(U − u),
B ⊆ X is a basis iff B is maximal independent,

dimension dim(X ) is the cardinality of a basis,

U ⊆ X is closed iff U = cl(U),
...

It is a deep model-th fact that the iso-type of a strongly minimal structure
is determined by its theory plus the dimension of the pregeometry it
defines.

geometric model th: much more
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reals

In the ordered real closed filed R consider a fla stating that a quadratic
poly has a root:

∃y ay2 + by + c = 0

(I use a, b, c instead of x2, x1, x0 as it is a custom).

Namely, this formulas with free var’s a, b, c is equivalent to the following
q-free formula:

[a = 0 ∧ (b 6= 0 ∨ c = 0)] ∨ [a 6= 0 ∧ b2 ≥ 4ac] .

This is not an accident.
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axiomatization

theory RCF (real closed fields):

language: 0, 1,+, ·, <

axioms:

ax’s of commutative fields,

ax’s stating that < is a strict linear ordering,

ax’s of ordered fields:

x < y → x + z < y + z and (x < y ∧ 0 < z) → x · z < y · z

ax of squares: x > 0 → ∃y y · y = x ,

odd degree polys have roots; for all n = 1, 3, 5, . . . :

xn 6= 0 → ∃y
∑

i≤n

xiy
i = 0 .

15 / 23



Tarski’s thm

Theorem (Tarski)

RCF has QE and is complete and decidable.

semi-algebraic geometry: a subset of Rn is semialgebraic iff it is defined by
a Boolean combination of strict inequalities

p(x) > 0 .

Because t = s is equivalent to t − s = 0 which is equivalent to

¬(t − s > 0 ∨ s − t > 0)

the QE implies that all definable sets are semialgebraic.

Corollary (Tarski-Seidenberg)

A projection of a semialgebraic set is also semialgebraic.

A proof is analogous to the one for Chevalley’s thm (slide 9).
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Ex’s

Ex.: the topological closure of a definable set is definable.

Assume U ⊆ Rn is definable by ϕ(x) with parameters from R . Then its
closure is defined by η(y ):

∀ǫ > 0∃x (
∧

i

(xi − yi)
2 < ǫ) ∧ ϕ(x)

and where
(xi − yi)

2 < ǫ)

is an abbreviation for

xi · xi + yi · yi < ǫ+ (1 + 1) · xi · yi .

More ex’s in Marker’s book.
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o-minimality

Corollary

Every definable subset U ⊆ R is a finite union of open intervals and points.

This property is called o-minimality (order-min).
Prf.:
p(x) = 0 may define an empty set or a finite set of whole R , and p(x) > 0
may define an empty set, the whole R or a proper open interval.

�
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definable sets

The o-minimality alone implies over the theory of ordered fields (i.e. no
specific RCF ax’s are needed) a structure theory for definable subsets of all
Rn.

Key notion: cell decomposition.

Case n = 1:

0-cells: single points
1-cells: open intervals (a, b), where a and b can be also +/−∞, resp.

Corollary of QE

Every definable subset of R is a finite disjoint union on 0- and 1- cells.
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n = 2

Case n = 2:
0-cells: single points
1-cells:
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2-cells

2-cells:

Theorem - cell decomposition for n = 2

Every definable subset of R2 is a finite disjoint union on 0-, 1- and 2- cells.
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tame topology

Definable sets in R are rich enough to include a lot of mathematics (and
semialgebraic geometry in particular) but they avoid set-th pathologies.
Terminology: tame topology. See van den Dries’s book with the same title.

Ex.: a use of cell-decomp. in defining Euler characteristic.
Case n = 1: for a definable set U ⊆ R define χ(U) ∈ Z as follows:

express U as a disjoint union of some finite family C of 0- and 1-cells,

put χ(U) := k − ℓ, where k (resp. ℓ) is the nb. of 0-cells (resp.
1-cells) in C.

Fact

The value of χ(U) does not depend on the choice of C and

χ(U ∪ V ) = χ(U) + χ(V )

for disjoint U,V .
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HW

Problems to take away:

(1) Prove the fact from the previous slide.

(2) How would you generalize it to n = 2?

(1) Show how the set of (x , y) ∈ R2 satisfying

a < y < b ∧ f (y) < x < g(y)

where f and g are definable can be decomposed into cells.
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